blob: bd8a6bc8467c5d57a19561def3370e60ae8c77d8 [file] [log] [blame]
//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Type interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TYPE_H
#define LLVM_CLANG_AST_TYPE_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Linkage.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateName.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/type_traits.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
using llvm::isa;
using llvm::cast;
using llvm::cast_or_null;
using llvm::dyn_cast;
using llvm::dyn_cast_or_null;
namespace clang {
enum {
TypeAlignmentInBits = 3,
TypeAlignment = 1 << TypeAlignmentInBits
};
class Type;
class ExtQuals;
class QualType;
}
namespace llvm {
template <typename T>
class PointerLikeTypeTraits;
template<>
class PointerLikeTypeTraits< ::clang::Type*> {
public:
static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
static inline ::clang::Type *getFromVoidPointer(void *P) {
return static_cast< ::clang::Type*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template<>
class PointerLikeTypeTraits< ::clang::ExtQuals*> {
public:
static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
return static_cast< ::clang::ExtQuals*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template <>
struct isPodLike<clang::QualType> { static const bool value = true; };
}
namespace clang {
class ASTContext;
class TypedefDecl;
class TemplateDecl;
class TemplateTypeParmDecl;
class NonTypeTemplateParmDecl;
class TemplateTemplateParmDecl;
class TagDecl;
class RecordDecl;
class CXXRecordDecl;
class EnumDecl;
class FieldDecl;
class ObjCInterfaceDecl;
class ObjCProtocolDecl;
class ObjCMethodDecl;
class UnresolvedUsingTypenameDecl;
class Expr;
class Stmt;
class SourceLocation;
class StmtIteratorBase;
class TemplateArgument;
class TemplateArgumentLoc;
class TemplateArgumentListInfo;
class Type;
class QualifiedNameType;
struct PrintingPolicy;
template <typename> class CanQual;
typedef CanQual<Type> CanQualType;
// Provide forward declarations for all of the *Type classes
#define TYPE(Class, Base) class Class##Type;
#include "clang/AST/TypeNodes.def"
/// Qualifiers - The collection of all-type qualifiers we support.
/// Clang supports five independent qualifiers:
/// * C99: const, volatile, and restrict
/// * Embedded C (TR18037): address spaces
/// * Objective C: the GC attributes (none, weak, or strong)
class Qualifiers {
public:
enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
Const = 0x1,
Restrict = 0x2,
Volatile = 0x4,
CVRMask = Const | Volatile | Restrict
};
enum GC {
GCNone = 0,
Weak,
Strong
};
enum {
/// The maximum supported address space number.
/// 24 bits should be enough for anyone.
MaxAddressSpace = 0xffffffu,
/// The width of the "fast" qualifier mask.
FastWidth = 2,
/// The fast qualifier mask.
FastMask = (1 << FastWidth) - 1
};
Qualifiers() : Mask(0) {}
static Qualifiers fromFastMask(unsigned Mask) {
Qualifiers Qs;
Qs.addFastQualifiers(Mask);
return Qs;
}
static Qualifiers fromCVRMask(unsigned CVR) {
Qualifiers Qs;
Qs.addCVRQualifiers(CVR);
return Qs;
}
// Deserialize qualifiers from an opaque representation.
static Qualifiers fromOpaqueValue(unsigned opaque) {
Qualifiers Qs;
Qs.Mask = opaque;
return Qs;
}
// Serialize these qualifiers into an opaque representation.
unsigned getAsOpaqueValue() const {
return Mask;
}
bool hasConst() const { return Mask & Const; }
void setConst(bool flag) {
Mask = (Mask & ~Const) | (flag ? Const : 0);
}
void removeConst() { Mask &= ~Const; }
void addConst() { Mask |= Const; }
bool hasVolatile() const { return Mask & Volatile; }
void setVolatile(bool flag) {
Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
}
void removeVolatile() { Mask &= ~Volatile; }
void addVolatile() { Mask |= Volatile; }
bool hasRestrict() const { return Mask & Restrict; }
void setRestrict(bool flag) {
Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
}
void removeRestrict() { Mask &= ~Restrict; }
void addRestrict() { Mask |= Restrict; }
bool hasCVRQualifiers() const { return getCVRQualifiers(); }
unsigned getCVRQualifiers() const { return Mask & CVRMask; }
void setCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask = (Mask & ~CVRMask) | mask;
}
void removeCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask &= ~mask;
}
void removeCVRQualifiers() {
removeCVRQualifiers(CVRMask);
}
void addCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask |= mask;
}
bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
void setObjCGCAttr(GC type) {
Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
}
void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
void addObjCGCAttr(GC type) {
assert(type);
setObjCGCAttr(type);
}
bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
void setAddressSpace(unsigned space) {
assert(space <= MaxAddressSpace);
Mask = (Mask & ~AddressSpaceMask)
| (((uint32_t) space) << AddressSpaceShift);
}
void removeAddressSpace() { setAddressSpace(0); }
void addAddressSpace(unsigned space) {
assert(space);
setAddressSpace(space);
}
// Fast qualifiers are those that can be allocated directly
// on a QualType object.
bool hasFastQualifiers() const { return getFastQualifiers(); }
unsigned getFastQualifiers() const { return Mask & FastMask; }
void setFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask = (Mask & ~FastMask) | mask;
}
void removeFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask &= ~mask;
}
void removeFastQualifiers() {
removeFastQualifiers(FastMask);
}
void addFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask |= mask;
}
/// hasNonFastQualifiers - Return true if the set contains any
/// qualifiers which require an ExtQuals node to be allocated.
bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
Qualifiers getNonFastQualifiers() const {
Qualifiers Quals = *this;
Quals.setFastQualifiers(0);
return Quals;
}
/// hasQualifiers - Return true if the set contains any qualifiers.
bool hasQualifiers() const { return Mask; }
bool empty() const { return !Mask; }
/// \brief Add the qualifiers from the given set to this set.
void addQualifiers(Qualifiers Q) {
// If the other set doesn't have any non-boolean qualifiers, just
// bit-or it in.
if (!(Q.Mask & ~CVRMask))
Mask |= Q.Mask;
else {
Mask |= (Q.Mask & CVRMask);
if (Q.hasAddressSpace())
addAddressSpace(Q.getAddressSpace());
if (Q.hasObjCGCAttr())
addObjCGCAttr(Q.getObjCGCAttr());
}
}
bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
operator bool() const { return hasQualifiers(); }
Qualifiers &operator+=(Qualifiers R) {
addQualifiers(R);
return *this;
}
// Union two qualifier sets. If an enumerated qualifier appears
// in both sets, use the one from the right.
friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
L += R;
return L;
}
std::string getAsString() const;
std::string getAsString(const PrintingPolicy &Policy) const {
std::string Buffer;
getAsStringInternal(Buffer, Policy);
return Buffer;
}
void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Mask);
}
private:
// bits: |0 1 2|3 .. 4|5 .. 31|
// |C R V|GCAttr|AddrSpace|
uint32_t Mask;
static const uint32_t GCAttrMask = 0x18;
static const uint32_t GCAttrShift = 3;
static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
static const uint32_t AddressSpaceShift = 5;
};
/// ExtQuals - We can encode up to three bits in the low bits of a
/// type pointer, but there are many more type qualifiers that we want
/// to be able to apply to an arbitrary type. Therefore we have this
/// struct, intended to be heap-allocated and used by QualType to
/// store qualifiers.
///
/// The current design tags the 'const' and 'restrict' qualifiers in
/// two low bits on the QualType pointer; a third bit records whether
/// the pointer is an ExtQuals node. 'const' was chosen because it is
/// orders of magnitude more common than the other two qualifiers, in
/// both library and user code. It's relatively rare to see
/// 'restrict' in user code, but many standard C headers are saturated
/// with 'restrict' declarations, so that representing them efficiently
/// is a critical goal of this representation.
class ExtQuals : public llvm::FoldingSetNode {
// NOTE: changing the fast qualifiers should be straightforward as
// long as you don't make 'const' non-fast.
// 1. Qualifiers:
// a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
// Fast qualifiers must occupy the low-order bits.
// b) Update Qualifiers::FastWidth and FastMask.
// 2. QualType:
// a) Update is{Volatile,Restrict}Qualified(), defined inline.
// b) Update remove{Volatile,Restrict}, defined near the end of
// this header.
// 3. ASTContext:
// a) Update get{Volatile,Restrict}Type.
/// Context - the context to which this set belongs. We save this
/// here so that QualifierCollector can use it to reapply extended
/// qualifiers to an arbitrary type without requiring a context to
/// be pushed through every single API dealing with qualifiers.
ASTContext& Context;
/// BaseType - the underlying type that this qualifies
const Type *BaseType;
/// Quals - the immutable set of qualifiers applied by this
/// node; always contains extended qualifiers.
Qualifiers Quals;
public:
ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
: Context(Context), BaseType(Base), Quals(Quals)
{
assert(Quals.hasNonFastQualifiers()
&& "ExtQuals created with no fast qualifiers");
assert(!Quals.hasFastQualifiers()
&& "ExtQuals created with fast qualifiers");
}
Qualifiers getQualifiers() const { return Quals; }
bool hasVolatile() const { return Quals.hasVolatile(); }
bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
const Type *getBaseType() const { return BaseType; }
ASTContext &getContext() const { return Context; }
public:
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, getBaseType(), Quals);
}
static void Profile(llvm::FoldingSetNodeID &ID,
const Type *BaseType,
Qualifiers Quals) {
assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
ID.AddPointer(BaseType);
Quals.Profile(ID);
}
};
/// CallingConv - Specifies the calling convention that a function uses.
enum CallingConv {
CC_Default,
CC_C, // __attribute__((cdecl))
CC_X86StdCall, // __attribute__((stdcall))
CC_X86FastCall // __attribute__((fastcall))
};
/// QualType - For efficiency, we don't store CV-qualified types as nodes on
/// their own: instead each reference to a type stores the qualifiers. This
/// greatly reduces the number of nodes we need to allocate for types (for
/// example we only need one for 'int', 'const int', 'volatile int',
/// 'const volatile int', etc).
///
/// As an added efficiency bonus, instead of making this a pair, we
/// just store the two bits we care about in the low bits of the
/// pointer. To handle the packing/unpacking, we make QualType be a
/// simple wrapper class that acts like a smart pointer. A third bit
/// indicates whether there are extended qualifiers present, in which
/// case the pointer points to a special structure.
class QualType {
// Thankfully, these are efficiently composable.
llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
Qualifiers::FastWidth> Value;
const ExtQuals *getExtQualsUnsafe() const {
return Value.getPointer().get<const ExtQuals*>();
}
const Type *getTypePtrUnsafe() const {
return Value.getPointer().get<const Type*>();
}
QualType getUnqualifiedTypeSlow() const;
friend class QualifierCollector;
public:
QualType() {}
QualType(const Type *Ptr, unsigned Quals)
: Value(Ptr, Quals) {}
QualType(const ExtQuals *Ptr, unsigned Quals)
: Value(Ptr, Quals) {}
unsigned getLocalFastQualifiers() const { return Value.getInt(); }
void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
/// Retrieves a pointer to the underlying (unqualified) type.
/// This should really return a const Type, but it's not worth
/// changing all the users right now.
Type *getTypePtr() const {
if (hasLocalNonFastQualifiers())
return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
return const_cast<Type*>(getTypePtrUnsafe());
}
void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
static QualType getFromOpaquePtr(void *Ptr) {
QualType T;
T.Value.setFromOpaqueValue(Ptr);
return T;
}
Type &operator*() const {
return *getTypePtr();
}
Type *operator->() const {
return getTypePtr();
}
bool isCanonical() const;
bool isCanonicalAsParam() const;
/// isNull - Return true if this QualType doesn't point to a type yet.
bool isNull() const {
return Value.getPointer().isNull();
}
/// \brief Determine whether this particular QualType instance has the
/// "const" qualifier set, without looking through typedefs that may have
/// added "const" at a different level.
bool isLocalConstQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Const);
}
/// \brief Determine whether this type is const-qualified.
bool isConstQualified() const;
/// \brief Determine whether this particular QualType instance has the
/// "restrict" qualifier set, without looking through typedefs that may have
/// added "restrict" at a different level.
bool isLocalRestrictQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Restrict);
}
/// \brief Determine whether this type is restrict-qualified.
bool isRestrictQualified() const;
/// \brief Determine whether this particular QualType instance has the
/// "volatile" qualifier set, without looking through typedefs that may have
/// added "volatile" at a different level.
bool isLocalVolatileQualified() const {
return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
}
/// \brief Determine whether this type is volatile-qualified.
bool isVolatileQualified() const;
/// \brief Determine whether this particular QualType instance has any
/// qualifiers, without looking through any typedefs that might add
/// qualifiers at a different level.
bool hasLocalQualifiers() const {
return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
}
/// \brief Determine whether this type has any qualifiers.
bool hasQualifiers() const;
/// \brief Determine whether this particular QualType instance has any
/// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
/// instance.
bool hasLocalNonFastQualifiers() const {
return Value.getPointer().is<const ExtQuals*>();
}
/// \brief Retrieve the set of qualifiers local to this particular QualType
/// instance, not including any qualifiers acquired through typedefs or
/// other sugar.
Qualifiers getLocalQualifiers() const {
Qualifiers Quals;
if (hasLocalNonFastQualifiers())
Quals = getExtQualsUnsafe()->getQualifiers();
Quals.addFastQualifiers(getLocalFastQualifiers());
return Quals;
}
/// \brief Retrieve the set of qualifiers applied to this type.
Qualifiers getQualifiers() const;
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// local to this particular QualType instance, not including any qualifiers
/// acquired through typedefs or other sugar.
unsigned getLocalCVRQualifiers() const {
unsigned CVR = getLocalFastQualifiers();
if (isLocalVolatileQualified())
CVR |= Qualifiers::Volatile;
return CVR;
}
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// applied to this type.
unsigned getCVRQualifiers() const;
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// applied to this type, looking through any number of unqualified array
/// types to their element types' qualifiers.
unsigned getCVRQualifiersThroughArrayTypes() const;
bool isConstant(ASTContext& Ctx) const {
return QualType::isConstant(*this, Ctx);
}
// Don't promise in the API that anything besides 'const' can be
// easily added.
/// addConst - add the specified type qualifier to this QualType.
void addConst() {
addFastQualifiers(Qualifiers::Const);
}
QualType withConst() const {
return withFastQualifiers(Qualifiers::Const);
}
void addFastQualifiers(unsigned TQs) {
assert(!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!");
Value.setInt(Value.getInt() | TQs);
}
// FIXME: The remove* functions are semantically broken, because they might
// not remove a qualifier stored on a typedef. Most of the with* functions
// have the same problem.
void removeConst();
void removeVolatile();
void removeRestrict();
void removeCVRQualifiers(unsigned Mask);
void removeFastQualifiers() { Value.setInt(0); }
void removeFastQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
Value.setInt(Value.getInt() & ~Mask);
}
// Creates a type with the given qualifiers in addition to any
// qualifiers already on this type.
QualType withFastQualifiers(unsigned TQs) const {
QualType T = *this;
T.addFastQualifiers(TQs);
return T;
}
// Creates a type with exactly the given fast qualifiers, removing
// any existing fast qualifiers.
QualType withExactFastQualifiers(unsigned TQs) const {
return withoutFastQualifiers().withFastQualifiers(TQs);
}
// Removes fast qualifiers, but leaves any extended qualifiers in place.
QualType withoutFastQualifiers() const {
QualType T = *this;
T.removeFastQualifiers();
return T;
}
/// \brief Return this type with all of the instance-specific qualifiers
/// removed, but without removing any qualifiers that may have been applied
/// through typedefs.
QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
/// \brief Return the unqualified form of the given type, which might be
/// desugared to eliminate qualifiers introduced via typedefs.
QualType getUnqualifiedType() const {
QualType T = getLocalUnqualifiedType();
if (!T.hasQualifiers())
return T;
return getUnqualifiedTypeSlow();
}
bool isMoreQualifiedThan(QualType Other) const;
bool isAtLeastAsQualifiedAs(QualType Other) const;
QualType getNonReferenceType() const;
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
///
/// Qualifiers are left in place.
QualType getDesugaredType() const {
return QualType::getDesugaredType(*this);
}
/// operator==/!= - Indicate whether the specified types and qualifiers are
/// identical.
friend bool operator==(const QualType &LHS, const QualType &RHS) {
return LHS.Value == RHS.Value;
}
friend bool operator!=(const QualType &LHS, const QualType &RHS) {
return LHS.Value != RHS.Value;
}
std::string getAsString() const;
std::string getAsString(const PrintingPolicy &Policy) const {
std::string S;
getAsStringInternal(S, Policy);
return S;
}
void getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const;
void dump(const char *s) const;
void dump() const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(getAsOpaquePtr());
}
/// getAddressSpace - Return the address space of this type.
inline unsigned getAddressSpace() const;
/// GCAttrTypesAttr - Returns gc attribute of this type.
inline Qualifiers::GC getObjCGCAttr() const;
/// isObjCGCWeak true when Type is objc's weak.
bool isObjCGCWeak() const {
return getObjCGCAttr() == Qualifiers::Weak;
}
/// isObjCGCStrong true when Type is objc's strong.
bool isObjCGCStrong() const {
return getObjCGCAttr() == Qualifiers::Strong;
}
/// getNoReturnAttr - Returns true if the type has the noreturn attribute,
/// false otherwise.
bool getNoReturnAttr() const;
/// getCallConv - Returns the calling convention of the type if the type
/// is a function type, CC_Default otherwise.
CallingConv getCallConv() const;
private:
// These methods are implemented in a separate translation unit;
// "static"-ize them to avoid creating temporary QualTypes in the
// caller.
static bool isConstant(QualType T, ASTContext& Ctx);
static QualType getDesugaredType(QualType T);
};
} // end clang.
namespace llvm {
/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
/// to a specific Type class.
template<> struct simplify_type<const ::clang::QualType> {
typedef ::clang::Type* SimpleType;
static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
return Val.getTypePtr();
}
};
template<> struct simplify_type< ::clang::QualType>
: public simplify_type<const ::clang::QualType> {};
// Teach SmallPtrSet that QualType is "basically a pointer".
template<>
class PointerLikeTypeTraits<clang::QualType> {
public:
static inline void *getAsVoidPointer(clang::QualType P) {
return P.getAsOpaquePtr();
}
static inline clang::QualType getFromVoidPointer(void *P) {
return clang::QualType::getFromOpaquePtr(P);
}
// Various qualifiers go in low bits.
enum { NumLowBitsAvailable = 0 };
};
} // end namespace llvm
namespace clang {
/// Type - This is the base class of the type hierarchy. A central concept
/// with types is that each type always has a canonical type. A canonical type
/// is the type with any typedef names stripped out of it or the types it
/// references. For example, consider:
///
/// typedef int foo;
/// typedef foo* bar;
/// 'int *' 'foo *' 'bar'
///
/// There will be a Type object created for 'int'. Since int is canonical, its
/// canonicaltype pointer points to itself. There is also a Type for 'foo' (a
/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
/// there is a PointerType that represents 'int*', which, like 'int', is
/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
/// is also 'int*'.
///
/// Non-canonical types are useful for emitting diagnostics, without losing
/// information about typedefs being used. Canonical types are useful for type
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
/// about whether something has a particular form (e.g. is a function type),
/// because they implicitly, recursively, strip all typedefs out of a type.
///
/// Types, once created, are immutable.
///
class Type {
public:
enum TypeClass {
#define TYPE(Class, Base) Class,
#define LAST_TYPE(Class) TypeLast = Class,
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
TagFirst = Record, TagLast = Enum
};
private:
QualType CanonicalType;
/// TypeClass bitfield - Enum that specifies what subclass this belongs to.
unsigned TC : 8;
/// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
/// Note that this should stay at the end of the ivars for Type so that
/// subclasses can pack their bitfields into the same word.
bool Dependent : 1;
Type(const Type&); // DO NOT IMPLEMENT.
void operator=(const Type&); // DO NOT IMPLEMENT.
protected:
// silence VC++ warning C4355: 'this' : used in base member initializer list
Type *this_() { return this; }
Type(TypeClass tc, QualType Canonical, bool dependent)
: CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
TC(tc), Dependent(dependent) {}
virtual ~Type() {}
virtual void Destroy(ASTContext& C);
friend class ASTContext;
public:
TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
bool isCanonicalUnqualified() const {
return CanonicalType.getTypePtr() == this;
}
/// Types are partitioned into 3 broad categories (C99 6.2.5p1):
/// object types, function types, and incomplete types.
/// \brief Determines whether the type describes an object in memory.
///
/// Note that this definition of object type corresponds to the C++
/// definition of object type, which includes incomplete types, as
/// opposed to the C definition (which does not include incomplete
/// types).
bool isObjectType() const;
/// isIncompleteType - Return true if this is an incomplete type.
/// A type that can describe objects, but which lacks information needed to
/// determine its size (e.g. void, or a fwd declared struct). Clients of this
/// routine will need to determine if the size is actually required.
bool isIncompleteType() const;
/// isIncompleteOrObjectType - Return true if this is an incomplete or object
/// type, in other words, not a function type.
bool isIncompleteOrObjectType() const {
return !isFunctionType();
}
/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
bool isPODType() const;
/// isLiteralType - Return true if this is a literal type
/// (C++0x [basic.types]p10)
bool isLiteralType() const;
/// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
/// types that have a non-constant expression. This does not include "[]".
bool isVariablyModifiedType() const;
/// Helper methods to distinguish type categories. All type predicates
/// operate on the canonical type, ignoring typedefs and qualifiers.
/// isSpecificBuiltinType - Test for a particular builtin type.
bool isSpecificBuiltinType(unsigned K) const;
/// isIntegerType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
bool isEnumeralType() const;
bool isBooleanType() const;
bool isCharType() const;
bool isWideCharType() const;
bool isAnyCharacterType() const;
bool isIntegralType() const;
/// Floating point categories.
bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
/// isComplexType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isComplexType() const; // C99 6.2.5p11 (complex)
bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
bool isVoidType() const; // C99 6.2.5p19
bool isDerivedType() const; // C99 6.2.5p20
bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
bool isAggregateType() const;
// Type Predicates: Check to see if this type is structurally the specified
// type, ignoring typedefs and qualifiers.
bool isFunctionType() const;
bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
bool isPointerType() const;
bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
bool isBlockPointerType() const;
bool isVoidPointerType() const;
bool isReferenceType() const;
bool isLValueReferenceType() const;
bool isRValueReferenceType() const;
bool isFunctionPointerType() const;
bool isMemberPointerType() const;
bool isMemberFunctionPointerType() const;
bool isArrayType() const;
bool isConstantArrayType() const;
bool isIncompleteArrayType() const;
bool isVariableArrayType() const;
bool isDependentSizedArrayType() const;
bool isRecordType() const;
bool isClassType() const;
bool isStructureType() const;
bool isUnionType() const;
bool isComplexIntegerType() const; // GCC _Complex integer type.
bool isVectorType() const; // GCC vector type.
bool isExtVectorType() const; // Extended vector type.
bool isObjCObjectPointerType() const; // Pointer to *any* ObjC object.
// FIXME: change this to 'raw' interface type, so we can used 'interface' type
// for the common case.
bool isObjCInterfaceType() const; // NSString or NSString<foo>
bool isObjCQualifiedInterfaceType() const; // NSString<foo>
bool isObjCQualifiedIdType() const; // id<foo>
bool isObjCQualifiedClassType() const; // Class<foo>
bool isObjCIdType() const; // id
bool isObjCClassType() const; // Class
bool isObjCSelType() const; // Class
bool isObjCBuiltinType() const; // 'id' or 'Class'
bool isTemplateTypeParmType() const; // C++ template type parameter
bool isNullPtrType() const; // C++0x nullptr_t
/// isDependentType - Whether this type is a dependent type, meaning
/// that its definition somehow depends on a template parameter
/// (C++ [temp.dep.type]).
bool isDependentType() const { return Dependent; }
bool isOverloadableType() const;
/// hasPointerRepresentation - Whether this type is represented
/// natively as a pointer; this includes pointers, references, block
/// pointers, and Objective-C interface, qualified id, and qualified
/// interface types, as well as nullptr_t.
bool hasPointerRepresentation() const;
/// hasObjCPointerRepresentation - Whether this type can represent
/// an objective pointer type for the purpose of GC'ability
bool hasObjCPointerRepresentation() const;
// Type Checking Functions: Check to see if this type is structurally the
// specified type, ignoring typedefs and qualifiers, and return a pointer to
// the best type we can.
const RecordType *getAsStructureType() const;
/// NOTE: getAs*ArrayType are methods on ASTContext.
const RecordType *getAsUnionType() const;
const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
// The following is a convenience method that returns an ObjCObjectPointerType
// for object declared using an interface.
const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
// Member-template getAs<specific type>'. This scheme will eventually
// replace the specific getAsXXXX methods above.
//
// There are some specializations of this member template listed
// immediately following this class.
template <typename T> const T *getAs() const;
/// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
/// interface, return the interface type, otherwise return null.
const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *getArrayElementTypeNoTypeQual() const;
/// getPointeeType - If this is a pointer, ObjC object pointer, or block
/// pointer, this returns the respective pointee.
QualType getPointeeType() const;
/// getUnqualifiedDesugaredType() - Return the specified type with
/// any "sugar" removed from the type, removing any typedefs,
/// typeofs, etc., as well as any qualifiers.
const Type *getUnqualifiedDesugaredType() const;
/// More type predicates useful for type checking/promotion
bool isPromotableIntegerType() const; // C99 6.3.1.1p2
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// an enum decl which has a signed representation, or a vector of signed
/// integer element type.
bool isSignedIntegerType() const;
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
/// decl which has an unsigned representation, or a vector of unsigned integer
/// element type.
bool isUnsignedIntegerType() const;
/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types.
bool isConstantSizeType() const;
/// isSpecifierType - Returns true if this type can be represented by some
/// set of type specifiers.
bool isSpecifierType() const;
const char *getTypeClassName() const;
/// \brief Determine the linkage of this type.
virtual Linkage getLinkage() const;
QualType getCanonicalTypeInternal() const {
return CanonicalType;
}
CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
void dump() const;
static bool classof(const Type *) { return true; }
};
template <> inline const TypedefType *Type::getAs() const {
return dyn_cast<TypedefType>(this);
}
// We can do canonical leaf types faster, because we don't have to
// worry about preserving child type decoration.
#define TYPE(Class, Base)
#define LEAF_TYPE(Class) \
template <> inline const Class##Type *Type::getAs() const { \
return dyn_cast<Class##Type>(CanonicalType); \
}
#include "clang/AST/TypeNodes.def"
/// BuiltinType - This class is used for builtin types like 'int'. Builtin
/// types are always canonical and have a literal name field.
class BuiltinType : public Type {
public:
enum Kind {
Void,
Bool, // This is bool and/or _Bool.
Char_U, // This is 'char' for targets where char is unsigned.
UChar, // This is explicitly qualified unsigned char.
Char16, // This is 'char16_t' for C++.
Char32, // This is 'char32_t' for C++.
UShort,
UInt,
ULong,
ULongLong,
UInt128, // __uint128_t
Char_S, // This is 'char' for targets where char is signed.
SChar, // This is explicitly qualified signed char.
WChar, // This is 'wchar_t' for C++.
Short,
Int,
Long,
LongLong,
Int128, // __int128_t
Float, Double, LongDouble,
NullPtr, // This is the type of C++0x 'nullptr'.
Overload, // This represents the type of an overloaded function declaration.
Dependent, // This represents the type of a type-dependent expression.
UndeducedAuto, // In C++0x, this represents the type of an auto variable
// that has not been deduced yet.
ObjCId, // This represents the ObjC 'id' type.
ObjCClass, // This represents the ObjC 'Class' type.
ObjCSel // This represents the ObjC 'SEL' type.
};
private:
Kind TypeKind;
public:
BuiltinType(Kind K)
: Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
TypeKind(K) {}
Kind getKind() const { return TypeKind; }
const char *getName(const LangOptions &LO) const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
bool isInteger() const {
return TypeKind >= Bool && TypeKind <= Int128;
}
bool isSignedInteger() const {
return TypeKind >= Char_S && TypeKind <= Int128;
}
bool isUnsignedInteger() const {
return TypeKind >= Bool && TypeKind <= UInt128;
}
bool isFloatingPoint() const {
return TypeKind >= Float && TypeKind <= LongDouble;
}
virtual Linkage getLinkage() const;
static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
static bool classof(const BuiltinType *) { return true; }
};
/// ComplexType - C99 6.2.5p11 - Complex values. This supports the C99 complex
/// types (_Complex float etc) as well as the GCC integer complex extensions.
///
class ComplexType : public Type, public llvm::FoldingSetNode {
QualType ElementType;
ComplexType(QualType Element, QualType CanonicalPtr) :
Type(Complex, CanonicalPtr, Element->isDependentType()),
ElementType(Element) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
ID.AddPointer(Element.getAsOpaquePtr());
}
virtual Linkage getLinkage() const;
static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
static bool classof(const ComplexType *) { return true; }
};
/// PointerType - C99 6.7.5.1 - Pointer Declarators.
///
class PointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
PointerType(QualType Pointee, QualType CanonicalPtr) :
Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getPointeeType() const { return PointeeType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
virtual Linkage getLinkage() const;
static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
static bool classof(const PointerType *) { return true; }
};
/// BlockPointerType - pointer to a block type.
/// This type is to represent types syntactically represented as
/// "void (^)(int)", etc. Pointee is required to always be a function type.
///
class BlockPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType; // Block is some kind of pointer type
BlockPointerType(QualType Pointee, QualType CanonicalCls) :
Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
PointeeType(Pointee) {
}
friend class ASTContext; // ASTContext creates these.
public:
// Get the pointee type. Pointee is required to always be a function type.
QualType getPointeeType() const { return PointeeType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() == BlockPointer;
}
static bool classof(const BlockPointerType *) { return true; }
};
/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
///
class ReferenceType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
/// True if the type was originally spelled with an lvalue sigil.
/// This is never true of rvalue references but can also be false
/// on lvalue references because of C++0x [dcl.typedef]p9,
/// as follows:
///
/// typedef int &ref; // lvalue, spelled lvalue
/// typedef int &&rvref; // rvalue
/// ref &a; // lvalue, inner ref, spelled lvalue
/// ref &&a; // lvalue, inner ref
/// rvref &a; // lvalue, inner ref, spelled lvalue
/// rvref &&a; // rvalue, inner ref
bool SpelledAsLValue;
/// True if the inner type is a reference type. This only happens
/// in non-canonical forms.
bool InnerRef;
protected:
ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue) :
Type(tc, CanonicalRef, Referencee->isDependentType()),
PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
InnerRef(Referencee->isReferenceType()) {
}
public:
bool isSpelledAsLValue() const { return SpelledAsLValue; }
bool isInnerRef() const { return InnerRef; }
QualType getPointeeTypeAsWritten() const { return PointeeType; }
QualType getPointeeType() const {
// FIXME: this might strip inner qualifiers; okay?
const ReferenceType *T = this;
while (T->InnerRef)
T = T->PointeeType->getAs<ReferenceType>();
return T->PointeeType;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, PointeeType, SpelledAsLValue);
}
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Referencee,
bool SpelledAsLValue) {
ID.AddPointer(Referencee.getAsOpaquePtr());
ID.AddBoolean(SpelledAsLValue);
}
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference ||
T->getTypeClass() == RValueReference;
}
static bool classof(const ReferenceType *) { return true; }
};
/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
///
class LValueReferenceType : public ReferenceType {
LValueReferenceType(QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue) :
ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
{}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference;
}
static bool classof(const LValueReferenceType *) { return true; }
};
/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
///
class RValueReferenceType : public ReferenceType {
RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == RValueReference;
}
static bool classof(const RValueReferenceType *) { return true; }
};
/// MemberPointerType - C++ 8.3.3 - Pointers to members
///
class MemberPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
/// The class of which the pointee is a member. Must ultimately be a
/// RecordType, but could be a typedef or a template parameter too.
const Type *Class;
MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
Type(MemberPointer, CanonicalPtr,
Cls->isDependentType() || Pointee->isDependentType()),
PointeeType(Pointee), Class(Cls) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getPointeeType() const { return PointeeType; }
const Type *getClass() const { return Class; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType(), getClass());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
const Type *Class) {
ID.AddPointer(Pointee.getAsOpaquePtr());
ID.AddPointer(Class);
}
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() == MemberPointer;
}
static bool classof(const MemberPointerType *) { return true; }
};
/// ArrayType - C99 6.7.5.2 - Array Declarators.
///
class ArrayType : public Type, public llvm::FoldingSetNode {
public:
/// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
/// an array with a static size (e.g. int X[static 4]), or an array
/// with a star size (e.g. int X[*]).
/// 'static' is only allowed on function parameters.
enum ArraySizeModifier {
Normal, Static, Star
};
private:
/// ElementType - The element type of the array.
QualType ElementType;
// NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
/// NOTE: These fields are packed into the bitfields space in the Type class.
unsigned SizeModifier : 2;
/// IndexTypeQuals - Capture qualifiers in declarations like:
/// 'int X[static restrict 4]'. For function parameters only.
unsigned IndexTypeQuals : 3;
protected:
// C++ [temp.dep.type]p1:
// A type is dependent if it is...
// - an array type constructed from any dependent type or whose
// size is specified by a constant expression that is
// value-dependent,
ArrayType(TypeClass tc, QualType et, QualType can,
ArraySizeModifier sm, unsigned tq)
: Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
ArraySizeModifier getSizeModifier() const {
return ArraySizeModifier(SizeModifier);
}
Qualifiers getIndexTypeQualifiers() const {
return Qualifiers::fromCVRMask(IndexTypeQuals);
}
unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray ||
T->getTypeClass() == VariableArray ||
T->getTypeClass() == IncompleteArray ||
T->getTypeClass() == DependentSizedArray;
}
static bool classof(const ArrayType *) { return true; }
};
/// ConstantArrayType - This class represents the canonical version of
/// C arrays with a specified constant size. For example, the canonical
/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
/// type is 'int' and the size is 404.
class ConstantArrayType : public ArrayType {
llvm::APInt Size; // Allows us to unique the type.
ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
ArraySizeModifier sm, unsigned tq)
: ArrayType(ConstantArray, et, can, sm, tq),
Size(size) {}
protected:
ConstantArrayType(TypeClass tc, QualType et, QualType can,
const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
: ArrayType(tc, et, can, sm, tq), Size(size) {}
friend class ASTContext; // ASTContext creates these.
public:
const llvm::APInt &getSize() const { return Size; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSize(),
getSizeModifier(), getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(ArraySize.getZExtValue());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray;
}
static bool classof(const ConstantArrayType *) { return true; }
};
/// IncompleteArrayType - This class represents C arrays with an unspecified
/// size. For example 'int A[]' has an IncompleteArrayType where the element
/// type is 'int' and the size is unspecified.
class IncompleteArrayType : public ArrayType {
IncompleteArrayType(QualType et, QualType can,
ArraySizeModifier sm, unsigned tq)
: ArrayType(IncompleteArray, et, can, sm, tq) {}
friend class ASTContext; // ASTContext creates these.
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == IncompleteArray;
}
static bool classof(const IncompleteArrayType *) { return true; }
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSizeModifier(),
getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
ArraySizeModifier SizeMod, unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
};
/// VariableArrayType - This class represents C arrays with a specified size
/// which is not an integer-constant-expression. For example, 'int s[x+foo()]'.
/// Since the size expression is an arbitrary expression, we store it as such.
///
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
/// should not be: two lexically equivalent variable array types could mean
/// different things, for example, these variables do not have the same type
/// dynamically:
///
/// void foo(int x) {
/// int Y[x];
/// ++x;
/// int Z[x];
/// }
///
class VariableArrayType : public ArrayType {
/// SizeExpr - An assignment expression. VLA's are only permitted within
/// a function block.
Stmt *SizeExpr;
/// Brackets - The left and right array brackets.
SourceRange Brackets;
VariableArrayType(QualType et, QualType can, Expr *e,
ArraySizeModifier sm, unsigned tq,
SourceRange brackets)
: ArrayType(VariableArray, et, can, sm, tq),
SizeExpr((Stmt*) e), Brackets(brackets) {}
friend class ASTContext; // ASTContext creates these.
virtual void Destroy(ASTContext& C);
public:
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == VariableArray;
}
static bool classof(const VariableArrayType *) { return true; }
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
assert(0 && "Cannnot unique VariableArrayTypes.");
}
};
/// DependentSizedArrayType - This type represents an array type in
/// C++ whose size is a value-dependent expression. For example:
///
/// \code
/// template<typename T, int Size>
/// class array {
/// T data[Size];
/// };
/// \endcode
///
/// For these types, we won't actually know what the array bound is
/// until template instantiation occurs, at which point this will
/// become either a ConstantArrayType or a VariableArrayType.
class DependentSizedArrayType : public ArrayType {
ASTContext &Context;
/// \brief An assignment expression that will instantiate to the
/// size of the array.
///
/// The expression itself might be NULL, in which case the array
/// type will have its size deduced from an initializer.
Stmt *SizeExpr;
/// Brackets - The left and right array brackets.
SourceRange Brackets;
DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
Expr *e, ArraySizeModifier sm, unsigned tq,
SourceRange brackets)
: ArrayType(DependentSizedArray, et, can, sm, tq),
Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
friend class ASTContext; // ASTContext creates these.
virtual void Destroy(ASTContext& C);
public:
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentSizedArray;
}
static bool classof(const DependentSizedArrayType *) { return true; }
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(),
getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
QualType ET, ArraySizeModifier SizeMod,
unsigned TypeQuals, Expr *E);
};
/// DependentSizedExtVectorType - This type represent an extended vector type
/// where either the type or size is dependent. For example:
/// @code
/// template<typename T, int Size>
/// class vector {
/// typedef T __attribute__((ext_vector_type(Size))) type;
/// }
/// @endcode
class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
ASTContext &Context;
Expr *SizeExpr;
/// ElementType - The element type of the array.
QualType ElementType;
SourceLocation loc;
DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
QualType can, Expr *SizeExpr, SourceLocation loc)
: Type (DependentSizedExtVector, can, true),
Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
loc(loc) {}
friend class ASTContext;
virtual void Destroy(ASTContext& C);
public:
Expr *getSizeExpr() const { return SizeExpr; }
QualType getElementType() const { return ElementType; }
SourceLocation getAttributeLoc() const { return loc; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentSizedExtVector;
}
static bool classof(const DependentSizedExtVectorType *) { return true; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(), getSizeExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
QualType ElementType, Expr *SizeExpr);
};
/// VectorType - GCC generic vector type. This type is created using
/// __attribute__((vector_size(n)), where "n" specifies the vector size in
/// bytes; or from an Altivec __vector or vector declaration.
/// Since the constructor takes the number of vector elements, the
/// client is responsible for converting the size into the number of elements.
class VectorType : public Type, public llvm::FoldingSetNode {
protected:
/// ElementType - The element type of the vector.
QualType ElementType;
/// NumElements - The number of elements in the vector.
unsigned NumElements;
/// AltiVec - True if this is for an Altivec vector.
bool AltiVec;
/// Pixel - True if this is for an Altivec vector pixel.
bool Pixel;
VectorType(QualType vecType, unsigned nElements, QualType canonType,
bool isAltiVec, bool isPixel) :
Type(Vector, canonType, vecType->isDependentType()),
ElementType(vecType), NumElements(nElements),
AltiVec(isAltiVec), Pixel(isPixel) {}
VectorType(TypeClass tc, QualType vecType, unsigned nElements,
QualType canonType, bool isAltiVec, bool isPixel)
: Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
NumElements(nElements), AltiVec(isAltiVec), Pixel(isPixel) {}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
unsigned getNumElements() const { return NumElements; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
bool isAltiVec() const { return AltiVec; }
bool isPixel() const { return Pixel; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getNumElements(), getTypeClass(),
AltiVec, Pixel);
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
unsigned NumElements, TypeClass TypeClass,
bool isAltiVec, bool isPixel) {
ID.AddPointer(ElementType.getAsOpaquePtr());
ID.AddInteger(NumElements);
ID.AddInteger(TypeClass);
ID.AddBoolean(isAltiVec);
ID.AddBoolean(isPixel);
}
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
}
static bool classof(const VectorType *) { return true; }
};
/// ExtVectorType - Extended vector type. This type is created using
/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
/// class enables syntactic extensions, like Vector Components for accessing
/// points, colors, and textures (modeled after OpenGL Shading Language).
class ExtVectorType : public VectorType {
ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
VectorType(ExtVector, vecType, nElements, canonType, false, false) {}
friend class ASTContext; // ASTContext creates these.
public:
static int getPointAccessorIdx(char c) {
switch (c) {
default: return -1;
case 'x': return 0;
case 'y': return 1;
case 'z': return 2;
case 'w': return 3;
}
}
static int getNumericAccessorIdx(char c) {
switch (c) {
default: return -1;
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'A':
case 'a': return 10;
case 'B':
case 'b': return 11;
case 'C':
case 'c': return 12;
case 'D':
case 'd': return 13;
case 'E':
case 'e': return 14;
case 'F':
case 'f': return 15;
}
}
static int getAccessorIdx(char c) {
if (int idx = getPointAccessorIdx(c)+1) return idx-1;
return getNumericAccessorIdx(c);
}
bool isAccessorWithinNumElements(char c) const {
if (int idx = getAccessorIdx(c)+1)
return unsigned(idx-1) < NumElements;
return false;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ExtVector;
}
static bool classof(const ExtVectorType *) { return true; }
};
/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
/// class of FunctionNoProtoType and FunctionProtoType.
///
class FunctionType : public Type {
/// SubClassData - This field is owned by the subclass, put here to pack
/// tightly with the ivars in Type.
bool SubClassData : 1;
/// TypeQuals - Used only by FunctionProtoType, put here to pack with the
/// other bitfields.
/// The qualifiers are part of FunctionProtoType because...
///
/// C++ 8.3.5p4: The return type, the parameter type list and the
/// cv-qualifier-seq, [...], are part of the function type.
///
unsigned TypeQuals : 3;
/// NoReturn - Indicates if the function type is attribute noreturn.
unsigned NoReturn : 1;
/// CallConv - The calling convention used by the function.
unsigned CallConv : 2;
// The type returned by the function.
QualType ResultType;
protected:
FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
unsigned typeQuals, QualType Canonical, bool Dependent,
bool noReturn = false, CallingConv callConv = CC_Default)
: Type(tc, Canonical, Dependent),
SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
CallConv(callConv), ResultType(res) {}
bool getSubClassData() const { return SubClassData; }
unsigned getTypeQuals() const { return TypeQuals; }
public:
QualType getResultType() const { return ResultType; }
bool getNoReturnAttr() const { return NoReturn; }
CallingConv getCallConv() const { return (CallingConv)CallConv; }
static llvm::StringRef getNameForCallConv(CallingConv CC);
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionNoProto ||
T->getTypeClass() == FunctionProto;
}
static bool classof(const FunctionType *) { return true; }
};
/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
/// no information available about its arguments.
class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
FunctionNoProtoType(QualType Result, QualType Canonical,
bool NoReturn = false, CallingConv CallConv = CC_Default)
: FunctionType(FunctionNoProto, Result, false, 0, Canonical,
/*Dependent=*/false, NoReturn, CallConv) {}
friend class ASTContext; // ASTContext creates these.
public:
// No additional state past what FunctionType provides.
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getResultType(), getNoReturnAttr(), getCallConv());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
bool NoReturn, CallingConv CallConv) {
ID.AddInteger(CallConv);
ID.AddInteger(NoReturn);
ID.AddPointer(ResultType.getAsOpaquePtr());
}
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionNoProto;
}
static bool classof(const FunctionNoProtoType *) { return true; }
};
/// FunctionProtoType - Represents a prototype with argument type info, e.g.
/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
/// arguments, not as having a single void argument. Such a type can have an
/// exception specification, but this specification is not part of the canonical
/// type.
class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
/// hasAnyDependentType - Determine whether there are any dependent
/// types within the arguments passed in.
static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
for (unsigned Idx = 0; Idx < numArgs; ++Idx)
if (ArgArray[Idx]->isDependentType())
return true;
return false;
}
FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
bool isVariadic, unsigned typeQuals, bool hasExs,
bool hasAnyExs, const QualType *ExArray,
unsigned numExs, QualType Canonical, bool NoReturn,
CallingConv CallConv)
: FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
(Result->isDependentType() ||
hasAnyDependentType(ArgArray, numArgs)), NoReturn,
CallConv),
NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
AnyExceptionSpec(hasAnyExs) {
// Fill in the trailing argument array.
QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
for (unsigned i = 0; i != numArgs; ++i)
ArgInfo[i] = ArgArray[i];
// Fill in the exception array.
QualType *Ex = ArgInfo + numArgs;
for (unsigned i = 0; i != numExs; ++i)
Ex[i] = ExArray[i];
}
/// NumArgs - The number of arguments this function has, not counting '...'.
unsigned NumArgs : 20;
/// NumExceptions - The number of types in the exception spec, if any.
unsigned NumExceptions : 10;
/// HasExceptionSpec - Whether this function has an exception spec at all.
bool HasExceptionSpec : 1;
/// AnyExceptionSpec - Whether this function has a throw(...) spec.
bool AnyExceptionSpec : 1;
/// ArgInfo - There is an variable size array after the class in memory that
/// holds the argument types.
/// Exceptions - There is another variable size array after ArgInfo that
/// holds the exception types.
friend class ASTContext; // ASTContext creates these.
public:
unsigned getNumArgs() const { return NumArgs; }
QualType getArgType(unsigned i) const {
assert(i < NumArgs && "Invalid argument number!");
return arg_type_begin()[i];
}
bool hasExceptionSpec() const { return HasExceptionSpec; }
bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
unsigned getNumExceptions() const { return NumExceptions; }
QualType getExceptionType(unsigned i) const {
assert(i < NumExceptions && "Invalid exception number!");
return exception_begin()[i];
}
bool hasEmptyExceptionSpec() const {
return hasExceptionSpec() && !hasAnyExceptionSpec() &&
getNumExceptions() == 0;
}
bool isVariadic() const { return getSubClassData(); }
unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
typedef const QualType *arg_type_iterator;
arg_type_iterator arg_type_begin() const {
return reinterpret_cast<const QualType *>(this+1);
}
arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
typedef const QualType *exception_iterator;
exception_iterator exception_begin() const {
// exceptions begin where arguments end
return arg_type_end();
}
exception_iterator exception_end() const {
return exception_begin() + NumExceptions;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionProto;
}
static bool classof(const FunctionProtoType *) { return true; }
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
arg_type_iterator ArgTys, unsigned NumArgs,
bool isVariadic, unsigned TypeQuals,
bool hasExceptionSpec, bool anyExceptionSpec,
unsigned NumExceptions, exception_iterator Exs,
bool NoReturn, CallingConv CallConv);
};
/// \brief Represents the dependent type named by a dependently-scoped
/// typename using declaration, e.g.
/// using typename Base<T>::foo;
/// Template instantiation turns these into the underlying type.
class UnresolvedUsingType : public Type {
UnresolvedUsingTypenameDecl *Decl;
UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
: Type(UnresolvedUsing, QualType(), true),
Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
friend class ASTContext; // ASTContext creates these.
public:
UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == UnresolvedUsing;
}
static bool classof(const UnresolvedUsingType *) { return true; }
void Profile(llvm::FoldingSetNodeID &ID) {
return Profile(ID, Decl);
}
static void Profile(llvm::FoldingSetNodeID &ID,
UnresolvedUsingTypenameDecl *D) {
ID.AddPointer(D);
}
};
class TypedefType : public Type {
TypedefDecl *Decl;
protected:
TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
: Type(tc, can, can->isDependentType()),
Decl(const_cast<TypedefDecl*>(D)) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
friend class ASTContext; // ASTContext creates these.
public:
TypedefDecl *getDecl() const { return Decl; }
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
/// potentially looking through *all* consecutive typedefs. This returns the
/// sum of the type qualifiers, so if you have:
/// typedef const int A;
/// typedef volatile A B;
/// looking through the typedefs for B will give you "const volatile A".
QualType LookThroughTypedefs() const;
bool isSugared() const { return true; }
QualType desugar() const;
static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
static bool classof(const TypedefType *) { return true; }
};
/// TypeOfExprType (GCC extension).
class TypeOfExprType : public Type {
Expr *TOExpr;
protected:
TypeOfExprType(Expr *E, QualType can = QualType());
friend class ASTContext; // ASTContext creates these.
public:
Expr *getUnderlyingExpr() const { return TOExpr; }
/// \brief Remove a single level of sugar.
QualType desugar() const;
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
static bool classof(const TypeOfExprType *) { return true; }
};
/// \brief Internal representation of canonical, dependent
/// typeof(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via TypeOfExprType nodes.
class DependentTypeOfExprType
: public TypeOfExprType, public llvm::FoldingSetNode {
ASTContext &Context;
public:
DependentTypeOfExprType(ASTContext &Context, Expr *E)
: TypeOfExprType(E), Context(Context) { }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getUnderlyingExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
Expr *E);
};
/// TypeOfType (GCC extension).
class TypeOfType : public Type {
QualType TOType;
TypeOfType(QualType T, QualType can)
: Type(TypeOf, can, T->isDependentType()), TOType(T) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getUnderlyingType() const { return TOType; }
/// \brief Remove a single level of sugar.
QualType desugar() const { return getUnderlyingType(); }
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
static bool classof(const TypeOfType *) { return true; }
};
/// DecltypeType (C++0x)
class DecltypeType : public Type {
Expr *E;
// FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
// Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
// from it.
QualType UnderlyingType;
protected:
DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
friend class ASTContext; // ASTContext creates these.
public:
Expr *getUnderlyingExpr() const { return E; }
QualType getUnderlyingType() const { return UnderlyingType; }
/// \brief Remove a single level of sugar.
QualType desugar() const { return getUnderlyingType(); }
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return !isDependentType(); }
static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
static bool classof(const DecltypeType *) { return true; }
};
/// \brief Internal representation of canonical, dependent
/// decltype(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via DecltypeType nodes.
class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
ASTContext &Context;
public:
DependentDecltypeType(ASTContext &Context, Expr *E);
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getUnderlyingExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
Expr *E);
};
class TagType : public Type {
/// Stores the TagDecl associated with this type. The decl will
/// point to the TagDecl that actually defines the entity (or is a
/// definition in progress), if there is such a definition. The
/// single-bit value will be non-zero when this tag is in the
/// process of being defined.
mutable llvm::PointerIntPair<TagDecl *, 1> decl;
friend class ASTContext;
friend class TagDecl;
protected:
TagType(TypeClass TC, const TagDecl *D, QualType can);
public:
TagDecl *getDecl() const { return decl.getPointer(); }
/// @brief Determines whether this type is in the process of being
/// defined.
bool isBeingDefined() const { return decl.getInt(); }
void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
}
static bool classof(const TagType *) { return true; }
static bool classof(const RecordType *) { return true; }
static bool classof(const EnumType *) { return true; }
};
/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of structs/unions/classes.
class RecordType : public TagType {
protected:
explicit RecordType(const RecordDecl *D)
: TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
explicit RecordType(TypeClass TC, RecordDecl *D)
: TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
friend class ASTContext; // ASTContext creates these.
public:
RecordDecl *getDecl() const {
return reinterpret_cast<RecordDecl*>(TagType::getDecl());
}
// FIXME: This predicate is a helper to QualType/Type. It needs to
// recursively check all fields for const-ness. If any field is declared
// const, it needs to return false.
bool hasConstFields() const { return false; }
// FIXME: RecordType needs to check when it is created that all fields are in
// the same address space, and return that.
unsigned getAddressSpace() const { return 0; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const TagType *T);
static bool classof(const Type *T) {
return isa<TagType>(T) && classof(cast<TagType>(T));
}
static bool classof(const RecordType *) { return true; }
};
/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of enums.
class EnumType : public TagType {
explicit EnumType(const EnumDecl *D)
: TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
friend class ASTContext; // ASTContext creates these.
public:
EnumDecl *getDecl() const {
return reinterpret_cast<EnumDecl*>(TagType::getDecl());
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const TagType *T);
static bool classof(const Type *T) {
return isa<TagType>(T) && classof(cast<TagType>(T));
}
static bool classof(const EnumType *) { return true; }
};
/// ElaboratedType - A non-canonical type used to represents uses of
/// elaborated type specifiers in C++. For example:
///
/// void foo(union MyUnion);
/// ^^^^^^^^^^^^^
///
/// At the moment, for efficiency we do not create elaborated types in
/// C, since outside of typedefs all references to structs would
/// necessarily be elaborated.
class ElaboratedType : public Type, public llvm::FoldingSetNode {
public:
enum TagKind {
TK_struct,
TK_union,
TK_class,
TK_enum
};
private:
/// The tag that was used in this elaborated type specifier.
TagKind Tag;
/// The underlying type.
QualType UnderlyingType;
explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
: Type(Elaborated, Canon, Canon->isDependentType()),
Tag(Tag), UnderlyingType(Ty) { }
friend class ASTContext; // ASTContext creates these.
public:
TagKind getTagKind() const { return Tag; }
QualType getUnderlyingType() const { return UnderlyingType; }
/// \brief Remove a single level of sugar.
QualType desugar() const { return getUnderlyingType(); }
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
static const char *getNameForTagKind(TagKind Kind) {
switch (Kind) {
default: assert(0 && "Unknown TagKind!");
case TK_struct: return "struct";
case TK_union: return "union";
case TK_class: return "class";
case TK_enum: return "enum";
}
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getUnderlyingType(), getTagKind());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
ID.AddPointer(T.getAsOpaquePtr());
ID.AddInteger(Tag);
}
static bool classof(const ElaboratedType*) { return true; }
static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
};
class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
unsigned Depth : 15;
unsigned Index : 16;
unsigned ParameterPack : 1;
IdentifierInfo *Name;
TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
QualType Canon)
: Type(TemplateTypeParm, Canon, /*Dependent=*/true),
Depth(D), Index(I), ParameterPack(PP), Name(N) { }
TemplateTypeParmType(unsigned D, unsigned I, bool PP)
: Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
Depth(D), Index(I), ParameterPack(PP), Name(0) { }
friend class ASTContext; // ASTContext creates these
public:
unsigned getDepth() const { return Depth; }
unsigned getIndex() const { return Index; }
bool isParameterPack() const { return ParameterPack; }
IdentifierInfo *getName() const { return Name; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Depth, Index, ParameterPack, Name);
}
static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
unsigned Index, bool ParameterPack,
IdentifierInfo *Name) {
ID.AddInteger(Depth);
ID.AddInteger(Index);
ID.AddBoolean(ParameterPack);
ID.AddPointer(Name);
}
static bool classof(const Type *T) {
return T->getTypeClass() == TemplateTypeParm;
}
static bool classof(const TemplateTypeParmType *T) { return true; }
};
/// \brief Represents the result of substituting a type for a template
/// type parameter.
///
/// Within an instantiated template, all template type parameters have
/// been replaced with these. They are used solely to record that a
/// type was originally written as a template type parameter;
/// therefore they are never canonical.
class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
// The original type parameter.
const TemplateTypeParmType *Replaced;
SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
: Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
Replaced(Param) { }
friend class ASTContext;
public:
IdentifierInfo *getName() const { return Replaced->getName(); }
/// Gets the template parameter that was substituted for.
const TemplateTypeParmType *getReplacedParameter() const {
return Replaced;
}
/// Gets the type that was substituted for the template
/// parameter.
QualType getReplacementType() const {
return getCanonicalTypeInternal();
}
bool isSugared() const { return true; }
QualType desugar() const { return getReplacementType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getReplacedParameter(), getReplacementType());
}
static void Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
QualType Replacement) {
ID.AddPointer(Replaced);
ID.AddPointer(Replacement.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == SubstTemplateTypeParm;
}
static bool classof(const SubstTemplateTypeParmType *T) { return true; }
};
/// \brief Represents the type of a template specialization as written
/// in the source code.
///
/// Template specialization types represent the syntactic form of a
/// template-id that refers to a type, e.g., @c vector<int>. Some
/// template specialization types are syntactic sugar, whose canonical
/// type will point to some other type node that represents the
/// instantiation or class template specialization. For example, a
/// class template specialization type of @c vector<int> will refer to
/// a tag type for the instantiation
/// @c std::vector<int, std::allocator<int>>.
///
/// Other template specialization types, for which the template name
/// is dependent, may be canonical types. These types are always
/// dependent.
class TemplateSpecializationType
: public Type, public llvm::FoldingSetNode {
// FIXME: Currently needed for profiling expressions; can we avoid this?
ASTContext &Context;
/// \brief The name of the template being specialized.
TemplateName Template;
/// \brief - The number of template arguments named in this class
/// template specialization.
unsigned NumArgs;
TemplateSpecializationType(ASTContext &Context,
TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs, QualType Canon);
virtual void Destroy(ASTContext& C);
friend class ASTContext; // ASTContext creates these
public:
/// \brief Determine whether any of the given template arguments are
/// dependent.
static bool anyDependentTemplateArguments(const TemplateArgument *Args,
unsigned NumArgs);
static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
unsigned NumArgs);
static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
/// \brief Print a template argument list, including the '<' and '>'
/// enclosing the template arguments.
static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
unsigned NumArgs,
const PrintingPolicy &Policy);
static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
unsigned NumArgs,
const PrintingPolicy &Policy);
static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
const PrintingPolicy &Policy);
typedef const TemplateArgument * iterator;
iterator begin() const { return getArgs(); }
iterator end() const;
/// \brief Retrieve the name of the template that we are specializing.
TemplateName getTemplateName() const { return Template; }
/// \brief Retrieve the template arguments.
const TemplateArgument *getArgs() const {
return reinterpret_cast<const TemplateArgument *>(this + 1);
}
/// \brief Retrieve the number of template arguments.
unsigned getNumArgs() const { return NumArgs; }
/// \brief Retrieve a specific template argument as a type.
/// \precondition @c isArgType(Arg)
const TemplateArgument &getArg(unsigned Idx) const;
bool isSugared() const { return !isDependentType(); }
QualType desugar() const { return getCanonicalTypeInternal(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Template, getArgs(), NumArgs, Context);
}
static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
const TemplateArgument *Args, unsigned NumArgs,
ASTContext &Context);
static bool classof(const Type *T) {
return T->getTypeClass() == TemplateSpecialization;
}
static bool classof(const TemplateSpecializationType *T) { return true; }
};
/// \brief Represents a type that was referred to via a qualified
/// name, e.g., N::M::type.
///
/// This type is used to keep track of a type name as written in the
/// source code, including any nested-name-specifiers. The type itself
/// is always "sugar", used to express what was written in the source
/// code but containing no additional semantic information.
class QualifiedNameType : public Type, public llvm::FoldingSetNode {
/// \brief The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// \brief The type that this qualified name refers to.
QualType NamedType;
QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
QualType CanonType)
: Type(QualifiedName, CanonType, NamedType->isDependentType()),
NNS(NNS), NamedType(NamedType) { }
friend class ASTContext; // ASTContext creates these
public:
/// \brief Retrieve the qualification on this type.
NestedNameSpecifier *getQualifier() const { return NNS; }
/// \brief Retrieve the type named by the qualified-id.
QualType getNamedType() const { return NamedType; }
/// \brief Remove a single level of sugar.
QualType desugar() const { return getNamedType(); }
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, NNS, NamedType);
}
static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
QualType NamedType) {
ID.AddPointer(NNS);
NamedType.Profile(ID);
}
static bool classof(const Type *T) {
return T->getTypeClass() == QualifiedName;
}
static bool classof(const QualifiedNameType *T) { return true; }
};
/// \brief Represents a 'typename' specifier that names a type within
/// a dependent type, e.g., "typename T::type".
///
/// TypenameType has a very similar structure to QualifiedNameType,
/// which also involves a nested-name-specifier following by a type,
/// and (FIXME!) both can even be prefixed by the 'typename'
/// keyword. However, the two types serve very different roles:
/// QualifiedNameType is a non-semantic type that serves only as sugar
/// to show how a particular type was written in the source
/// code. TypenameType, on the other hand, only occurs when the
/// nested-name-specifier is dependent, such that we cannot resolve
/// the actual type until after instantiation.
class TypenameType : public Type, public llvm::FoldingSetNode {
/// \brief The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
typedef llvm::PointerUnion<const IdentifierInfo *,
const TemplateSpecializationType *> NameType;
/// \brief The type that this typename specifier refers to.
NameType Name;
TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
QualType CanonType)
: Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
assert(NNS->isDependent() &&
"TypenameType requires a dependent nested-name-specifier");
}
TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
QualType CanonType)
: Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
assert(NNS->isDependent() &&
"TypenameType requires a dependent nested-name-specifier");
}
friend class ASTContext; // ASTContext creates these
public:
/// \brief Retrieve the qualification on this type.
NestedNameSpecifier *getQualifier() const { return NNS; }
/// \brief Retrieve the type named by the typename specifier as an
/// identifier.
///
/// This routine will return a non-NULL identifier pointer when the
/// form of the original typename was terminated by an identifier,
/// e.g., "typename T::type".
const IdentifierInfo *getIdentifier() const {
return Name.dyn_cast<const IdentifierInfo *>();
}
/// \brief Retrieve the type named by the typename specifier as a
/// type specialization.
const TemplateSpecializationType *getTemplateId() const {
return Name.dyn_cast<const TemplateSpecializationType *>();
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, NNS, Name);
}
static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
NameType Name) {
ID.AddPointer(NNS);
ID.AddPointer(Name.getOpaqueValue());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Typename;
}
static bool classof(const TypenameType *T) { return true; }
};
/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
/// object oriented design. They basically correspond to C++ classes. There
/// are two kinds of interface types, normal interfaces like "NSString" and
/// qualified interfaces, which are qualified with a protocol list like
/// "NSString<NSCopyable, NSAmazing>".
class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
ObjCInterfaceDecl *Decl;
/// \brief The number of protocols stored after the ObjCInterfaceType node.
/// The list of protocols is sorted on protocol name. No protocol is enterred
/// more than once.
unsigned NumProtocols;
ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
ObjCProtocolDecl **Protos, unsigned NumP);
friend class ASTContext; // ASTContext creates these.
public:
void Destroy(ASTContext& C);
ObjCInterfaceDecl *getDecl() const { return Decl; }
/// getNumProtocols - Return the number of qualifying protocols in this
/// interface type, or 0 if there are none.
unsigned getNumProtocols() const { return NumProtocols; }
/// \brief Retrieve the Ith protocol.
ObjCProtocolDecl *getProtocol(unsigned I) const {
assert(I < getNumProtocols() && "Out-of-range protocol access");
return qual_begin()[I];
}
/// qual_iterator and friends: this provides access to the (potentially empty)
/// list of protocols qualifying this interface.
typedef ObjCProtocolDecl* const * qual_iterator;
qual_iterator qual_begin() const {
return reinterpret_cast<qual_iterator>(this + 1);
}
qual_iterator qual_end() const {
return qual_begin() + NumProtocols;
}
bool qual_empty() const { return NumProtocols == 0; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
const ObjCInterfaceDecl *Decl,
ObjCProtocolDecl * const *protocols,
unsigned NumProtocols);
virtual Linkage getLinkage() const;
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCInterface;
}
static bool classof(const ObjCInterfaceType *) { return true; }
};
/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
/// and 'Interface <p> *'.
///
/// Duplicate protocols are removed and protocol list is canonicalized to be in
/// alphabetical order.
class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType; // A builtin or interface type.
/// \brief The number of protocols stored after the ObjCObjectPointerType
/// node.
///
/// The list of protocols is sorted on protocol name. No protocol is enterred
/// more than once.
unsigned NumProtocols;
ObjCObjectPointerType(QualType Canonical, QualType T,
ObjCProtocolDecl **Protos, unsigned NumP);
friend class ASTContext; // ASTContext creates these.
public:
void Destroy(ASTContext& C);
// Get the pointee type. Pointee will either be:
// - a built-in type (for 'id' and 'Class').
// - an interface type (for user-defined types).
// - a TypedefType whose canonical type is an interface (as in 'T' below).
// For example: typedef NSObject T; T *var;
QualType getPointeeType() const { return PointeeType; }
const ObjCInterfaceType *getInterfaceType() const {
return PointeeType->getAs<ObjCInterfaceType>();
}
/// getInterfaceDecl - returns an interface decl for user-defined types.
ObjCInterfaceDecl *getInterfaceDecl() const {
return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
}
/// isObjCIdType - true for "id".
bool isObjCIdType() const {
return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
!NumProtocols;
}
/// isObjCClassType - true for "Class".
bool isObjCClassType() const {
return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
!NumProtocols;
}
/// isObjCQualifiedIdType - true for "id <p>".
bool isObjCQualifiedIdType() const {
return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
NumProtocols;
}
/// isObjCQualifiedClassType - true for "Class <p>".
bool isObjCQualifiedClassType() const {
return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
NumProtocols;
}
/// qual_iterator and friends: this provides access to the (potentially empty)
/// list of protocols qualifying this interface.
typedef ObjCProtocolDecl* const * qual_iterator;
qual_iterator qual_begin() const {
return reinterpret_cast<qual_iterator> (this + 1);
}
qual_iterator qual_end() const {
return qual_begin() + NumProtocols;
}
bool qual_empty() const { return NumProtocols == 0; }
/// getNumProtocols - Return the number of qualifying protocols in this
/// interface type, or 0 if there are none.
unsigned getNumProtocols() const { return NumProtocols; }
/// \brief Retrieve the Ith protocol.
ObjCProtocolDecl *getProtocol(unsigned I) const {
assert(I < getNumProtocols() && "Out-of-range protocol access");
return qual_begin()[I];
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
virtual Linkage getLinkage() const;
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
ObjCProtocolDecl *const *protocols,
unsigned NumProtocols);
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCObjectPointer;
}
static bool classof(const ObjCObjectPointerType *) { return true; }
};
/// A qualifier set is used to build a set of qualifiers.
class QualifierCollector : public Qualifiers {
ASTContext *Context;
public:
QualifierCollector(Qualifiers Qs = Qualifiers())
: Qualifiers(Qs), Context(0) {}
QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
: Qualifiers(Qs), Context(&Context) {}
void setContext(ASTContext &C) { Context = &C; }
/// Collect any qualifiers on the given type and return an
/// unqualified type.
const Type *strip(QualType QT) {
addFastQualifiers(QT.getLocalFastQualifiers());
if (QT.hasLocalNonFastQualifiers()) {
const ExtQuals *EQ = QT.getExtQualsUnsafe();
Context = &EQ->getContext();
addQualifiers(EQ->getQualifiers());
return EQ->getBaseType();
}
return QT.getTypePtrUnsafe();
}
/// Apply the collected qualifiers to the given type.
QualType apply(QualType QT) const;
/// Apply the collected qualifiers to the given type.
QualType apply(const Type* T) const;
};
// Inline function definitions.
inline bool QualType::isCanonical() const {
const Type *T = getTypePtr();
if (hasLocalQualifiers())
return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
return T->isCanonicalUnqualified();
}
inline bool QualType::isCanonicalAsParam() const {
if (hasLocalQualifiers()) return false;
const Type *T = getTypePtr();
return T->isCanonicalUnqualified() &&
!isa<FunctionType>(T) && !isa<ArrayType>(T);
}
inline bool QualType::isConstQualified() const {
return isLocalConstQualified() ||
getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
}
inline bool QualType::isRestrictQualified() const {
return isLocalRestrictQualified() ||
getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
}
inline bool QualType::isVolatileQualified() const {
return isLocalVolatileQualified() ||
getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
}
inline bool QualType::hasQualifiers() const {
return hasLocalQualifiers() ||
getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
}
inline Qualifiers QualType::getQualifiers() const {
Qualifiers Quals = getLocalQualifiers();
Quals.addQualifiers(
getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
return Quals;
}
inline unsigned QualType::getCVRQualifiers() const {
return getLocalCVRQualifiers() |
getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
}
/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
/// type, returns them. Otherwise, if this is an array type, recurses
/// on the element type until some qualifiers have been found or a non-array
/// type reached.
inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
if (unsigned Quals = getCVRQualifiers())
return Quals;
QualType CT = getTypePtr()->getCanonicalTypeInternal();
if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
return AT->getElementType().getCVRQualifiersThroughArrayTypes();
return 0;
}
inline void QualType::removeConst() {
removeFastQualifiers(Qualifiers::Const);
}
inline void QualType::removeRestrict() {
removeFastQualifiers(Qualifiers::Restrict);
}
inline void QualType::removeVolatile() {
QualifierCollector Qc;
const Type *Ty = Qc.strip(*this);
if (Qc.hasVolatile()) {
Qc.removeVolatile();
*this = Qc.apply(Ty);
}
}
inline void QualType::removeCVRQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
// Fast path: we don't need to touch the slow qualifiers.
if (!(Mask & ~Qualifiers::FastMask)) {
removeFastQualifiers(Mask);
return;
}
QualifierCollector Qc;
const Type *Ty = Qc.strip(*this);
Qc.removeCVRQualifiers(Mask);
*this = Qc.apply(Ty);
}
/// getAddressSpace - Return the address space of this type.
inline unsigned QualType::getAddressSpace() const {
if (hasLocalNonFastQualifiers()) {
const ExtQuals *EQ = getExtQualsUnsafe();
if (EQ->hasAddressSpace())
return EQ->getAddressSpace();
}
QualType CT = getTypePtr()->getCanonicalTypeInternal();
if (CT.hasLocalNonFastQualifiers()) {
const ExtQuals *EQ = CT.getExtQualsUnsafe();
if (EQ->hasAddressSpace())
return EQ->getAddressSpace();
}
if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
return AT->getElementType().getAddressSpace();
if (const RecordType *RT = dyn_cast<RecordType>(CT))
return RT->getAddressSpace();
return 0;
}
/// getObjCGCAttr - Return the gc attribute of this type.
inline Qualifiers::GC QualType::getObjCGCAttr() const {
if (hasLocalNonFastQualifiers()) {
const ExtQuals *EQ = getExtQualsUnsafe();
if (EQ->hasObjCGCAttr())
return EQ->getObjCGCAttr();
}
QualType CT = getTypePtr()->getCanonicalTypeInternal();
if (CT.hasLocalNonFastQualifiers()) {
const ExtQuals *EQ = CT.getExtQualsUnsafe();
if (EQ->hasObjCGCAttr())
return EQ->getObjCGCAttr();
}
if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
return AT->getElementType().getObjCGCAttr();
if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
return PT->getPointeeType().getObjCGCAttr();
// We most look at all pointer types, not just pointer to interface types.
if (const PointerType *PT = CT->getAs<PointerType>())
return PT->getPointeeType().getObjCGCAttr();
return Qualifiers::GCNone;
}
/// getNoReturnAttr - Returns true if the type has the noreturn attribute,
/// false otherwise.
inline bool QualType::getNoReturnAttr() const {
QualType CT = getTypePtr()->getCanonicalTypeInternal();
if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
return FT->getNoReturnAttr();
} else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
return FT->getNoReturnAttr();
return false;
}
/// getCallConv - Returns the calling convention of the type if the type
/// is a function type, CC_Default otherwise.
inline CallingConv QualType::getCallConv() const {
if (const PointerType *PT = getTypePtr()->getAs<PointerType>())
return PT->getPointeeType().getCallConv();
else if (const ReferenceType *RT = getTypePtr()->getAs<ReferenceType>())
return RT->getPointeeType().getCallConv();
else if (const MemberPointerType *MPT =
getTypePtr()->getAs<MemberPointerType>())
return MPT->getPointeeType().getCallConv();
else if (const BlockPointerType *BPT =
getTypePtr()->getAs<BlockPointerType>()) {
if (const FunctionType *FT = BPT->getPointeeType()->getAs<FunctionType>())
return FT->getCallConv();
} else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
return FT->getCallConv();
return CC_Default;
}
/// isMoreQualifiedThan - Determine whether this type is more
/// qualified than the Other type. For example, "const volatile int"
/// is more qualified than "const int", "volatile int", and
/// "int". However, it is not more qualified than "const volatile
/// int".
inline bool QualType::isMoreQualifiedThan(QualType Other) const {
// FIXME: work on arbitrary qualifiers
unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
if (getAddressSpace() != Other.getAddressSpace())
return false;
return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
}
/// isAtLeastAsQualifiedAs - Determine whether this type is at last
/// as qualified as the Other type. For example, "const volatile
/// int" is at least as qualified as "const int", "volatile int",
/// "int", and "const volatile int".
inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
// FIXME: work on arbitrary qualifiers
unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
if (getAddressSpace() != Other.getAddressSpace())
return false;
return (MyQuals | OtherQuals) == MyQuals;
}
/// getNonReferenceType - If Type is a reference type (e.g., const
/// int&), returns the type that the reference refers to ("const
/// int"). Otherwise, returns the type itself. This routine is used
/// throughout Sema to implement C++ 5p6:
///
/// If an expression initially has the type "reference to T" (8.3.2,
/// 8.5.3), the type is adjusted to "T" prior to any further
/// analysis, the expression designates the object or function
/// denoted by the reference, and the expression is an lvalue.
inline QualType QualType::getNonReferenceType() const {
if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
return RefType->getPointeeType();
else
return *this;
}
inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType()->getAs<ObjCInterfaceType>();
return 0;
}
inline bool Type::isFunctionType() const {
return isa<FunctionType>(CanonicalType);
}
inline bool Type::isPointerType() const {
return isa<PointerType>(CanonicalType);
}
inline bool Type::isAnyPointerType() const {
return isPointerType() || isObjCObjectPointerType();
}
inline bool Type::isBlockPointerType() const {
return isa<BlockPointerType>(CanonicalType);
}
inline bool Type::isReferenceType() const {
return isa<ReferenceType>(CanonicalType);
}
inline bool Type::isLValueReferenceType() const {
return isa<LValueReferenceType>(CanonicalType);
}
inline bool Type::isRValueReferenceType() const {
return isa<RValueReferenceType>(CanonicalType);
}
inline bool Type::isFunctionPointerType() const {
if (const PointerType* T = getAs<PointerType>())
return T->getPointeeType()->isFunctionType();
else
return false;
}
inline bool Type::isMemberPointerType() const {
return isa<MemberPointerType>(CanonicalType);
}
inline bool Type::isMemberFunctionPointerType() const {
if (const MemberPointerType* T = getAs<MemberPointerType>())
return T->getPointeeType()->isFunctionType();
else
return false;
}
inline bool Type::isArrayType() const {
return isa<ArrayType>(CanonicalType);
}
inline bool Type::isConstantArrayType() const {
return isa<ConstantArrayType>(CanonicalType);
}
inline bool Type::isIncompleteArrayType() const {
return isa<IncompleteArrayType>(CanonicalType);
}
inline bool Type::isVariableArrayType() const {
return isa<VariableArrayType>(CanonicalType);
}
inline bool Type::isDependentSizedArrayType() const {
return isa<DependentSizedArrayType>(CanonicalType);
}
inline bool Type::isRecordType() const {
return isa<RecordType>(CanonicalType);
}
inline bool Type::isAnyComplexType() const {
return isa<ComplexType>(CanonicalType);
}
inline bool Type::isVectorType() const {
return isa<VectorType>(CanonicalType);
}
inline bool Type::isExtVectorType() const {
return isa<ExtVectorType>(CanonicalType);
}
inline bool Type::isObjCObjectPointerType() const {
return isa<ObjCObjectPointerType>(CanonicalType);
}
inline bool Type::isObjCInterfaceType() const {
return isa<ObjCInterfaceType>(CanonicalType);
}
inline bool Type::isObjCQualifiedIdType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedIdType();
return false;
}
inline bool Type::isObjCQualifiedClassType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedClassType();
return false;
}
inline bool Type::isObjCIdType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCIdType();
return false;
}
inline bool Type::isObjCClassType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCClassType();
return false;
}
inline bool Type::isObjCSelType() const {
if (const PointerType *OPT = getAs<PointerType>())
return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
return false;
}
inline bool Type::isObjCBuiltinType() const {
return isObjCIdType() || isObjCClassType() || isObjCSelType();
}
inline bool Type::isTemplateTypeParmType() const {
return isa<TemplateTypeParmType>(CanonicalType);
}
inline bool Type::isSpecificBuiltinType(unsigned K) const {
if (const BuiltinType *BT = getAs<BuiltinType>())
if (BT->getKind() == (BuiltinType::Kind) K)
return true;
return false;
}
/// \brief Determines whether this is a type for which one can define
/// an overloaded operator.
inline bool Type::isOverloadableType() const {
return isDependentType() || isRecordType() || isEnumeralType();
}
inline bool Type::hasPointerRepresentation() const {
return (isPointerType() || isReferenceType() || isBlockPointerType() ||
isObjCInterfaceType() || isObjCObjectPointerType() ||
isObjCQualifiedInterfaceType() || isNullPtrType());
}
inline bool Type::hasObjCPointerRepresentation() const {
return (isObjCInterfaceType() || isObjCObjectPointerType() ||
isObjCQualifiedInterfaceType());
}
/// Insertion operator for diagnostics. This allows sending QualType's into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
QualType T) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
Diagnostic::ak_qualtype);
return DB;
}
// Helper class template that is used by Type::getAs to ensure that one does
// not try to look through a qualified type to get to an array type.
template<typename T,
bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
llvm::is_base_of<ArrayType, T>::value)>
struct ArrayType_cannot_be_used_with_getAs { };
template<typename T>
struct ArrayType_cannot_be_used_with_getAs<T, true>;
/// Member-template getAs<specific type>'.
template <typename T> const T *Type::getAs() const {
ArrayType_cannot_be_used_with_getAs<T> at;
(void)at;
// If this is directly a T type, return it.
if (const T *Ty = dyn_cast<T>(this))
return Ty;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<T>(CanonicalType))
return 0;
// If this is a typedef for the type, strip the typedef off without
// losing all typedef information.
return cast<T>(getUnqualifiedDesugaredType());
}
} // end namespace clang
#endif