blob: d1351b8b14471a38284bfc397607c5450975fb75 [file] [log] [blame]
//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses for C++ expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPRCXX_H
#define LLVM_CLANG_AST_EXPRCXX_H
#include "clang/Basic/TypeTraits.h"
#include "clang/AST/Expr.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/AST/TemplateBase.h"
namespace clang {
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CXXTemporary;
class TemplateArgumentListInfo;
//===--------------------------------------------------------------------===//
// C++ Expressions.
//===--------------------------------------------------------------------===//
/// \brief A call to an overloaded operator written using operator
/// syntax.
///
/// Represents a call to an overloaded operator written using operator
/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
/// normal call, this AST node provides better information about the
/// syntactic representation of the call.
///
/// In a C++ template, this expression node kind will be used whenever
/// any of the arguments are type-dependent. In this case, the
/// function itself will be a (possibly empty) set of functions and
/// function templates that were found by name lookup at template
/// definition time.
class CXXOperatorCallExpr : public CallExpr {
/// \brief The overloaded operator.
OverloadedOperatorKind Operator;
public:
CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
Expr **args, unsigned numargs, QualType t,
SourceLocation operatorloc)
: CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
Operator(Op) {}
explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
CallExpr(C, CXXOperatorCallExprClass, Empty) { }
/// getOperator - Returns the kind of overloaded operator that this
/// expression refers to.
OverloadedOperatorKind getOperator() const { return Operator; }
void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
/// getOperatorLoc - Returns the location of the operator symbol in
/// the expression. When @c getOperator()==OO_Call, this is the
/// location of the right parentheses; when @c
/// getOperator()==OO_Subscript, this is the location of the right
/// bracket.
SourceLocation getOperatorLoc() const { return getRParenLoc(); }
virtual SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXOperatorCallExprClass;
}
static bool classof(const CXXOperatorCallExpr *) { return true; }
};
/// CXXMemberCallExpr - Represents a call to a member function that
/// may be written either with member call syntax (e.g., "obj.func()"
/// or "objptr->func()") or with normal function-call syntax
/// ("func()") within a member function that ends up calling a member
/// function. The callee in either case is a MemberExpr that contains
/// both the object argument and the member function, while the
/// arguments are the arguments within the parentheses (not including
/// the object argument).
class CXXMemberCallExpr : public CallExpr {
public:
CXXMemberCallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
QualType t, SourceLocation rparenloc)
: CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
/// getImplicitObjectArgument - Retrieves the implicit object
/// argument for the member call. For example, in "x.f(5)", this
/// operation would return "x".
Expr *getImplicitObjectArgument();
virtual SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXMemberCallExprClass;
}
static bool classof(const CXXMemberCallExpr *) { return true; }
};
/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
/// const_cast.
///
/// This abstract class is inherited by all of the classes
/// representing "named" casts, e.g., CXXStaticCastExpr,
/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
class CXXNamedCastExpr : public ExplicitCastExpr {
private:
SourceLocation Loc; // the location of the casting op
protected:
CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
TypeSourceInfo *writtenTy, SourceLocation l)
: ExplicitCastExpr(SC, ty, kind, op, writtenTy), Loc(l) {}
explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell)
: ExplicitCastExpr(SC, Shell) { }
public:
const char *getCastName() const;
/// \brief Retrieve the location of the cast operator keyword, e.g.,
/// "static_cast".
SourceLocation getOperatorLoc() const { return Loc; }
void setOperatorLoc(SourceLocation L) { Loc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
}
static bool classof(const Stmt *T) {
switch (T->getStmtClass()) {
case CXXNamedCastExprClass:
case CXXStaticCastExprClass:
case CXXDynamicCastExprClass:
case CXXReinterpretCastExprClass:
case CXXConstCastExprClass:
return true;
default:
return false;
}
}
static bool classof(const CXXNamedCastExpr *) { return true; }
};
/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
///
/// This expression node represents a C++ static cast, e.g.,
/// @c static_cast<int>(1.0).
class CXXStaticCastExpr : public CXXNamedCastExpr {
public:
CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
TypeSourceInfo *writtenTy, SourceLocation l)
: CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, writtenTy, l) {}
explicit CXXStaticCastExpr(EmptyShell Empty)
: CXXNamedCastExpr(CXXStaticCastExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXStaticCastExprClass;
}
static bool classof(const CXXStaticCastExpr *) { return true; }
};
/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
/// determine how to perform the type cast.
///
/// This expression node represents a dynamic cast, e.g.,
/// @c dynamic_cast<Derived*>(BasePtr).
class CXXDynamicCastExpr : public CXXNamedCastExpr {
public:
CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op,
TypeSourceInfo *writtenTy, SourceLocation l)
: CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, writtenTy, l) {}
explicit CXXDynamicCastExpr(EmptyShell Empty)
: CXXNamedCastExpr(CXXDynamicCastExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDynamicCastExprClass;
}
static bool classof(const CXXDynamicCastExpr *) { return true; }
};
/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
/// [expr.reinterpret.cast]), which provides a differently-typed view
/// of a value but performs no actual work at run time.
///
/// This expression node represents a reinterpret cast, e.g.,
/// @c reinterpret_cast<int>(VoidPtr).
class CXXReinterpretCastExpr : public CXXNamedCastExpr {
public:
CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
TypeSourceInfo *writtenTy, SourceLocation l)
: CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op,
writtenTy, l) {}
explicit CXXReinterpretCastExpr(EmptyShell Empty)
: CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXReinterpretCastExprClass;
}
static bool classof(const CXXReinterpretCastExpr *) { return true; }
};
/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
/// which can remove type qualifiers but does not change the underlying value.
///
/// This expression node represents a const cast, e.g.,
/// @c const_cast<char*>(PtrToConstChar).
class CXXConstCastExpr : public CXXNamedCastExpr {
public:
CXXConstCastExpr(QualType ty, Expr *op, TypeSourceInfo *writtenTy,
SourceLocation l)
: CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op, writtenTy, l) {}
explicit CXXConstCastExpr(EmptyShell Empty)
: CXXNamedCastExpr(CXXConstCastExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXConstCastExprClass;
}
static bool classof(const CXXConstCastExpr *) { return true; }
};
/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
///
class CXXBoolLiteralExpr : public Expr {
bool Value;
SourceLocation Loc;
public:
CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
Expr(CXXBoolLiteralExprClass, Ty, false, false), Value(val), Loc(l) {}
explicit CXXBoolLiteralExpr(EmptyShell Empty)
: Expr(CXXBoolLiteralExprClass, Empty) { }
bool getValue() const { return Value; }
void setValue(bool V) { Value = V; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXBoolLiteralExprClass;
}
static bool classof(const CXXBoolLiteralExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
class CXXNullPtrLiteralExpr : public Expr {
SourceLocation Loc;
public:
CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
Expr(CXXNullPtrLiteralExprClass, Ty, false, false), Loc(l) {}
explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
: Expr(CXXNullPtrLiteralExprClass, Empty) { }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNullPtrLiteralExprClass;
}
static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
/// the type_info that corresponds to the supplied type, or the (possibly
/// dynamic) type of the supplied expression.
///
/// This represents code like @c typeid(int) or @c typeid(*objPtr)
class CXXTypeidExpr : public Expr {
private:
bool isTypeOp : 1;
union {
void *Ty;
Stmt *Ex;
} Operand;
SourceRange Range;
public:
CXXTypeidExpr(bool isTypeOp, void *op, QualType Ty, const SourceRange r) :
Expr(CXXTypeidExprClass, Ty,
// typeid is never type-dependent (C++ [temp.dep.expr]p4)
false,
// typeid is value-dependent if the type or expression are dependent
(isTypeOp ? QualType::getFromOpaquePtr(op)->isDependentType()
: static_cast<Expr*>(op)->isValueDependent())),
isTypeOp(isTypeOp), Range(r) {
if (isTypeOp)
Operand.Ty = op;
else
// op was an Expr*, so cast it back to that to be safe
Operand.Ex = static_cast<Expr*>(op);
}
bool isTypeOperand() const { return isTypeOp; }
QualType getTypeOperand() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
return QualType::getFromOpaquePtr(Operand.Ty);
}
Expr* getExprOperand() const {
assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
return static_cast<Expr*>(Operand.Ex);
}
virtual SourceRange getSourceRange() const {
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTypeidExprClass;
}
static bool classof(const CXXTypeidExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXThisExpr - Represents the "this" expression in C++, which is a
/// pointer to the object on which the current member function is
/// executing (C++ [expr.prim]p3). Example:
///
/// @code
/// class Foo {
/// public:
/// void bar();
/// void test() { this->bar(); }
/// };
/// @endcode
class CXXThisExpr : public Expr {
SourceLocation Loc;
bool Implicit : 1;
public:
CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
: Expr(CXXThisExprClass, Type,
// 'this' is type-dependent if the class type of the enclosing
// member function is dependent (C++ [temp.dep.expr]p2)
Type->isDependentType(), Type->isDependentType()),
Loc(L), Implicit(isImplicit) { }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
bool isImplicit() const { return Implicit; }
void setImplicit(bool I) { Implicit = I; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXThisExprClass;
}
static bool classof(const CXXThisExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXThrowExpr - [C++ 15] C++ Throw Expression. This handles
/// 'throw' and 'throw' assignment-expression. When
/// assignment-expression isn't present, Op will be null.
///
class CXXThrowExpr : public Expr {
Stmt *Op;
SourceLocation ThrowLoc;
public:
// Ty is the void type which is used as the result type of the
// exepression. The l is the location of the throw keyword. expr
// can by null, if the optional expression to throw isn't present.
CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
void setSubExpr(Expr *E) { Op = E; }
SourceLocation getThrowLoc() const { return ThrowLoc; }
void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
virtual SourceRange getSourceRange() const {
if (getSubExpr() == 0)
return SourceRange(ThrowLoc, ThrowLoc);
return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXThrowExprClass;
}
static bool classof(const CXXThrowExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
/// function call argument that was created from the corresponding
/// parameter's default argument, when the call did not explicitly
/// supply arguments for all of the parameters.
class CXXDefaultArgExpr : public Expr {
/// \brief The parameter whose default is being used.
///
/// When the bit is set, the subexpression is stored after the
/// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
/// actual default expression is the subexpression.
llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
/// \brief The location where the default argument expression was used.
SourceLocation Loc;
protected:
CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
: Expr(SC,
param->hasUnparsedDefaultArg()
? param->getType().getNonReferenceType()
: param->getDefaultArg()->getType(),
false, false),
Param(param, false), Loc(Loc) { }
CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
Expr *SubExpr)
: Expr(SC, SubExpr->getType(), false, false), Param(param, true), Loc(Loc)
{
*reinterpret_cast<Expr **>(this + 1) = SubExpr;
}
protected:
virtual void DoDestroy(ASTContext &C);
public:
// Param is the parameter whose default argument is used by this
// expression.
static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
ParmVarDecl *Param) {
return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
}
// Param is the parameter whose default argument is used by this
// expression, and SubExpr is the expression that will actually be used.
static CXXDefaultArgExpr *Create(ASTContext &C,
SourceLocation Loc,
ParmVarDecl *Param,
Expr *SubExpr);
// Retrieve the parameter that the argument was created from.
const ParmVarDecl *getParam() const { return Param.getPointer(); }
ParmVarDecl *getParam() { return Param.getPointer(); }
// Retrieve the actual argument to the function call.
const Expr *getExpr() const {
if (Param.getInt())
return *reinterpret_cast<Expr const * const*> (this + 1);
return getParam()->getDefaultArg();
}
Expr *getExpr() {
if (Param.getInt())
return *reinterpret_cast<Expr **> (this + 1);
return getParam()->getDefaultArg();
}
/// \brief Retrieve the location where this default argument was actually
/// used.
SourceLocation getUsedLocation() const { return Loc; }
virtual SourceRange getSourceRange() const {
// Default argument expressions have no representation in the
// source, so they have an empty source range.
return SourceRange();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDefaultArgExprClass;
}
static bool classof(const CXXDefaultArgExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXTemporary - Represents a C++ temporary.
class CXXTemporary {
/// Destructor - The destructor that needs to be called.
const CXXDestructorDecl *Destructor;
CXXTemporary(const CXXDestructorDecl *destructor)
: Destructor(destructor) { }
~CXXTemporary() { }
public:
static CXXTemporary *Create(ASTContext &C,
const CXXDestructorDecl *Destructor);
void Destroy(ASTContext &Ctx);
const CXXDestructorDecl *getDestructor() const { return Destructor; }
};
/// CXXBindTemporaryExpr - Represents binding an expression to a temporary,
/// so its destructor can be called later.
class CXXBindTemporaryExpr : public Expr {
CXXTemporary *Temp;
Stmt *SubExpr;
CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
: Expr(CXXBindTemporaryExprClass, subexpr->getType(), false, false),
Temp(temp), SubExpr(subexpr) { }
~CXXBindTemporaryExpr() { }
protected:
virtual void DoDestroy(ASTContext &C);
public:
static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
Expr* SubExpr);
CXXTemporary *getTemporary() { return Temp; }
const CXXTemporary *getTemporary() const { return Temp; }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
void setSubExpr(Expr *E) { SubExpr = E; }
virtual SourceRange getSourceRange() const {
return SubExpr->getSourceRange();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXBindTemporaryExprClass;
}
static bool classof(const CXXBindTemporaryExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXBindReferenceExpr - Represents binding an expression to a reference.
/// In the example:
///
/// const int &i = 10;
///
/// a bind reference expression is inserted to indicate that 10 is bound to
/// a reference. (Ans also that a temporary needs to be created to hold the
/// value).
class CXXBindReferenceExpr : public Expr {
// SubExpr - The expression being bound.
Stmt *SubExpr;
// ExtendsLifetime - Whether binding this reference extends the lifetime of
// the expression being bound. FIXME: Add C++ reference.
bool ExtendsLifetime;
/// RequiresTemporaryCopy - Whether binding the subexpression requires a
/// temporary copy.
bool RequiresTemporaryCopy;
CXXBindReferenceExpr(Expr *subexpr, bool ExtendsLifetime,
bool RequiresTemporaryCopy)
: Expr(CXXBindReferenceExprClass, subexpr->getType(), false, false),
SubExpr(subexpr), ExtendsLifetime(ExtendsLifetime),
RequiresTemporaryCopy(RequiresTemporaryCopy) { }
~CXXBindReferenceExpr() { }
protected:
virtual void DoDestroy(ASTContext &C);
public:
static CXXBindReferenceExpr *Create(ASTContext &C, Expr *SubExpr,
bool ExtendsLifetime,
bool RequiresTemporaryCopy);
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
void setSubExpr(Expr *E) { SubExpr = E; }
virtual SourceRange getSourceRange() const {
return SubExpr->getSourceRange();
}
/// requiresTemporaryCopy - Whether binding the subexpression requires a
/// temporary copy.
bool requiresTemporaryCopy() const { return RequiresTemporaryCopy; }
// extendsLifetime - Whether binding this reference extends the lifetime of
// the expression being bound. FIXME: Add C++ reference.
bool extendsLifetime() { return ExtendsLifetime; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXBindReferenceExprClass;
}
static bool classof(const CXXBindReferenceExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXConstructExpr - Represents a call to a C++ constructor.
class CXXConstructExpr : public Expr {
CXXConstructorDecl *Constructor;
SourceLocation Loc;
bool Elidable : 1;
bool ZeroInitialization : 1;
bool BaseInitialization : 1;
Stmt **Args;
unsigned NumArgs;
protected:
CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
SourceLocation Loc,
CXXConstructorDecl *d, bool elidable,
Expr **args, unsigned numargs,
bool ZeroInitialization = false,
bool BaseInitialization = false);
~CXXConstructExpr() { }
virtual void DoDestroy(ASTContext &C);
public:
/// \brief Construct an empty C++ construction expression that will store
/// \p numargs arguments.
CXXConstructExpr(EmptyShell Empty, ASTContext &C, unsigned numargs);
static CXXConstructExpr *Create(ASTContext &C, QualType T,
SourceLocation Loc,
CXXConstructorDecl *D, bool Elidable,
Expr **Args, unsigned NumArgs,
bool ZeroInitialization = false,
bool BaseInitialization = false);
CXXConstructorDecl* getConstructor() const { return Constructor; }
void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Loc) { this->Loc = Loc; }
/// \brief Whether this construction is elidable.
bool isElidable() const { return Elidable; }
void setElidable(bool E) { Elidable = E; }
/// \brief Whether this construction first requires
/// zero-initialization before the initializer is called.
bool requiresZeroInitialization() const { return ZeroInitialization; }
void setRequiresZeroInitialization(bool ZeroInit) {
ZeroInitialization = ZeroInit;
}
/// \brief Determines whether this constructor is actually constructing
/// a base class (rather than a complete object).
bool isBaseInitialization() const { return BaseInitialization; }
void setBaseInitialization(bool BI) { BaseInitialization = BI; }
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator arg_begin() { return Args; }
arg_iterator arg_end() { return Args + NumArgs; }
const_arg_iterator arg_begin() const { return Args; }
const_arg_iterator arg_end() const { return Args + NumArgs; }
Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
unsigned getNumArgs() const { return NumArgs; }
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(Args[Arg]);
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(Args[Arg]);
}
/// setArg - Set the specified argument.
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < NumArgs && "Arg access out of range!");
Args[Arg] = ArgExpr;
}
virtual SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXConstructExprClass ||
T->getStmtClass() == CXXTemporaryObjectExprClass;
}
static bool classof(const CXXConstructExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
/// x = int(0.5);
class CXXFunctionalCastExpr : public ExplicitCastExpr {
SourceLocation TyBeginLoc;
SourceLocation RParenLoc;
public:
CXXFunctionalCastExpr(QualType ty, TypeSourceInfo *writtenTy,
SourceLocation tyBeginLoc, CastKind kind,
Expr *castExpr, SourceLocation rParenLoc)
: ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
writtenTy),
TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
explicit CXXFunctionalCastExpr(EmptyShell Shell)
: ExplicitCastExpr(CXXFunctionalCastExprClass, Shell) { }
SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(TyBeginLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXFunctionalCastExprClass;
}
static bool classof(const CXXFunctionalCastExpr *) { return true; }
};
/// @brief Represents a C++ functional cast expression that builds a
/// temporary object.
///
/// This expression type represents a C++ "functional" cast
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
/// constructor to build a temporary object. If N == 0 but no
/// constructor will be called (because the functional cast is
/// performing a value-initialized an object whose class type has no
/// user-declared constructors), CXXZeroInitValueExpr will represent
/// the functional cast. Finally, with N == 1 arguments the functional
/// cast expression will be represented by CXXFunctionalCastExpr.
/// Example:
/// @code
/// struct X { X(int, float); }
///
/// X create_X() {
/// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
/// };
/// @endcode
class CXXTemporaryObjectExpr : public CXXConstructExpr {
SourceLocation TyBeginLoc;
SourceLocation RParenLoc;
public:
CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
QualType writtenTy, SourceLocation tyBeginLoc,
Expr **Args,unsigned NumArgs,
SourceLocation rParenLoc);
~CXXTemporaryObjectExpr() { }
SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
virtual SourceRange getSourceRange() const {
return SourceRange(TyBeginLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTemporaryObjectExprClass;
}
static bool classof(const CXXTemporaryObjectExpr *) { return true; }
};
/// CXXZeroInitValueExpr - [C++ 5.2.3p2]
/// Expression "T()" which creates a value-initialized rvalue of type
/// T, which is either a non-class type or a class type without any
/// user-defined constructors.
///
class CXXZeroInitValueExpr : public Expr {
SourceLocation TyBeginLoc;
SourceLocation RParenLoc;
public:
CXXZeroInitValueExpr(QualType ty, SourceLocation tyBeginLoc,
SourceLocation rParenLoc ) :
Expr(CXXZeroInitValueExprClass, ty, false, false),
TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
/// @brief Whether this initialization expression was
/// implicitly-generated.
bool isImplicit() const {
return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
}
virtual SourceRange getSourceRange() const {
return SourceRange(TyBeginLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXZeroInitValueExprClass;
}
static bool classof(const CXXZeroInitValueExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXNewExpr - A new expression for memory allocation and constructor calls,
/// e.g: "new CXXNewExpr(foo)".
class CXXNewExpr : public Expr {
// Was the usage ::new, i.e. is the global new to be used?
bool GlobalNew : 1;
// Was the form (type-id) used? Otherwise, it was new-type-id.
bool ParenTypeId : 1;
// Is there an initializer? If not, built-ins are uninitialized, else they're
// value-initialized.
bool Initializer : 1;
// Do we allocate an array? If so, the first SubExpr is the size expression.
bool Array : 1;
// The number of placement new arguments.
unsigned NumPlacementArgs : 14;
// The number of constructor arguments. This may be 1 even for non-class
// types; use the pseudo copy constructor.
unsigned NumConstructorArgs : 14;
// Contains an optional array size expression, any number of optional
// placement arguments, and any number of optional constructor arguments,
// in that order.
Stmt **SubExprs;
// Points to the allocation function used.
FunctionDecl *OperatorNew;
// Points to the deallocation function used in case of error. May be null.
FunctionDecl *OperatorDelete;
// Points to the constructor used. Cannot be null if AllocType is a record;
// it would still point at the default constructor (even an implicit one).
// Must be null for all other types.
CXXConstructorDecl *Constructor;
SourceLocation StartLoc;
SourceLocation EndLoc;
public:
CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
Expr **placementArgs, unsigned numPlaceArgs, bool ParenTypeId,
Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
Expr **constructorArgs, unsigned numConsArgs,
FunctionDecl *operatorDelete, QualType ty,
SourceLocation startLoc, SourceLocation endLoc);
virtual void DoDestroy(ASTContext &C);
QualType getAllocatedType() const {
assert(getType()->isPointerType());
return getType()->getAs<PointerType>()->getPointeeType();
}
FunctionDecl *getOperatorNew() const { return OperatorNew; }
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
CXXConstructorDecl *getConstructor() const { return Constructor; }
bool isArray() const { return Array; }
Expr *getArraySize() {
return Array ? cast<Expr>(SubExprs[0]) : 0;
}
const Expr *getArraySize() const {
return Array ? cast<Expr>(SubExprs[0]) : 0;
}
unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
Expr *getPlacementArg(unsigned i) {
assert(i < NumPlacementArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + i]);
}
const Expr *getPlacementArg(unsigned i) const {
assert(i < NumPlacementArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + i]);
}
bool isGlobalNew() const { return GlobalNew; }
bool isParenTypeId() const { return ParenTypeId; }
bool hasInitializer() const { return Initializer; }
unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
Expr *getConstructorArg(unsigned i) {
assert(i < NumConstructorArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
}
const Expr *getConstructorArg(unsigned i) const {
assert(i < NumConstructorArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
}
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator placement_arg_begin() {
return SubExprs + Array;
}
arg_iterator placement_arg_end() {
return SubExprs + Array + getNumPlacementArgs();
}
const_arg_iterator placement_arg_begin() const {
return SubExprs + Array;
}
const_arg_iterator placement_arg_end() const {
return SubExprs + Array + getNumPlacementArgs();
}
arg_iterator constructor_arg_begin() {
return SubExprs + Array + getNumPlacementArgs();
}
arg_iterator constructor_arg_end() {
return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
const_arg_iterator constructor_arg_begin() const {
return SubExprs + Array + getNumPlacementArgs();
}
const_arg_iterator constructor_arg_end() const {
return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
virtual SourceRange getSourceRange() const {
return SourceRange(StartLoc, EndLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNewExprClass;
}
static bool classof(const CXXNewExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
/// calls, e.g. "delete[] pArray".
class CXXDeleteExpr : public Expr {
// Is this a forced global delete, i.e. "::delete"?
bool GlobalDelete : 1;
// Is this the array form of delete, i.e. "delete[]"?
bool ArrayForm : 1;
// Points to the operator delete overload that is used. Could be a member.
FunctionDecl *OperatorDelete;
// The pointer expression to be deleted.
Stmt *Argument;
// Location of the expression.
SourceLocation Loc;
public:
CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
: Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
Loc(loc) { }
bool isGlobalDelete() const { return GlobalDelete; }
bool isArrayForm() const { return ArrayForm; }
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
Expr *getArgument() { return cast<Expr>(Argument); }
const Expr *getArgument() const { return cast<Expr>(Argument); }
virtual SourceRange getSourceRange() const {
return SourceRange(Loc, Argument->getLocEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDeleteExprClass;
}
static bool classof(const CXXDeleteExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// \brief Structure used to store the type being destroyed by a
/// pseudo-destructor expression.
class PseudoDestructorTypeStorage {
/// \brief Either the type source information or the name of the type, if
/// it couldn't be resolved due to type-dependence.
llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
/// \brief The starting source location of the pseudo-destructor type.
SourceLocation Location;
public:
PseudoDestructorTypeStorage() { }
PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
: Type(II), Location(Loc) { }
PseudoDestructorTypeStorage(TypeSourceInfo *Info);
TypeSourceInfo *getTypeSourceInfo() const {
return Type.dyn_cast<TypeSourceInfo *>();
}
IdentifierInfo *getIdentifier() const {
return Type.dyn_cast<IdentifierInfo *>();
}
SourceLocation getLocation() const { return Location; }
};
/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
///
/// A pseudo-destructor is an expression that looks like a member access to a
/// destructor of a scalar type, except that scalar types don't have
/// destructors. For example:
///
/// \code
/// typedef int T;
/// void f(int *p) {
/// p->T::~T();
/// }
/// \endcode
///
/// Pseudo-destructors typically occur when instantiating templates such as:
///
/// \code
/// template<typename T>
/// void destroy(T* ptr) {
/// ptr->T::~T();
/// }
/// \endcode
///
/// for scalar types. A pseudo-destructor expression has no run-time semantics
/// beyond evaluating the base expression.
class CXXPseudoDestructorExpr : public Expr {
/// \brief The base expression (that is being destroyed).
Stmt *Base;
/// \brief Whether the operator was an arrow ('->'); otherwise, it was a
/// period ('.').
bool IsArrow : 1;
/// \brief The location of the '.' or '->' operator.
SourceLocation OperatorLoc;
/// \brief The nested-name-specifier that follows the operator, if present.
NestedNameSpecifier *Qualifier;
/// \brief The source range that covers the nested-name-specifier, if
/// present.
SourceRange QualifierRange;
/// \brief The type that precedes the '::' in a qualified pseudo-destructor
/// expression.
TypeSourceInfo *ScopeType;
/// \brief The location of the '::' in a qualified pseudo-destructor
/// expression.
SourceLocation ColonColonLoc;
/// \brief The location of the '~'.
SourceLocation TildeLoc;
/// \brief The type being destroyed, or its name if we were unable to
/// resolve the name.
PseudoDestructorTypeStorage DestroyedType;
public:
CXXPseudoDestructorExpr(ASTContext &Context,
Expr *Base, bool isArrow, SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
TypeSourceInfo *ScopeType,
SourceLocation ColonColonLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage DestroyedType)
: Expr(CXXPseudoDestructorExprClass,
Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
false, 0, false,
false, 0, 0, false,
CC_Default)),
/*isTypeDependent=*/(Base->isTypeDependent() ||
(DestroyedType.getTypeSourceInfo() &&
DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
/*isValueDependent=*/Base->isValueDependent()),
Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
OperatorLoc(OperatorLoc), Qualifier(Qualifier),
QualifierRange(QualifierRange),
ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
DestroyedType(DestroyedType) { }
void setBase(Expr *E) { Base = E; }
Expr *getBase() const { return cast<Expr>(Base); }
/// \brief Determines whether this member expression actually had
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
/// x->Base::foo.
bool hasQualifier() const { return Qualifier != 0; }
/// \brief If the member name was qualified, retrieves the source range of
/// the nested-name-specifier that precedes the member name. Otherwise,
/// returns an empty source range.
SourceRange getQualifierRange() const { return QualifierRange; }
/// \brief If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name. Otherwise, returns
/// NULL.
NestedNameSpecifier *getQualifier() const { return Qualifier; }
/// \brief Determine whether this pseudo-destructor expression was written
/// using an '->' (otherwise, it used a '.').
bool isArrow() const { return IsArrow; }
void setArrow(bool A) { IsArrow = A; }
/// \brief Retrieve the location of the '.' or '->' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Retrieve the scope type in a qualified pseudo-destructor
/// expression.
///
/// Pseudo-destructor expressions can have extra qualification within them
/// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
/// Here, if the object type of the expression is (or may be) a scalar type,
/// \p T may also be a scalar type and, therefore, cannot be part of a
/// nested-name-specifier. It is stored as the "scope type" of the pseudo-
/// destructor expression.
TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
/// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
/// expression.
SourceLocation getColonColonLoc() const { return ColonColonLoc; }
/// \brief Retrieve the location of the '~'.
SourceLocation getTildeLoc() const { return TildeLoc; }
/// \brief Retrieve the source location information for the type
/// being destroyed.
///
/// This type-source information is available for non-dependent
/// pseudo-destructor expressions and some dependent pseudo-destructor
/// expressions. Returns NULL if we only have the identifier for a
/// dependent pseudo-destructor expression.
TypeSourceInfo *getDestroyedTypeInfo() const {
return DestroyedType.getTypeSourceInfo();
}
/// \brief In a dependent pseudo-destructor expression for which we do not
/// have full type information on the destroyed type, provides the name
/// of the destroyed type.
IdentifierInfo *getDestroyedTypeIdentifier() const {
return DestroyedType.getIdentifier();
}
/// \brief Retrieve the type being destroyed.
QualType getDestroyedType() const;
/// \brief Retrieve the starting location of the type being destroyed.
SourceLocation getDestroyedTypeLoc() const {
return DestroyedType.getLocation();
}
virtual SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXPseudoDestructorExprClass;
}
static bool classof(const CXXPseudoDestructorExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
/// implementation of TR1/C++0x type trait templates.
/// Example:
/// __is_pod(int) == true
/// __is_enum(std::string) == false
class UnaryTypeTraitExpr : public Expr {
/// UTT - The trait.
UnaryTypeTrait UTT;
/// Loc - The location of the type trait keyword.
SourceLocation Loc;
/// RParen - The location of the closing paren.
SourceLocation RParen;
/// QueriedType - The type we're testing.
QualType QueriedType;
public:
UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
SourceLocation rparen, QualType ty)
: Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
UnaryTypeTrait getTrait() const { return UTT; }
QualType getQueriedType() const { return QueriedType; }
bool EvaluateTrait(ASTContext&) const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryTypeTraitExprClass;
}
static bool classof(const UnaryTypeTraitExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// \brief A reference to an overloaded function set, either an
/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
class OverloadExpr : public Expr {
/// The results. These are undesugared, which is to say, they may
/// include UsingShadowDecls. Access is relative to the naming
/// class.
UnresolvedSet<4> Results;
/// The common name of these declarations.
DeclarationName Name;
/// The scope specifier, if any.
NestedNameSpecifier *Qualifier;
/// The source range of the scope specifier.
SourceRange QualifierRange;
/// The location of the name.
SourceLocation NameLoc;
/// True if the name was a template-id.
bool HasExplicitTemplateArgs;
protected:
OverloadExpr(StmtClass K, QualType T, bool Dependent,
NestedNameSpecifier *Qualifier, SourceRange QRange,
DeclarationName Name, SourceLocation NameLoc,
bool HasTemplateArgs)
: Expr(K, T, Dependent, Dependent),
Name(Name), Qualifier(Qualifier), QualifierRange(QRange),
NameLoc(NameLoc), HasExplicitTemplateArgs(HasTemplateArgs)
{}
public:
/// Computes whether an unresolved lookup on the given declarations
/// and optional template arguments is type- and value-dependent.
static bool ComputeDependence(UnresolvedSetIterator Begin,
UnresolvedSetIterator End,
const TemplateArgumentListInfo *Args);
/// Finds the overloaded expression in the given expression of
/// OverloadTy.
///
/// \return the expression (which must be there) and true if it is
/// within an address-of operator.
static llvm::PointerIntPair<OverloadExpr*,1> find(Expr *E) {
assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
bool op = false;
E = E->IgnoreParens();
if (isa<UnaryOperator>(E))
op = true, E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
return llvm::PointerIntPair<OverloadExpr*,1>(cast<OverloadExpr>(E), op);
}
void addDecls(UnresolvedSetIterator Begin, UnresolvedSetIterator End) {
Results.append(Begin, End);
}
typedef UnresolvedSetImpl::iterator decls_iterator;
decls_iterator decls_begin() const { return Results.begin(); }
decls_iterator decls_end() const { return Results.end(); }
/// Gets the decls as an unresolved set.
const UnresolvedSetImpl &getDecls() { return Results; }
/// Gets the number of declarations in the unresolved set.
unsigned getNumDecls() const { return Results.size(); }
/// Gets the name looked up.
DeclarationName getName() const { return Name; }
void setName(DeclarationName N) { Name = N; }
/// Gets the location of the name.
SourceLocation getNameLoc() const { return NameLoc; }
void setNameLoc(SourceLocation Loc) { NameLoc = Loc; }
/// Fetches the nested-name qualifier, if one was given.
NestedNameSpecifier *getQualifier() const { return Qualifier; }
/// Fetches the range of the nested-name qualifier.
SourceRange getQualifierRange() const { return QualifierRange; }
/// \brief Determines whether this expression had an explicit
/// template argument list, e.g. f<int>.
bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
}
ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
if (hasExplicitTemplateArgs())
return &getExplicitTemplateArgs();
return 0;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedLookupExprClass ||
T->getStmtClass() == UnresolvedMemberExprClass;
}
static bool classof(const OverloadExpr *) { return true; }
};
/// \brief A reference to a name which we were able to look up during
/// parsing but could not resolve to a specific declaration. This
/// arises in several ways:
/// * we might be waiting for argument-dependent lookup
/// * the name might resolve to an overloaded function
/// and eventually:
/// * the lookup might have included a function template
/// These never include UnresolvedUsingValueDecls, which are always
/// class members and therefore appear only in
/// UnresolvedMemberLookupExprs.
class UnresolvedLookupExpr : public OverloadExpr {
/// True if these lookup results should be extended by
/// argument-dependent lookup if this is the operand of a function
/// call.
bool RequiresADL;
/// True if these lookup results are overloaded. This is pretty
/// trivially rederivable if we urgently need to kill this field.
bool Overloaded;
/// The naming class (C++ [class.access.base]p5) of the lookup, if
/// any. This can generally be recalculated from the context chain,
/// but that can be fairly expensive for unqualified lookups. If we
/// want to improve memory use here, this could go in a union
/// against the qualified-lookup bits.
CXXRecordDecl *NamingClass;
UnresolvedLookupExpr(QualType T, bool Dependent, CXXRecordDecl *NamingClass,
NestedNameSpecifier *Qualifier, SourceRange QRange,
DeclarationName Name, SourceLocation NameLoc,
bool RequiresADL, bool Overloaded, bool HasTemplateArgs)
: OverloadExpr(UnresolvedLookupExprClass, T, Dependent, Qualifier, QRange,
Name, NameLoc, HasTemplateArgs),
RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
{}
public:
static UnresolvedLookupExpr *Create(ASTContext &C,
bool Dependent,
CXXRecordDecl *NamingClass,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
DeclarationName Name,
SourceLocation NameLoc,
bool ADL, bool Overloaded) {
return new(C) UnresolvedLookupExpr(Dependent ? C.DependentTy : C.OverloadTy,
Dependent, NamingClass,
Qualifier, QualifierRange,
Name, NameLoc, ADL, Overloaded, false);
}
static UnresolvedLookupExpr *Create(ASTContext &C,
bool Dependent,
CXXRecordDecl *NamingClass,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
DeclarationName Name,
SourceLocation NameLoc,
bool ADL,
const TemplateArgumentListInfo &Args);
/// True if this declaration should be extended by
/// argument-dependent lookup.
bool requiresADL() const { return RequiresADL; }
/// True if this lookup is overloaded.
bool isOverloaded() const { return Overloaded; }
/// Gets the 'naming class' (in the sense of C++0x
/// [class.access.base]p5) of the lookup. This is the scope
/// that was looked in to find these results.
CXXRecordDecl *getNamingClass() const { return NamingClass; }
// Note that, inconsistently with the explicit-template-argument AST
// nodes, users are *forbidden* from calling these methods on objects
// without explicit template arguments.
ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
}
/// Gets a reference to the explicit template argument list.
const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
SourceLocation getLAngleLoc() const {
return getExplicitTemplateArgs().LAngleLoc;
}
SourceLocation getRAngleLoc() const {
return getExplicitTemplateArgs().RAngleLoc;
}
TemplateArgumentLoc const *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
virtual SourceRange getSourceRange() const {
SourceRange Range(getNameLoc());
if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
return Range;
}
virtual StmtIterator child_begin();
virtual StmtIterator child_end();
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedLookupExprClass;
}
static bool classof(const UnresolvedLookupExpr *) { return true; }
};
/// \brief A qualified reference to a name whose declaration cannot
/// yet be resolved.
///
/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
/// it expresses a reference to a declaration such as
/// X<T>::value. The difference, however, is that an
/// DependentScopeDeclRefExpr node is used only within C++ templates when
/// the qualification (e.g., X<T>::) refers to a dependent type. In
/// this case, X<T>::value cannot resolve to a declaration because the
/// declaration will differ from on instantiation of X<T> to the
/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
/// qualifier (X<T>::) and the name of the entity being referenced
/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
/// declaration can be found.
class DependentScopeDeclRefExpr : public Expr {
/// The name of the entity we will be referencing.
DeclarationName Name;
/// Location of the name of the declaration we're referencing.
SourceLocation Loc;
/// QualifierRange - The source range that covers the
/// nested-name-specifier.
SourceRange QualifierRange;
/// \brief The nested-name-specifier that qualifies this unresolved
/// declaration name.
NestedNameSpecifier *Qualifier;
/// \brief Whether the name includes explicit template arguments.
bool HasExplicitTemplateArgs;
DependentScopeDeclRefExpr(QualType T,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
DeclarationName Name,
SourceLocation NameLoc,
bool HasExplicitTemplateArgs)
: Expr(DependentScopeDeclRefExprClass, T, true, true),
Name(Name), Loc(NameLoc),
QualifierRange(QualifierRange), Qualifier(Qualifier),
HasExplicitTemplateArgs(HasExplicitTemplateArgs)
{}
public:
static DependentScopeDeclRefExpr *Create(ASTContext &C,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
DeclarationName Name,
SourceLocation NameLoc,
const TemplateArgumentListInfo *TemplateArgs = 0);
/// \brief Retrieve the name that this expression refers to.
DeclarationName getDeclName() const { return Name; }
/// \brief Retrieve the location of the name within the expression.
SourceLocation getLocation() const { return Loc; }
/// \brief Retrieve the source range of the nested-name-specifier.
SourceRange getQualifierRange() const { return QualifierRange; }
/// \brief Retrieve the nested-name-specifier that qualifies this
/// declaration.
NestedNameSpecifier *getQualifier() const { return Qualifier; }
/// Determines whether this lookup had explicit template arguments.
bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
// Note that, inconsistently with the explicit-template-argument AST
// nodes, users are *forbidden* from calling these methods on objects
// without explicit template arguments.
/// Gets a reference to the explicit template argument list.
const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
SourceLocation getLAngleLoc() const {
return getExplicitTemplateArgs().LAngleLoc;
}
SourceLocation getRAngleLoc() const {
return getExplicitTemplateArgs().RAngleLoc;
}
TemplateArgumentLoc const *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
virtual SourceRange getSourceRange() const {
SourceRange Range(QualifierRange.getBegin(), getLocation());
if (hasExplicitTemplateArgs())
Range.setEnd(getRAngleLoc());
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DependentScopeDeclRefExprClass;
}
static bool classof(const DependentScopeDeclRefExpr *) { return true; }
virtual StmtIterator child_begin();
virtual StmtIterator child_end();
};
class CXXExprWithTemporaries : public Expr {
Stmt *SubExpr;
CXXTemporary **Temps;
unsigned NumTemps;
CXXExprWithTemporaries(Expr *SubExpr, CXXTemporary **Temps,
unsigned NumTemps);
~CXXExprWithTemporaries();
protected:
virtual void DoDestroy(ASTContext &C);
public:
static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
CXXTemporary **Temps,
unsigned NumTemps);
unsigned getNumTemporaries() const { return NumTemps; }
CXXTemporary *getTemporary(unsigned i) {
assert(i < NumTemps && "Index out of range");
return Temps[i];
}
const CXXTemporary *getTemporary(unsigned i) const {
return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
}
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
void setSubExpr(Expr *E) { SubExpr = E; }
virtual SourceRange getSourceRange() const {
return SubExpr->getSourceRange();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXExprWithTemporariesClass;
}
static bool classof(const CXXExprWithTemporaries *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// \brief Describes an explicit type conversion that uses functional
/// notion but could not be resolved because one or more arguments are
/// type-dependent.
///
/// The explicit type conversions expressed by
/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
/// where \c T is some type and \c a1, a2, ..., aN are values, and
/// either \C T is a dependent type or one or more of the \c a's is
/// type-dependent. For example, this would occur in a template such
/// as:
///
/// \code
/// template<typename T, typename A1>
/// inline T make_a(const A1& a1) {
/// return T(a1);
/// }
/// \endcode
///
/// When the returned expression is instantiated, it may resolve to a
/// constructor call, conversion function call, or some kind of type
/// conversion.
class CXXUnresolvedConstructExpr : public Expr {
/// \brief The starting location of the type
SourceLocation TyBeginLoc;
/// \brief The type being constructed.
QualType Type;
/// \brief The location of the left parentheses ('(').
SourceLocation LParenLoc;
/// \brief The location of the right parentheses (')').
SourceLocation RParenLoc;
/// \brief The number of arguments used to construct the type.
unsigned NumArgs;
CXXUnresolvedConstructExpr(SourceLocation TyBegin,
QualType T,
SourceLocation LParenLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation RParenLoc);
public:
static CXXUnresolvedConstructExpr *Create(ASTContext &C,
SourceLocation TyBegin,
QualType T,
SourceLocation LParenLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation RParenLoc);
/// \brief Retrieve the source location where the type begins.
SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
/// \brief Retrieve the type that is being constructed, as specified
/// in the source code.
QualType getTypeAsWritten() const { return Type; }
void setTypeAsWritten(QualType T) { Type = T; }
/// \brief Retrieve the location of the left parentheses ('(') that
/// precedes the argument list.
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
/// \brief Retrieve the location of the right parentheses (')') that
/// follows the argument list.
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
/// \brief Retrieve the number of arguments.
unsigned arg_size() const { return NumArgs; }
typedef Expr** arg_iterator;
arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
arg_iterator arg_end() { return arg_begin() + NumArgs; }
typedef const Expr* const * const_arg_iterator;
const_arg_iterator arg_begin() const {
return reinterpret_cast<const Expr* const *>(this + 1);
}
const_arg_iterator arg_end() const {
return arg_begin() + NumArgs;
}
Expr *getArg(unsigned I) {
assert(I < NumArgs && "Argument index out-of-range");
return *(arg_begin() + I);
}
const Expr *getArg(unsigned I) const {
assert(I < NumArgs && "Argument index out-of-range");
return *(arg_begin() + I);
}
virtual SourceRange getSourceRange() const {
return SourceRange(TyBeginLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXUnresolvedConstructExprClass;
}
static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// \brief Represents a C++ member access expression where the actual
/// member referenced could not be resolved because the base
/// expression or the member name was dependent.
///
/// Like UnresolvedMemberExprs, these can be either implicit or
/// explicit accesses. It is only possible to get one of these with
/// an implicit access if a qualifier is provided.
class CXXDependentScopeMemberExpr : public Expr {
/// \brief The expression for the base pointer or class reference,
/// e.g., the \c x in x.f. Can be null in implicit accesses.
Stmt *Base;
/// \brief The type of the base expression. Never null, even for
/// implicit accesses.
QualType BaseType;
/// \brief Whether this member expression used the '->' operator or
/// the '.' operator.
bool IsArrow : 1;
/// \brief Whether this member expression has explicitly-specified template
/// arguments.
bool HasExplicitTemplateArgs : 1;
/// \brief The location of the '->' or '.' operator.
SourceLocation OperatorLoc;
/// \brief The nested-name-specifier that precedes the member name, if any.
NestedNameSpecifier *Qualifier;
/// \brief The source range covering the nested name specifier.
SourceRange QualifierRange;
/// \brief In a qualified member access expression such as t->Base::f, this
/// member stores the resolves of name lookup in the context of the member
/// access expression, to be used at instantiation time.
///
/// FIXME: This member, along with the Qualifier and QualifierRange, could
/// be stuck into a structure that is optionally allocated at the end of
/// the CXXDependentScopeMemberExpr, to save space in the common case.
NamedDecl *FirstQualifierFoundInScope;
/// \brief The member to which this member expression refers, which
/// can be name, overloaded operator, or destructor.
/// FIXME: could also be a template-id
DeclarationName Member;
/// \brief The location of the member name.
SourceLocation MemberLoc;
/// \brief Retrieve the explicit template argument list that followed the
/// member template name, if any.
ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
assert(HasExplicitTemplateArgs);
return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
}
/// \brief Retrieve the explicit template argument list that followed the
/// member template name, if any.
const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
return const_cast<CXXDependentScopeMemberExpr *>(this)
->getExplicitTemplateArgumentList();
}
CXXDependentScopeMemberExpr(ASTContext &C,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
NamedDecl *FirstQualifierFoundInScope,
DeclarationName Member,
SourceLocation MemberLoc,
const TemplateArgumentListInfo *TemplateArgs);
public:
CXXDependentScopeMemberExpr(ASTContext &C,
Expr *Base, QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
NamedDecl *FirstQualifierFoundInScope,
DeclarationName Member,
SourceLocation MemberLoc)
: Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
Base(Base), BaseType(BaseType), IsArrow(IsArrow),
HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
Qualifier(Qualifier), QualifierRange(QualifierRange),
FirstQualifierFoundInScope(FirstQualifierFoundInScope),
Member(Member), MemberLoc(MemberLoc) { }
static CXXDependentScopeMemberExpr *
Create(ASTContext &C,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
NamedDecl *FirstQualifierFoundInScope,
DeclarationName Member,
SourceLocation MemberLoc,
const TemplateArgumentListInfo *TemplateArgs);
/// \brief True if this is an implicit access, i.e. one in which the
/// member being accessed was not written in the source. The source
/// location of the operator is invalid in this case.
bool isImplicitAccess() const { return Base == 0; }
/// \brief Retrieve the base object of this member expressions,
/// e.g., the \c x in \c x.m.
Expr *getBase() const {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
void setBase(Expr *E) { Base = E; }
QualType getBaseType() const { return BaseType; }
/// \brief Determine whether this member expression used the '->'
/// operator; otherwise, it used the '.' operator.
bool isArrow() const { return IsArrow; }
void setArrow(bool A) { IsArrow = A; }
/// \brief Retrieve the location of the '->' or '.' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
/// \brief Retrieve the nested-name-specifier that qualifies the member
/// name.
NestedNameSpecifier *getQualifier() const { return Qualifier; }
/// \brief Retrieve the source range covering the nested-name-specifier
/// that qualifies the member name.
SourceRange getQualifierRange() const { return QualifierRange; }
/// \brief Retrieve the first part of the nested-name-specifier that was
/// found in the scope of the member access expression when the member access
/// was initially parsed.
///
/// This function only returns a useful result when member access expression
/// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
/// returned by this function describes what was found by unqualified name
/// lookup for the identifier "Base" within the scope of the member access
/// expression itself. At template instantiation time, this information is
/// combined with the results of name lookup into the type of the object
/// expression itself (the class type of x).
NamedDecl *getFirstQualifierFoundInScope() const {
return FirstQualifierFoundInScope;
}
/// \brief Retrieve the name of the member that this expression
/// refers to.
DeclarationName getMember() const { return Member; }
void setMember(DeclarationName N) { Member = N; }
// \brief Retrieve the location of the name of the member that this
// expression refers to.
SourceLocation getMemberLoc() const { return MemberLoc; }
void setMemberLoc(SourceLocation L) { MemberLoc = L; }
/// \brief Determines whether this member expression actually had a C++
/// template argument list explicitly specified, e.g., x.f<int>.
bool hasExplicitTemplateArgs() const {
return HasExplicitTemplateArgs;
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
assert(HasExplicitTemplateArgs);
getExplicitTemplateArgumentList()->copyInto(List);
}
/// \brief Retrieve the location of the left angle bracket following the
/// member name ('<'), if any.
SourceLocation getLAngleLoc() const {
assert(HasExplicitTemplateArgs);
return getExplicitTemplateArgumentList()->LAngleLoc;
}
/// \brief Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
assert(HasExplicitTemplateArgs);
return getExplicitTemplateArgumentList()->getTemplateArgs();
}
/// \brief Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
assert(HasExplicitTemplateArgs);
return getExplicitTemplateArgumentList()->NumTemplateArgs;
}
/// \brief Retrieve the location of the right angle bracket following the
/// template arguments ('>').
SourceLocation getRAngleLoc() const {
assert(HasExplicitTemplateArgs);
return getExplicitTemplateArgumentList()->RAngleLoc;
}
virtual SourceRange getSourceRange() const {
SourceRange Range;
if (!isImplicitAccess())
Range.setBegin(Base->getSourceRange().getBegin());
else if (getQualifier())
Range.setBegin(getQualifierRange().getBegin());
else
Range.setBegin(MemberLoc);
if (hasExplicitTemplateArgs())
Range.setEnd(getRAngleLoc());
else
Range.setEnd(MemberLoc);
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDependentScopeMemberExprClass;
}
static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// \brief Represents a C++ member access expression for which lookup
/// produced a set of overloaded functions.
///
/// The member access may be explicit or implicit:
/// struct A {
/// int a, b;
/// int explicitAccess() { return this->a + this->A::b; }
/// int implicitAccess() { return a + A::b; }
/// };
///
/// In the final AST, an explicit access always becomes a MemberExpr.
/// An implicit access may become either a MemberExpr or a
/// DeclRefExpr, depending on whether the member is static.
class UnresolvedMemberExpr : public OverloadExpr {
/// \brief Whether this member expression used the '->' operator or
/// the '.' operator.
bool IsArrow : 1;
/// \brief Whether the lookup results contain an unresolved using
/// declaration.
bool HasUnresolvedUsing : 1;
/// \brief The expression for the base pointer or class reference,
/// e.g., the \c x in x.f. This can be null if this is an 'unbased'
/// member expression
Stmt *Base;
/// \brief The type of the base expression; never null.
QualType BaseType;
/// \brief The location of the '->' or '.' operator.
SourceLocation OperatorLoc;
UnresolvedMemberExpr(QualType T, bool Dependent,
bool HasUnresolvedUsing,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
DeclarationName Member,
SourceLocation MemberLoc,
const TemplateArgumentListInfo *TemplateArgs);
public:
static UnresolvedMemberExpr *
Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
DeclarationName Member,
SourceLocation MemberLoc,
const TemplateArgumentListInfo *TemplateArgs);
/// \brief True if this is an implicit access, i.e. one in which the
/// member being accessed was not written in the source. The source
/// location of the operator is invalid in this case.
bool isImplicitAccess() const { return Base == 0; }
/// \brief Retrieve the base object of this member expressions,
/// e.g., the \c x in \c x.m.
Expr *getBase() {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
const Expr *getBase() const {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
void setBase(Expr *E) { Base = E; }
QualType getBaseType() const { return BaseType; }
/// \brief Determine whether this member expression used the '->'
/// operator; otherwise, it used the '.' operator.
bool isArrow() const { return IsArrow; }
void setArrow(bool A) { IsArrow = A; }
/// \brief Retrieve the location of the '->' or '.' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
/// \brief Retrieves the naming class of this lookup.
CXXRecordDecl *getNamingClass() const;
/// \brief Retrieve the name of the member that this expression
/// refers to.
DeclarationName getMemberName() const { return getName(); }
void setMemberName(DeclarationName N) { setName(N); }
// \brief Retrieve the location of the name of the member that this
// expression refers to.
SourceLocation getMemberLoc() const { return getNameLoc(); }
void setMemberLoc(SourceLocation L) { setNameLoc(L); }
/// \brief Retrieve the explicit template argument list that followed the
/// member template name.
ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
}
/// \brief Retrieve the explicit template argument list that followed the
/// member template name, if any.
const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
}
/// \brief Copies the template arguments into the given structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Retrieve the location of the left angle bracket following
/// the member name ('<').
SourceLocation getLAngleLoc() const {
return getExplicitTemplateArgs().LAngleLoc;
}
/// \brief Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
/// \brief Retrieve the number of template arguments provided as
/// part of this template-id.
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
/// \brief Retrieve the location of the right angle bracket
/// following the template arguments ('>').
SourceLocation getRAngleLoc() const {
return getExplicitTemplateArgs().RAngleLoc;
}
virtual SourceRange getSourceRange() const {
SourceRange Range;
if (!isImplicitAccess())
Range.setBegin(Base->getSourceRange().getBegin());
else if (getQualifier())
Range.setBegin(getQualifierRange().getBegin());
else
Range.setBegin(getMemberLoc());
if (hasExplicitTemplateArgs())
Range.setEnd(getRAngleLoc());
else
Range.setEnd(getMemberLoc());
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedMemberExprClass;
}
static bool classof(const UnresolvedMemberExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
if (isa<UnresolvedLookupExpr>(this))
return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
else
return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
}
} // end namespace clang
#endif