blob: 793a22050677c195ad4052c5fba5d2ab99239dad [file] [log] [blame]
//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Decl nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGDebugInfo.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenOptions.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Type.h"
using namespace clang;
using namespace CodeGen;
void CodeGenFunction::EmitDecl(const Decl &D) {
switch (D.getKind()) {
default:
CGM.ErrorUnsupported(&D, "decl");
return;
case Decl::ParmVar:
assert(0 && "Parmdecls should not be in declstmts!");
case Decl::Function: // void X();
case Decl::Record: // struct/union/class X;
case Decl::Enum: // enum X;
case Decl::EnumConstant: // enum ? { X = ? }
case Decl::CXXRecord: // struct/union/class X; [C++]
case Decl::Using: // using X; [C++]
case Decl::UsingShadow:
case Decl::UsingDirective: // using namespace X; [C++]
case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
// None of these decls require codegen support.
return;
case Decl::Var: {
const VarDecl &VD = cast<VarDecl>(D);
assert(VD.isBlockVarDecl() &&
"Should not see file-scope variables inside a function!");
return EmitBlockVarDecl(VD);
}
case Decl::Typedef: { // typedef int X;
const TypedefDecl &TD = cast<TypedefDecl>(D);
QualType Ty = TD.getUnderlyingType();
if (Ty->isVariablyModifiedType())
EmitVLASize(Ty);
}
}
}
/// EmitBlockVarDecl - This method handles emission of any variable declaration
/// inside a function, including static vars etc.
void CodeGenFunction::EmitBlockVarDecl(const VarDecl &D) {
if (D.hasAttr<AsmLabelAttr>())
CGM.ErrorUnsupported(&D, "__asm__");
switch (D.getStorageClass()) {
case VarDecl::None:
case VarDecl::Auto:
case VarDecl::Register:
return EmitLocalBlockVarDecl(D);
case VarDecl::Static: {
llvm::GlobalValue::LinkageTypes Linkage =
llvm::GlobalValue::InternalLinkage;
// If this is a static declaration inside an inline function, it must have
// weak linkage so that the linker will merge multiple definitions of it.
if (getContext().getLangOptions().CPlusPlus) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurFuncDecl)) {
if (FD->isInlined())
Linkage = llvm::GlobalValue::WeakAnyLinkage;
}
}
return EmitStaticBlockVarDecl(D, Linkage);
}
case VarDecl::Extern:
case VarDecl::PrivateExtern:
// Don't emit it now, allow it to be emitted lazily on its first use.
return;
}
assert(0 && "Unknown storage class");
}
static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
const char *Separator) {
CodeGenModule &CGM = CGF.CGM;
if (CGF.getContext().getLangOptions().CPlusPlus)
return CGM.getMangledName(&D);
std::string ContextName;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl))
ContextName = CGM.getMangledName(FD);
else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
ContextName = CGF.CurFn->getName();
else
// FIXME: What about in a block??
assert(0 && "Unknown context for block var decl");
return ContextName + Separator + D.getNameAsString();
}
llvm::GlobalVariable *
CodeGenFunction::CreateStaticBlockVarDecl(const VarDecl &D,
const char *Separator,
llvm::GlobalValue::LinkageTypes Linkage) {
QualType Ty = D.getType();
assert(Ty->isConstantSizeType() && "VLAs can't be static");
std::string Name = GetStaticDeclName(*this, D, Separator);
const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(CGM.getModule(), LTy,
Ty.isConstant(getContext()), Linkage,
CGM.EmitNullConstant(D.getType()), Name, 0,
D.isThreadSpecified(), Ty.getAddressSpace());
GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
return GV;
}
/// AddInitializerToGlobalBlockVarDecl - Add the initializer for 'D' to the
/// global variable that has already been created for it. If the initializer
/// has a different type than GV does, this may free GV and return a different
/// one. Otherwise it just returns GV.
llvm::GlobalVariable *
CodeGenFunction::AddInitializerToGlobalBlockVarDecl(const VarDecl &D,
llvm::GlobalVariable *GV) {
llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
// If constant emission failed, then this should be a C++ static
// initializer.
if (!Init) {
if (!getContext().getLangOptions().CPlusPlus)
CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
else {
// Since we have a static initializer, this global variable can't
// be constant.
GV->setConstant(false);
EmitStaticCXXBlockVarDeclInit(D, GV);
}
return GV;
}
// The initializer may differ in type from the global. Rewrite
// the global to match the initializer. (We have to do this
// because some types, like unions, can't be completely represented
// in the LLVM type system.)
if (GV->getType() != Init->getType()) {
llvm::GlobalVariable *OldGV = GV;
GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
OldGV->isConstant(),
OldGV->getLinkage(), Init, "",
0, D.isThreadSpecified(),
D.getType().getAddressSpace());
// Steal the name of the old global
GV->takeName(OldGV);
// Replace all uses of the old global with the new global
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
// Erase the old global, since it is no longer used.
OldGV->eraseFromParent();
}
GV->setInitializer(Init);
return GV;
}
void CodeGenFunction::EmitStaticBlockVarDecl(const VarDecl &D,
llvm::GlobalValue::LinkageTypes Linkage) {
llvm::Value *&DMEntry = LocalDeclMap[&D];
assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
llvm::GlobalVariable *GV = CreateStaticBlockVarDecl(D, ".", Linkage);
// Store into LocalDeclMap before generating initializer to handle
// circular references.
DMEntry = GV;
// Make sure to evaluate VLA bounds now so that we have them for later.
//
// FIXME: Can this happen?
if (D.getType()->isVariablyModifiedType())
EmitVLASize(D.getType());
// If this value has an initializer, emit it.
if (D.getInit())
GV = AddInitializerToGlobalBlockVarDecl(D, GV);
// FIXME: Merge attribute handling.
if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) {
SourceManager &SM = CGM.getContext().getSourceManager();
llvm::Constant *Ann =
CGM.EmitAnnotateAttr(GV, AA,
SM.getInstantiationLineNumber(D.getLocation()));
CGM.AddAnnotation(Ann);
}
if (const SectionAttr *SA = D.getAttr<SectionAttr>())
GV->setSection(SA->getName());
if (D.hasAttr<UsedAttr>())
CGM.AddUsedGlobal(GV);
// We may have to cast the constant because of the initializer
// mismatch above.
//
// FIXME: It is really dangerous to store this in the map; if anyone
// RAUW's the GV uses of this constant will be invalid.
const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
const llvm::Type *LPtrTy =
llvm::PointerType::get(LTy, D.getType().getAddressSpace());
DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
// Emit global variable debug descriptor for static vars.
CGDebugInfo *DI = getDebugInfo();
if (DI) {
DI->setLocation(D.getLocation());
DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
}
}
unsigned CodeGenFunction::getByRefValueLLVMField(const ValueDecl *VD) const {
assert(ByRefValueInfo.count(VD) && "Did not find value!");
return ByRefValueInfo.find(VD)->second.second;
}
/// BuildByRefType - This routine changes a __block variable declared as T x
/// into:
///
/// struct {
/// void *__isa;
/// void *__forwarding;
/// int32_t __flags;
/// int32_t __size;
/// void *__copy_helper; // only if needed
/// void *__destroy_helper; // only if needed
/// char padding[X]; // only if needed
/// T x;
/// } x
///
const llvm::Type *CodeGenFunction::BuildByRefType(const ValueDecl *D) {
std::pair<const llvm::Type *, unsigned> &Info = ByRefValueInfo[D];
if (Info.first)
return Info.first;
QualType Ty = D->getType();
std::vector<const llvm::Type *> Types;
const llvm::PointerType *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
llvm::PATypeHolder ByRefTypeHolder = llvm::OpaqueType::get(VMContext);
// void *__isa;
Types.push_back(Int8PtrTy);
// void *__forwarding;
Types.push_back(llvm::PointerType::getUnqual(ByRefTypeHolder));
// int32_t __flags;
Types.push_back(llvm::Type::getInt32Ty(VMContext));
// int32_t __size;
Types.push_back(llvm::Type::getInt32Ty(VMContext));
bool HasCopyAndDispose = BlockRequiresCopying(Ty);
if (HasCopyAndDispose) {
/// void *__copy_helper;
Types.push_back(Int8PtrTy);
/// void *__destroy_helper;
Types.push_back(Int8PtrTy);
}
bool Packed = false;
CharUnits Align = getContext().getDeclAlign(D);
if (Align > CharUnits::fromQuantity(Target.getPointerAlign(0) / 8)) {
// We have to insert padding.
// The struct above has 2 32-bit integers.
unsigned CurrentOffsetInBytes = 4 * 2;
// And either 2 or 4 pointers.
CurrentOffsetInBytes += (HasCopyAndDispose ? 4 : 2) *
CGM.getTargetData().getTypeAllocSize(Int8PtrTy);
// Align the offset.
unsigned AlignedOffsetInBytes =
llvm::RoundUpToAlignment(CurrentOffsetInBytes, Align.getQuantity());
unsigned NumPaddingBytes = AlignedOffsetInBytes - CurrentOffsetInBytes;
if (NumPaddingBytes > 0) {
const llvm::Type *Ty = llvm::Type::getInt8Ty(VMContext);
// FIXME: We need a sema error for alignment larger than the minimum of
// the maximal stack alignmint and the alignment of malloc on the system.
if (NumPaddingBytes > 1)
Ty = llvm::ArrayType::get(Ty, NumPaddingBytes);
Types.push_back(Ty);
// We want a packed struct.
Packed = true;
}
}
// T x;
Types.push_back(ConvertType(Ty));
const llvm::Type *T = llvm::StructType::get(VMContext, Types, Packed);
cast<llvm::OpaqueType>(ByRefTypeHolder.get())->refineAbstractTypeTo(T);
CGM.getModule().addTypeName("struct.__block_byref_" + D->getNameAsString(),
ByRefTypeHolder.get());
Info.first = ByRefTypeHolder.get();
Info.second = Types.size() - 1;
return Info.first;
}
/// EmitLocalBlockVarDecl - Emit code and set up an entry in LocalDeclMap for a
/// variable declaration with auto, register, or no storage class specifier.
/// These turn into simple stack objects, or GlobalValues depending on target.
void CodeGenFunction::EmitLocalBlockVarDecl(const VarDecl &D) {
QualType Ty = D.getType();
bool isByRef = D.hasAttr<BlocksAttr>();
bool needsDispose = false;
CharUnits Align = CharUnits::Zero();
bool IsSimpleConstantInitializer = false;
llvm::Value *DeclPtr;
if (Ty->isConstantSizeType()) {
if (!Target.useGlobalsForAutomaticVariables()) {
// If this value is an array or struct, is POD, and if the initializer is
// a staticly determinable constant, try to optimize it.
if (D.getInit() && !isByRef &&
(Ty->isArrayType() || Ty->isRecordType()) &&
Ty->isPODType() &&
D.getInit()->isConstantInitializer(getContext())) {
// If this variable is marked 'const', emit the value as a global.
if (CGM.getCodeGenOpts().MergeAllConstants &&
Ty.isConstant(getContext())) {
EmitStaticBlockVarDecl(D, llvm::GlobalValue::InternalLinkage);
return;
}
IsSimpleConstantInitializer = true;
}
// A normal fixed sized variable becomes an alloca in the entry block.
const llvm::Type *LTy = ConvertTypeForMem(Ty);
if (isByRef)
LTy = BuildByRefType(&D);
llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
Alloc->setName(D.getNameAsString());
Align = getContext().getDeclAlign(&D);
if (isByRef)
Align = std::max(Align,
CharUnits::fromQuantity(Target.getPointerAlign(0) / 8));
Alloc->setAlignment(Align.getQuantity());
DeclPtr = Alloc;
} else {
// Targets that don't support recursion emit locals as globals.
const char *Class =
D.getStorageClass() == VarDecl::Register ? ".reg." : ".auto.";
DeclPtr = CreateStaticBlockVarDecl(D, Class,
llvm::GlobalValue
::InternalLinkage);
}
// FIXME: Can this happen?
if (Ty->isVariablyModifiedType())
EmitVLASize(Ty);
} else {
EnsureInsertPoint();
if (!DidCallStackSave) {
// Save the stack.
const llvm::Type *LTy = llvm::Type::getInt8PtrTy(VMContext);
llvm::Value *Stack = CreateTempAlloca(LTy, "saved_stack");
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
llvm::Value *V = Builder.CreateCall(F);
Builder.CreateStore(V, Stack);
DidCallStackSave = true;
{
// Push a cleanup block and restore the stack there.
DelayedCleanupBlock scope(*this);
V = Builder.CreateLoad(Stack, "tmp");
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
Builder.CreateCall(F, V);
}
}
// Get the element type.
const llvm::Type *LElemTy = ConvertTypeForMem(Ty);
const llvm::Type *LElemPtrTy =
llvm::PointerType::get(LElemTy, D.getType().getAddressSpace());
llvm::Value *VLASize = EmitVLASize(Ty);
// Downcast the VLA size expression
VLASize = Builder.CreateIntCast(VLASize, llvm::Type::getInt32Ty(VMContext),
false, "tmp");
// Allocate memory for the array.
llvm::AllocaInst *VLA =
Builder.CreateAlloca(llvm::Type::getInt8Ty(VMContext), VLASize, "vla");
VLA->setAlignment(getContext().getDeclAlign(&D).getQuantity());
DeclPtr = Builder.CreateBitCast(VLA, LElemPtrTy, "tmp");
}
llvm::Value *&DMEntry = LocalDeclMap[&D];
assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
DMEntry = DeclPtr;
// Emit debug info for local var declaration.
if (CGDebugInfo *DI = getDebugInfo()) {
assert(HaveInsertPoint() && "Unexpected unreachable point!");
DI->setLocation(D.getLocation());
if (Target.useGlobalsForAutomaticVariables()) {
DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
} else
DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
}
// If this local has an initializer, emit it now.
const Expr *Init = D.getInit();
// If we are at an unreachable point, we don't need to emit the initializer
// unless it contains a label.
if (!HaveInsertPoint()) {
if (!ContainsLabel(Init))
Init = 0;
else
EnsureInsertPoint();
}
if (Init) {
llvm::Value *Loc = DeclPtr;
if (isByRef)
Loc = Builder.CreateStructGEP(DeclPtr, getByRefValueLLVMField(&D),
D.getNameAsString());
bool isVolatile =
getContext().getCanonicalType(D.getType()).isVolatileQualified();
// If the initializer was a simple constant initializer, we can optimize it
// in various ways.
if (IsSimpleConstantInitializer) {
llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(),D.getType(),this);
assert(Init != 0 && "Wasn't a simple constant init?");
llvm::Value *AlignVal =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
Align.getQuantity());
const llvm::Type *IntPtr =
llvm::IntegerType::get(VMContext, LLVMPointerWidth);
llvm::Value *SizeVal =
llvm::ConstantInt::get(IntPtr,
getContext().getTypeSizeInChars(Ty).getQuantity());
const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext);
if (Loc->getType() != BP)
Loc = Builder.CreateBitCast(Loc, BP, "tmp");
// If the initializer is all zeros, codegen with memset.
if (isa<llvm::ConstantAggregateZero>(Init)) {
llvm::Value *Zero =
llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), 0);
Builder.CreateCall4(CGM.getMemSetFn(), Loc, Zero, SizeVal, AlignVal);
} else {
// Otherwise, create a temporary global with the initializer then
// memcpy from the global to the alloca.
std::string Name = GetStaticDeclName(*this, D, ".");
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(CGM.getModule(), Init->getType(), true,
llvm::GlobalValue::InternalLinkage,
Init, Name, 0, false, 0);
GV->setAlignment(Align.getQuantity());
llvm::Value *SrcPtr = GV;
if (SrcPtr->getType() != BP)
SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
Builder.CreateCall4(CGM.getMemCpyFn(), Loc, SrcPtr, SizeVal, AlignVal);
}
} else if (Ty->isReferenceType()) {
RValue RV = EmitReferenceBindingToExpr(Init, /*IsInitializer=*/true);
EmitStoreOfScalar(RV.getScalarVal(), Loc, false, Ty);
} else if (!hasAggregateLLVMType(Init->getType())) {
llvm::Value *V = EmitScalarExpr(Init);
EmitStoreOfScalar(V, Loc, isVolatile, D.getType());
} else if (Init->getType()->isAnyComplexType()) {
EmitComplexExprIntoAddr(Init, Loc, isVolatile);
} else {
EmitAggExpr(Init, Loc, isVolatile);
}
}
if (isByRef) {
const llvm::PointerType *PtrToInt8Ty = llvm::Type::getInt8PtrTy(VMContext);
EnsureInsertPoint();
llvm::Value *isa_field = Builder.CreateStructGEP(DeclPtr, 0);
llvm::Value *forwarding_field = Builder.CreateStructGEP(DeclPtr, 1);
llvm::Value *flags_field = Builder.CreateStructGEP(DeclPtr, 2);
llvm::Value *size_field = Builder.CreateStructGEP(DeclPtr, 3);
llvm::Value *V;
int flag = 0;
int flags = 0;
needsDispose = true;
if (Ty->isBlockPointerType()) {
flag |= BLOCK_FIELD_IS_BLOCK;
flags |= BLOCK_HAS_COPY_DISPOSE;
} else if (BlockRequiresCopying(Ty)) {
flag |= BLOCK_FIELD_IS_OBJECT;
flags |= BLOCK_HAS_COPY_DISPOSE;
}
// FIXME: Someone double check this.
if (Ty.isObjCGCWeak())
flag |= BLOCK_FIELD_IS_WEAK;
int isa = 0;
if (flag&BLOCK_FIELD_IS_WEAK)
isa = 1;
V = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), isa);
V = Builder.CreateIntToPtr(V, PtrToInt8Ty, "isa");
Builder.CreateStore(V, isa_field);
Builder.CreateStore(DeclPtr, forwarding_field);
V = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), flags);
Builder.CreateStore(V, flags_field);
const llvm::Type *V1;
V1 = cast<llvm::PointerType>(DeclPtr->getType())->getElementType();
V = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
CGM.GetTargetTypeStoreSize(V1).getQuantity());
Builder.CreateStore(V, size_field);
if (flags & BLOCK_HAS_COPY_DISPOSE) {
BlockHasCopyDispose = true;
llvm::Value *copy_helper = Builder.CreateStructGEP(DeclPtr, 4);
Builder.CreateStore(BuildbyrefCopyHelper(DeclPtr->getType(), flag,
Align.getQuantity()),
copy_helper);
llvm::Value *destroy_helper = Builder.CreateStructGEP(DeclPtr, 5);
Builder.CreateStore(BuildbyrefDestroyHelper(DeclPtr->getType(), flag,
Align.getQuantity()),
destroy_helper);
}
}
// Handle CXX destruction of variables.
QualType DtorTy(Ty);
while (const ArrayType *Array = getContext().getAsArrayType(DtorTy))
DtorTy = getContext().getBaseElementType(Array);
if (const RecordType *RT = DtorTy->getAs<RecordType>())
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
if (!ClassDecl->hasTrivialDestructor()) {
const CXXDestructorDecl *D = ClassDecl->getDestructor(getContext());
assert(D && "EmitLocalBlockVarDecl - destructor is nul");
if (const ConstantArrayType *Array =
getContext().getAsConstantArrayType(Ty)) {
{
DelayedCleanupBlock Scope(*this);
QualType BaseElementTy = getContext().getBaseElementType(Array);
const llvm::Type *BasePtr = ConvertType(BaseElementTy);
BasePtr = llvm::PointerType::getUnqual(BasePtr);
llvm::Value *BaseAddrPtr =
Builder.CreateBitCast(DeclPtr, BasePtr);
EmitCXXAggrDestructorCall(D, Array, BaseAddrPtr);
// Make sure to jump to the exit block.
EmitBranch(Scope.getCleanupExitBlock());
}
if (Exceptions) {
EHCleanupBlock Cleanup(*this);
QualType BaseElementTy = getContext().getBaseElementType(Array);
const llvm::Type *BasePtr = ConvertType(BaseElementTy);
BasePtr = llvm::PointerType::getUnqual(BasePtr);
llvm::Value *BaseAddrPtr =
Builder.CreateBitCast(DeclPtr, BasePtr);
EmitCXXAggrDestructorCall(D, Array, BaseAddrPtr);
}
} else {
{
DelayedCleanupBlock Scope(*this);
EmitCXXDestructorCall(D, Dtor_Complete, DeclPtr);
// Make sure to jump to the exit block.
EmitBranch(Scope.getCleanupExitBlock());
}
if (Exceptions) {
EHCleanupBlock Cleanup(*this);
EmitCXXDestructorCall(D, Dtor_Complete, DeclPtr);
}
}
}
}
// Handle the cleanup attribute
if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
const FunctionDecl *FD = CA->getFunctionDecl();
llvm::Constant* F = CGM.GetAddrOfFunction(FD);
assert(F && "Could not find function!");
const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
// In some cases, the type of the function argument will be different from
// the type of the pointer. An example of this is
// void f(void* arg);
// __attribute__((cleanup(f))) void *g;
//
// To fix this we insert a bitcast here.
QualType ArgTy = Info.arg_begin()->type;
{
DelayedCleanupBlock scope(*this);
CallArgList Args;
Args.push_back(std::make_pair(RValue::get(Builder.CreateBitCast(DeclPtr,
ConvertType(ArgTy))),
getContext().getPointerType(D.getType())));
EmitCall(Info, F, ReturnValueSlot(), Args);
}
if (Exceptions) {
EHCleanupBlock Cleanup(*this);
CallArgList Args;
Args.push_back(std::make_pair(RValue::get(Builder.CreateBitCast(DeclPtr,
ConvertType(ArgTy))),
getContext().getPointerType(D.getType())));
EmitCall(Info, F, ReturnValueSlot(), Args);
}
}
if (needsDispose && CGM.getLangOptions().getGCMode() != LangOptions::GCOnly) {
{
DelayedCleanupBlock scope(*this);
llvm::Value *V = Builder.CreateStructGEP(DeclPtr, 1, "forwarding");
V = Builder.CreateLoad(V);
BuildBlockRelease(V);
}
// FIXME: Turn this on and audit the codegen
if (0 && Exceptions) {
EHCleanupBlock Cleanup(*this);
llvm::Value *V = Builder.CreateStructGEP(DeclPtr, 1, "forwarding");
V = Builder.CreateLoad(V);
BuildBlockRelease(V);
}
}
}
/// Emit an alloca (or GlobalValue depending on target)
/// for the specified parameter and set up LocalDeclMap.
void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg) {
// FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
"Invalid argument to EmitParmDecl");
QualType Ty = D.getType();
CanQualType CTy = getContext().getCanonicalType(Ty);
llvm::Value *DeclPtr;
// If this is an aggregate or variable sized value, reuse the input pointer.
if (!Ty->isConstantSizeType() ||
CodeGenFunction::hasAggregateLLVMType(Ty)) {
DeclPtr = Arg;
} else {
// Otherwise, create a temporary to hold the value.
DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
// Store the initial value into the alloca.
EmitStoreOfScalar(Arg, DeclPtr, CTy.isVolatileQualified(), Ty);
}
Arg->setName(D.getName());
llvm::Value *&DMEntry = LocalDeclMap[&D];
assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
DMEntry = DeclPtr;
// Emit debug info for param declaration.
if (CGDebugInfo *DI = getDebugInfo()) {
DI->setLocation(D.getLocation());
DI->EmitDeclareOfArgVariable(&D, DeclPtr, Builder);
}
}