blob: 0838a3d0ebe6b0ab5b7fd3923433a831cd08e778 [file] [log] [blame]
//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
#define LLVM_CLANG_AST_ASTCONTEXT_H
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/CanonicalType.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Allocator.h"
#include <vector>
namespace llvm {
struct fltSemantics;
}
namespace clang {
class FileManager;
class ASTRecordLayout;
class BlockExpr;
class CharUnits;
class Expr;
class ExternalASTSource;
class IdentifierTable;
class SelectorTable;
class SourceManager;
class TargetInfo;
// Decls
class DeclContext;
class CXXMethodDecl;
class CXXRecordDecl;
class Decl;
class FieldDecl;
class ObjCIvarDecl;
class ObjCIvarRefExpr;
class ObjCPropertyDecl;
class RecordDecl;
class TagDecl;
class TemplateTypeParmDecl;
class TranslationUnitDecl;
class TypeDecl;
class TypedefDecl;
class UsingDecl;
class UsingShadowDecl;
class UnresolvedSetIterator;
namespace Builtin { class Context; }
/// \brief A vector of C++ member functions that is optimized for
/// storing a single method.
class CXXMethodVector {
/// \brief Storage for the vector.
///
/// When the low bit is zero, this is a const CXXMethodDecl *. When the
/// low bit is one, this is a std::vector<const CXXMethodDecl *> *.
mutable uintptr_t Storage;
typedef std::vector<const CXXMethodDecl *> vector_type;
public:
CXXMethodVector() : Storage(0) { }
typedef const CXXMethodDecl **iterator;
iterator begin() const;
iterator end() const;
void push_back(const CXXMethodDecl *Method);
void Destroy();
};
/// ASTContext - This class holds long-lived AST nodes (such as types and
/// decls) that can be referred to throughout the semantic analysis of a file.
class ASTContext {
std::vector<Type*> Types;
llvm::FoldingSet<ExtQuals> ExtQualNodes;
llvm::FoldingSet<ComplexType> ComplexTypes;
llvm::FoldingSet<PointerType> PointerTypes;
llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
std::vector<VariableArrayType*> VariableArrayTypes;
llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
llvm::FoldingSet<VectorType> VectorTypes;
llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
llvm::FoldingSet<TypenameType> TypenameTypes;
llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
/// \brief The set of nested name specifiers.
///
/// This set is managed by the NestedNameSpecifier class.
llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
NestedNameSpecifier *GlobalNestedNameSpecifier;
friend class NestedNameSpecifier;
/// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
/// This is lazily created. This is intentionally not serialized.
llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
/// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
/// \brief Mapping from ObjCContainers to their ObjCImplementations.
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
/// BuiltinVaListType - built-in va list type.
/// This is initially null and set by Sema::LazilyCreateBuiltin when
/// a builtin that takes a valist is encountered.
QualType BuiltinVaListType;
/// ObjCIdType - a pseudo built-in typedef type (set by Sema).
QualType ObjCIdTypedefType;
/// ObjCSelType - another pseudo built-in typedef type (set by Sema).
QualType ObjCSelTypedefType;
/// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
QualType ObjCProtoType;
const RecordType *ProtoStructType;
/// ObjCClassType - another pseudo built-in typedef type (set by Sema).
QualType ObjCClassTypedefType;
QualType ObjCConstantStringType;
RecordDecl *CFConstantStringTypeDecl;
RecordDecl *ObjCFastEnumerationStateTypeDecl;
/// \brief The type for the C FILE type.
TypeDecl *FILEDecl;
/// \brief The type for the C jmp_buf type.
TypeDecl *jmp_bufDecl;
/// \brief The type for the C sigjmp_buf type.
TypeDecl *sigjmp_bufDecl;
/// \brief Type for the Block descriptor for Blocks CodeGen.
RecordDecl *BlockDescriptorType;
/// \brief Type for the Block descriptor for Blocks CodeGen.
RecordDecl *BlockDescriptorExtendedType;
/// \brief Keeps track of all declaration attributes.
///
/// Since so few decls have attrs, we keep them in a hash map instead of
/// wasting space in the Decl class.
llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
/// \brief Keeps track of the static data member templates from which
/// static data members of class template specializations were instantiated.
///
/// This data structure stores the mapping from instantiations of static
/// data members to the static data member representations within the
/// class template from which they were instantiated along with the kind
/// of instantiation or specialization (a TemplateSpecializationKind - 1).
///
/// Given the following example:
///
/// \code
/// template<typename T>
/// struct X {
/// static T value;
/// };
///
/// template<typename T>
/// T X<T>::value = T(17);
///
/// int *x = &X<int>::value;
/// \endcode
///
/// This mapping will contain an entry that maps from the VarDecl for
/// X<int>::value to the corresponding VarDecl for X<T>::value (within the
/// class template X) and will be marked TSK_ImplicitInstantiation.
llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
InstantiatedFromStaticDataMember;
/// \brief Keeps track of the declaration from which a UsingDecl was
/// created during instantiation. The source declaration is always
/// a UsingDecl, an UnresolvedUsingValueDecl, or an
/// UnresolvedUsingTypenameDecl.
///
/// For example:
/// \code
/// template<typename T>
/// struct A {
/// void f();
/// };
///
/// template<typename T>
/// struct B : A<T> {
/// using A<T>::f;
/// };
///
/// template struct B<int>;
/// \endcode
///
/// This mapping will contain an entry that maps from the UsingDecl in
/// B<int> to the UnresolvedUsingDecl in B<T>.
llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
InstantiatedFromUsingShadowDecl;
llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
/// \brief Mapping that stores the methods overridden by a given C++
/// member function.
///
/// Since most C++ member functions aren't virtual and therefore
/// don't override anything, we store the overridden functions in
/// this map on the side rather than within the CXXMethodDecl structure.
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
TranslationUnitDecl *TUDecl;
/// SourceMgr - The associated SourceManager object.
SourceManager &SourceMgr;
/// LangOpts - The language options used to create the AST associated with
/// this ASTContext object.
LangOptions LangOpts;
/// \brief Whether we have already loaded comment source ranges from an
/// external source.
bool LoadedExternalComments;
/// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
bool FreeMemory;
llvm::MallocAllocator MallocAlloc;
llvm::BumpPtrAllocator BumpAlloc;
/// \brief Mapping from declarations to their comments, once we have
/// already looked up the comment associated with a given declaration.
llvm::DenseMap<const Decl *, std::string> DeclComments;
public:
const TargetInfo &Target;
IdentifierTable &Idents;
SelectorTable &Selectors;
Builtin::Context &BuiltinInfo;
DeclarationNameTable DeclarationNames;
llvm::OwningPtr<ExternalASTSource> ExternalSource;
clang::PrintingPolicy PrintingPolicy;
// Typedefs which may be provided defining the structure of Objective-C
// pseudo-builtins
QualType ObjCIdRedefinitionType;
QualType ObjCClassRedefinitionType;
QualType ObjCSelRedefinitionType;
/// \brief Source ranges for all of the comments in the source file,
/// sorted in order of appearance in the translation unit.
std::vector<SourceRange> Comments;
SourceManager& getSourceManager() { return SourceMgr; }
const SourceManager& getSourceManager() const { return SourceMgr; }
void *Allocate(unsigned Size, unsigned Align = 8) {
return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
BumpAlloc.Allocate(Size, Align);
}
void Deallocate(void *Ptr) {
if (FreeMemory)
MallocAlloc.Deallocate(Ptr);
}
const LangOptions& getLangOptions() const { return LangOpts; }
FullSourceLoc getFullLoc(SourceLocation Loc) const {
return FullSourceLoc(Loc,SourceMgr);
}
/// \brief Retrieve the attributes for the given declaration.
Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
/// \brief Erase the attributes corresponding to the given declaration.
void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
/// \brief If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
const VarDecl *Var);
/// \brief Note that the static data member \p Inst is an instantiation of
/// the static data member template \p Tmpl of a class template.
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
TemplateSpecializationKind TSK);
/// \brief If the given using decl is an instantiation of a
/// (possibly unresolved) using decl from a template instantiation,
/// return it.
NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
/// \brief Remember that the using decl \p Inst is an instantiation
/// of the using decl \p Pattern of a class template.
void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
UsingShadowDecl *Pattern);
UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
// Access to the set of methods overridden by the given C++ method.
typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl *Method) const;
overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl *Method) const;
/// \brief Note that the given C++ \p Method overrides the given \p
/// Overridden method.
void addOverriddenMethod(const CXXMethodDecl *Method,
const CXXMethodDecl *Overridden);
TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
const char *getCommentForDecl(const Decl *D);
// Builtin Types.
CanQualType VoidTy;
CanQualType BoolTy;
CanQualType CharTy;
CanQualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
CanQualType FloatTy, DoubleTy, LongDoubleTy;
CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
CanQualType VoidPtrTy, NullPtrTy;
CanQualType OverloadTy;
CanQualType DependentTy;
CanQualType UndeducedAutoTy;
CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
IdentifierTable &idents, SelectorTable &sels,
Builtin::Context &builtins,
bool FreeMemory = true, unsigned size_reserve=0);
~ASTContext();
/// \brief Attach an external AST source to the AST context.
///
/// The external AST source provides the ability to load parts of
/// the abstract syntax tree as needed from some external storage,
/// e.g., a precompiled header.
void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
/// \brief Retrieve a pointer to the external AST source associated
/// with this AST context, if any.
ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
void PrintStats() const;
const std::vector<Type*>& getTypes() const { return Types; }
//===--------------------------------------------------------------------===//
// Type Constructors
//===--------------------------------------------------------------------===//
private:
/// getExtQualType - Return a type with extended qualifiers.
QualType getExtQualType(const Type *Base, Qualifiers Quals);
public:
/// getAddSpaceQualType - Return the uniqued reference to the type for an
/// address space qualified type with the specified type and address space.
/// The resulting type has a union of the qualifiers from T and the address
/// space. If T already has an address space specifier, it is silently
/// replaced.
QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
/// getObjCGCQualType - Returns the uniqued reference to the type for an
/// objc gc qualified type. The retulting type has a union of the qualifiers
/// from T and the gc attribute.
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
/// getRestrictType - Returns the uniqued reference to the type for a
/// 'restrict' qualified type. The resulting type has a union of the
/// qualifiers from T and 'restrict'.
QualType getRestrictType(QualType T) {
return T.withFastQualifiers(Qualifiers::Restrict);
}
/// getVolatileType - Returns the uniqued reference to the type for a
/// 'volatile' qualified type. The resulting type has a union of the
/// qualifiers from T and 'volatile'.
QualType getVolatileType(QualType T);
/// getConstType - Returns the uniqued reference to the type for a
/// 'const' qualified type. The resulting type has a union of the
/// qualifiers from T and 'const'.
///
/// It can be reasonably expected that this will always be
/// equivalent to calling T.withConst().
QualType getConstType(QualType T) { return T.withConst(); }
/// getNoReturnType - Add or remove the noreturn attribute to the given type
/// which must be a FunctionType or a pointer to an allowable type or a
/// BlockPointer.
QualType getNoReturnType(QualType T, bool AddNoReturn = true);
/// getCallConvType - Adds the specified calling convention attribute to
/// the given type, which must be a FunctionType or a pointer to an
/// allowable type.
QualType getCallConvType(QualType T, CallingConv CallConv);
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType getComplexType(QualType T);
CanQualType getComplexType(CanQualType T) {
return CanQualType::CreateUnsafe(getComplexType((QualType) T));
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType getPointerType(QualType T);
CanQualType getPointerType(CanQualType T) {
return CanQualType::CreateUnsafe(getPointerType((QualType) T));
}
/// getBlockPointerType - Return the uniqued reference to the type for a block
/// of the specified type.
QualType getBlockPointerType(QualType T);
/// This gets the struct used to keep track of the descriptor for pointer to
/// blocks.
QualType getBlockDescriptorType();
// Set the type for a Block descriptor type.
void setBlockDescriptorType(QualType T);
/// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
QualType getRawBlockdescriptorType() {
if (BlockDescriptorType)
return getTagDeclType(BlockDescriptorType);
return QualType();
}
/// This gets the struct used to keep track of the extended descriptor for
/// pointer to blocks.
QualType getBlockDescriptorExtendedType();
// Set the type for a Block descriptor extended type.
void setBlockDescriptorExtendedType(QualType T);
/// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
/// built.
QualType getRawBlockdescriptorExtendedType() {
if (BlockDescriptorExtendedType)
return getTagDeclType(BlockDescriptorExtendedType);
return QualType();
}
/// This gets the struct used to keep track of pointer to blocks, complete
/// with captured variables.
QualType getBlockParmType(bool BlockHasCopyDispose,
llvm::SmallVector<const Expr *, 8> &BDRDs);
/// This builds the struct used for __block variables.
QualType BuildByRefType(const char *DeclName, QualType Ty);
/// Returns true iff we need copy/dispose helpers for the given type.
bool BlockRequiresCopying(QualType Ty);
/// getLValueReferenceType - Return the uniqued reference to the type for an
/// lvalue reference to the specified type.
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
/// getRValueReferenceType - Return the uniqued reference to the type for an
/// rvalue reference to the specified type.
QualType getRValueReferenceType(QualType T);
/// getMemberPointerType - Return the uniqued reference to the type for a
/// member pointer to the specified type in the specified class. The class
/// is a Type because it could be a dependent name.
QualType getMemberPointerType(QualType T, const Type *Cls);
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals,
SourceRange Brackets);
/// getDependentSizedArrayType - Returns a non-unique reference to
/// the type for a dependently-sized array of the specified element
/// type. FIXME: We will need these to be uniqued, or at least
/// comparable, at some point.
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals,
SourceRange Brackets);
/// getIncompleteArrayType - Returns a unique reference to the type for a
/// incomplete array of the specified element type.
QualType getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals);
/// getConstantArrayType - Return the unique reference to the type for a
/// constant array of the specified element type.
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals);
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType getVectorType(QualType VectorType, unsigned NumElts,
bool AltiVec, bool IsPixel);
/// getExtVectorType - Return the unique reference to an extended vector type
/// of the specified element type and size. VectorType must be a built-in
/// type.
QualType getExtVectorType(QualType VectorType, unsigned NumElts);
/// getDependentSizedExtVectorType - Returns a non-unique reference to
/// the type for a dependently-sized vector of the specified element
/// type. FIXME: We will need these to be uniqued, or at least
/// comparable, at some point.
QualType getDependentSizedExtVectorType(QualType VectorType,
Expr *SizeExpr,
SourceLocation AttrLoc);
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
///
QualType getFunctionNoProtoType(QualType ResultTy, bool NoReturn = false,
CallingConv CallConv = CC_Default);
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
unsigned NumArgs, bool isVariadic,
unsigned TypeQuals, bool hasExceptionSpec,
bool hasAnyExceptionSpec,
unsigned NumExs, const QualType *ExArray,
bool NoReturn,
CallingConv CallConv);
/// getTypeDeclType - Return the unique reference to the type for
/// the specified type declaration.
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl* PrevDecl=0);
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType getTypedefType(const TypedefDecl *Decl);
QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
QualType Replacement);
QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
bool ParameterPack,
IdentifierInfo *Name = 0);
QualType getTemplateSpecializationType(TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
QualType Canon = QualType());
QualType getTemplateSpecializationType(TemplateName T,
const TemplateArgumentListInfo &Args,
QualType Canon = QualType());
QualType getQualifiedNameType(NestedNameSpecifier *NNS,
QualType NamedType);
QualType getTypenameType(NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
QualType Canon = QualType());
QualType getTypenameType(NestedNameSpecifier *NNS,
const TemplateSpecializationType *TemplateId,
QualType Canon = QualType());
QualType getElaboratedType(QualType UnderlyingType,
ElaboratedType::TagKind Tag);
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
ObjCProtocolDecl **Protocols = 0,
unsigned NumProtocols = 0);
/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
/// given interface decl and the conforming protocol list.
QualType getObjCObjectPointerType(QualType OIT,
ObjCProtocolDecl **ProtocolList = 0,
unsigned NumProtocols = 0,
unsigned Quals = 0);
/// getTypeOfType - GCC extension.
QualType getTypeOfExprType(Expr *e);
QualType getTypeOfType(QualType t);
/// getDecltypeType - C++0x decltype.
QualType getDecltypeType(Expr *e);
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType getTagDeclType(const TagDecl *Decl);
/// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
/// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
CanQualType getSizeType() const;
/// getWCharType - In C++, this returns the unique wchar_t type. In C99, this
/// returns a type compatible with the type defined in <stddef.h> as defined
/// by the target.
QualType getWCharType() const { return WCharTy; }
/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType getSignedWCharType() const;
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType getUnsignedWCharType() const;
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType getPointerDiffType() const;
// getCFConstantStringType - Return the C structure type used to represent
// constant CFStrings.
QualType getCFConstantStringType();
/// Get the structure type used to representation CFStrings, or NULL
/// if it hasn't yet been built.
QualType getRawCFConstantStringType() {
if (CFConstantStringTypeDecl)
return getTagDeclType(CFConstantStringTypeDecl);
return QualType();
}
void setCFConstantStringType(QualType T);
// This setter/getter represents the ObjC type for an NSConstantString.
void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
QualType getObjCConstantStringInterface() const {
return ObjCConstantStringType;
}
//// This gets the struct used to keep track of fast enumerations.
QualType getObjCFastEnumerationStateType();
/// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
/// been built.
QualType getRawObjCFastEnumerationStateType() {
if (ObjCFastEnumerationStateTypeDecl)
return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
return QualType();
}
void setObjCFastEnumerationStateType(QualType T);
/// \brief Set the type for the C FILE type.
void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
/// \brief Retrieve the C FILE type.
QualType getFILEType() {
if (FILEDecl)
return getTypeDeclType(FILEDecl);
return QualType();
}
/// \brief Set the type for the C jmp_buf type.
void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
this->jmp_bufDecl = jmp_bufDecl;
}
/// \brief Retrieve the C jmp_buf type.
QualType getjmp_bufType() {
if (jmp_bufDecl)
return getTypeDeclType(jmp_bufDecl);
return QualType();
}
/// \brief Set the type for the C sigjmp_buf type.
void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
this->sigjmp_bufDecl = sigjmp_bufDecl;
}
/// \brief Retrieve the C sigjmp_buf type.
QualType getsigjmp_bufType() {
if (sigjmp_bufDecl)
return getTypeDeclType(sigjmp_bufDecl);
return QualType();
}
/// getObjCEncodingForType - Emit the ObjC type encoding for the
/// given type into \arg S. If \arg NameFields is specified then
/// record field names are also encoded.
void getObjCEncodingForType(QualType t, std::string &S,
const FieldDecl *Field=0);
void getLegacyIntegralTypeEncoding(QualType &t) const;
// Put the string version of type qualifiers into S.
void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string &S) const;
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
/// getObjCEncodingForBlockDecl - Return the encoded type for this block
/// declaration.
void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
/// getObjCEncodingForPropertyDecl - Return the encoded type for
/// this method declaration. If non-NULL, Container must be either
/// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
/// only be NULL when getting encodings for protocol properties.
void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
const Decl *Container,
std::string &S);
bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
ObjCProtocolDecl *rProto);
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose in characters.
CharUnits getObjCEncodingTypeSize(QualType t);
/// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
/// Sema. id is always a (typedef for a) pointer type, a pointer to a struct.
QualType getObjCIdType() const { return ObjCIdTypedefType; }
void setObjCIdType(QualType T);
void setObjCSelType(QualType T);
QualType getObjCSelType() const { return ObjCSelTypedefType; }
void setObjCProtoType(QualType QT);
QualType getObjCProtoType() const { return ObjCProtoType; }
/// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
/// Sema. 'Class' is always a (typedef for a) pointer type, a pointer to a
/// struct.
QualType getObjCClassType() const { return ObjCClassTypedefType; }
void setObjCClassType(QualType T);
void setBuiltinVaListType(QualType T);
QualType getBuiltinVaListType() const { return BuiltinVaListType; }
/// getCVRQualifiedType - Returns a type with additional const,
/// volatile, or restrict qualifiers.
QualType getCVRQualifiedType(QualType T, unsigned CVR) {
return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
}
/// getQualifiedType - Returns a type with additional qualifiers.
QualType getQualifiedType(QualType T, Qualifiers Qs) {
if (!Qs.hasNonFastQualifiers())
return T.withFastQualifiers(Qs.getFastQualifiers());
QualifierCollector Qc(Qs);
const Type *Ptr = Qc.strip(T);
return getExtQualType(Ptr, Qc);
}
/// getQualifiedType - Returns a type with additional qualifiers.
QualType getQualifiedType(const Type *T, Qualifiers Qs) {
if (!Qs.hasNonFastQualifiers())
return QualType(T, Qs.getFastQualifiers());
return getExtQualType(T, Qs);
}
DeclarationName getNameForTemplate(TemplateName Name);
TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
UnresolvedSetIterator End);
TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
bool TemplateKeyword,
TemplateDecl *Template);
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
const IdentifierInfo *Name);
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
OverloadedOperatorKind Operator);
enum GetBuiltinTypeError {
GE_None, //< No error
GE_Missing_stdio, //< Missing a type from <stdio.h>
GE_Missing_setjmp //< Missing a type from <setjmp.h>
};
/// GetBuiltinType - Return the type for the specified builtin.
QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
private:
CanQualType getFromTargetType(unsigned Type) const;
//===--------------------------------------------------------------------===//
// Type Predicates.
//===--------------------------------------------------------------------===//
public:
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
/// garbage collection attribute.
///
Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
/// isObjCNSObjectType - Return true if this is an NSObject object with
/// its NSObject attribute set.
bool isObjCNSObjectType(QualType Ty) const;
//===--------------------------------------------------------------------===//
// Type Sizing and Analysis
//===--------------------------------------------------------------------===//
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
/// getTypeInfo - Get the size and alignment of the specified complete type in
/// bits.
std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
return getTypeInfo(T.getTypePtr());
}
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
uint64_t getTypeSize(QualType T) {
return getTypeInfo(T).first;
}
uint64_t getTypeSize(const Type *T) {
return getTypeInfo(T).first;
}
/// getCharWidth - Return the size of the character type, in bits
uint64_t getCharWidth() {
return getTypeSize(CharTy);
}
/// getTypeSizeInChars - Return the size of the specified type, in characters.
/// This method does not work on incomplete types.
CharUnits getTypeSizeInChars(QualType T);
CharUnits getTypeSizeInChars(const Type *T);
/// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
/// This method does not work on incomplete types.
unsigned getTypeAlign(QualType T) {
return getTypeInfo(T).second;
}
unsigned getTypeAlign(const Type *T) {
return getTypeInfo(T).second;
}
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
/// characters. This method does not work on incomplete types.
CharUnits getTypeAlignInChars(QualType T);
CharUnits getTypeAlignInChars(const Type *T);
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
/// type for the current target in bits. This can be different than the ABI
/// alignment in cases where it is beneficial for performance to overalign
/// a data type.
unsigned getPreferredTypeAlign(const Type *T);
/// getDeclAlign - Return a conservative estimate of the alignment of
/// the specified decl. Note that bitfields do not have a valid alignment, so
/// this method will assert on them.
/// If @p RefAsPointee, references are treated like their underlying type
/// (for alignof), else they're treated like pointers (for CodeGen).
CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
/// getASTObjCInterfaceLayout - Get or compute information about the
/// layout of the specified Objective-C interface.
const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
/// getASTObjCImplementationLayout - Get or compute information about
/// the layout of the specified Objective-C implementation. This may
/// differ from the interface if synthesized ivars are present.
const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
/// getKeyFunction - Get the key function for the given record decl.
/// The key function is, according to the Itanium C++ ABI section 5.2.3:
///
/// ...the first non-pure virtual function that is not inline at the point
/// of class definition.
const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
void CollectObjCIvars(const ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<FieldDecl*> &Fields);
void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
void CollectInheritedProtocols(const Decl *CDecl,
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
//===--------------------------------------------------------------------===//
// Type Operators
//===--------------------------------------------------------------------===//
/// getCanonicalType - Return the canonical (structural) type corresponding to
/// the specified potentially non-canonical type. The non-canonical version
/// of a type may have many "decorated" versions of types. Decorators can
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
/// to be free of any of these, allowing two canonical types to be compared
/// for exact equality with a simple pointer comparison.
CanQualType getCanonicalType(QualType T);
const Type *getCanonicalType(const Type *T) {
return T->getCanonicalTypeInternal().getTypePtr();
}
/// getCanonicalParamType - Return the canonical parameter type
/// corresponding to the specific potentially non-canonical one.
/// Qualifiers are stripped off, functions are turned into function
/// pointers, and arrays decay one level into pointers.
CanQualType getCanonicalParamType(QualType T);
/// \brief Determine whether the given types are equivalent.
bool hasSameType(QualType T1, QualType T2) {
return getCanonicalType(T1) == getCanonicalType(T2);
}
/// \brief Returns this type as a completely-unqualified array type,
/// capturing the qualifiers in Quals. This will remove the minimal amount of
/// sugaring from the types, similar to the behavior of
/// QualType::getUnqualifiedType().
///
/// \param T is the qualified type, which may be an ArrayType
///
/// \param Quals will receive the full set of qualifiers that were
/// applied to the array.
///
/// \returns if this is an array type, the completely unqualified array type
/// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
/// \brief Determine whether the given types are equivalent after
/// cvr-qualifiers have been removed.
bool hasSameUnqualifiedType(QualType T1, QualType T2) {
CanQualType CT1 = getCanonicalType(T1);
CanQualType CT2 = getCanonicalType(T2);
Qualifiers Quals;
QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
return UnqualT1 == UnqualT2;
}
/// \brief Retrieves the "canonical" declaration of
/// \brief Retrieves the "canonical" nested name specifier for a
/// given nested name specifier.
///
/// The canonical nested name specifier is a nested name specifier
/// that uniquely identifies a type or namespace within the type
/// system. For example, given:
///
/// \code
/// namespace N {
/// struct S {
/// template<typename T> struct X { typename T* type; };
/// };
/// }
///
/// template<typename T> struct Y {
/// typename N::S::X<T>::type member;
/// };
/// \endcode
///
/// Here, the nested-name-specifier for N::S::X<T>:: will be
/// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
/// by declarations in the type system and the canonical type for
/// the template type parameter 'T' is template-param-0-0.
NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
/// \brief Retrieves the canonical representation of the given
/// calling convention.
CallingConv getCanonicalCallConv(CallingConv CC) {
if (CC == CC_C)
return CC_Default;
return CC;
}
/// \brief Determines whether two calling conventions name the same
/// calling convention.
bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
}
/// \brief Retrieves the "canonical" template name that refers to a
/// given template.
///
/// The canonical template name is the simplest expression that can
/// be used to refer to a given template. For most templates, this
/// expression is just the template declaration itself. For example,
/// the template std::vector can be referred to via a variety of
/// names---std::vector, ::std::vector, vector (if vector is in
/// scope), etc.---but all of these names map down to the same
/// TemplateDecl, which is used to form the canonical template name.
///
/// Dependent template names are more interesting. Here, the
/// template name could be something like T::template apply or
/// std::allocator<T>::template rebind, where the nested name
/// specifier itself is dependent. In this case, the canonical
/// template name uses the shortest form of the dependent
/// nested-name-specifier, which itself contains all canonical
/// types, values, and templates.
TemplateName getCanonicalTemplateName(TemplateName Name);
/// \brief Determine whether the given template names refer to the same
/// template.
bool hasSameTemplateName(TemplateName X, TemplateName Y);
/// \brief Retrieve the "canonical" template argument.
///
/// The canonical template argument is the simplest template argument
/// (which may be a type, value, expression, or declaration) that
/// expresses the value of the argument.
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
/// Type Query functions. If the type is an instance of the specified class,
/// return the Type pointer for the underlying maximally pretty type. This
/// is a member of ASTContext because this may need to do some amount of
/// canonicalization, e.g. to move type qualifiers into the element type.
const ArrayType *getAsArrayType(QualType T);
const ConstantArrayType *getAsConstantArrayType(QualType T) {
return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
}
const VariableArrayType *getAsVariableArrayType(QualType T) {
return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
}
const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
}
const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
}
/// getBaseElementType - Returns the innermost element type of an array type.
/// For example, will return "int" for int[m][n]
QualType getBaseElementType(const ArrayType *VAT);
/// getBaseElementType - Returns the innermost element type of a type
/// (which needn't actually be an array type).
QualType getBaseElementType(QualType QT);
/// getConstantArrayElementCount - Returns number of constant array elements.
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer. This operation is non-trivial when
/// handling typedefs etc. The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType getArrayDecayedType(QualType T);
/// getPromotedIntegerType - Returns the type that Promotable will
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
/// integer type.
QualType getPromotedIntegerType(QualType PromotableType);
/// \brief Whether this is a promotable bitfield reference according
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
///
/// \returns the type this bit-field will promote to, or NULL if no
/// promotion occurs.
QualType isPromotableBitField(Expr *E);
/// getIntegerTypeOrder - Returns the highest ranked integer type:
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int getIntegerTypeOrder(QualType LHS, QualType RHS);
/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int getFloatingTypeOrder(QualType LHS, QualType RHS);
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
QualType typeDomain) const;
private:
// Helper for integer ordering
unsigned getIntegerRank(Type* T);
public:
//===--------------------------------------------------------------------===//
// Type Compatibility Predicates
//===--------------------------------------------------------------------===//
/// Compatibility predicates used to check assignment expressions.
bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
bool isObjCIdType(QualType T) const {
return T == ObjCIdTypedefType;
}
bool isObjCClassType(QualType T) const {
return T == ObjCClassTypedefType;
}
bool isObjCSelType(QualType T) const {
return T == ObjCSelTypedefType;
}
bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
bool ForCompare);
// Check the safety of assignment from LHS to RHS
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
const ObjCInterfaceType *RHS);
bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
// Functions for calculating composite types
QualType mergeTypes(QualType, QualType);
QualType mergeFunctionTypes(QualType, QualType);
/// UsualArithmeticConversionsType - handles the various conversions
/// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
/// and returns the result type of that conversion.
QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
//===--------------------------------------------------------------------===//
// Integer Predicates
//===--------------------------------------------------------------------===//
// The width of an integer, as defined in C99 6.2.6.2. This is the number
// of bits in an integer type excluding any padding bits.
unsigned getIntWidth(QualType T);
// Per C99 6.2.5p6, for every signed integer type, there is a corresponding
// unsigned integer type. This method takes a signed type, and returns the
// corresponding unsigned integer type.
QualType getCorrespondingUnsignedType(QualType T);
//===--------------------------------------------------------------------===//
// Type Iterators.
//===--------------------------------------------------------------------===//
typedef std::vector<Type*>::iterator type_iterator;
typedef std::vector<Type*>::const_iterator const_type_iterator;
type_iterator types_begin() { return Types.begin(); }
type_iterator types_end() { return Types.end(); }
const_type_iterator types_begin() const { return Types.begin(); }
const_type_iterator types_end() const { return Types.end(); }
//===--------------------------------------------------------------------===//
// Integer Values
//===--------------------------------------------------------------------===//
/// MakeIntValue - Make an APSInt of the appropriate width and
/// signedness for the given \arg Value and integer \arg Type.
llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
Res = Value;
return Res;
}
/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
/// \brief Set the implementation of ObjCInterfaceDecl.
void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
ObjCImplementationDecl *ImplD);
/// \brief Set the implementation of ObjCCategoryDecl.
void setObjCImplementation(ObjCCategoryDecl *CatD,
ObjCCategoryImplDecl *ImplD);
/// \brief Allocate an uninitialized TypeSourceInfo.
///
/// The caller should initialize the memory held by TypeSourceInfo using
/// the TypeLoc wrappers.
///
/// \param T the type that will be the basis for type source info. This type
/// should refer to how the declarator was written in source code, not to
/// what type semantic analysis resolved the declarator to.
///
/// \param Size the size of the type info to create, or 0 if the size
/// should be calculated based on the type.
TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
/// \brief Allocate a TypeSourceInfo where all locations have been
/// initialized to a given location, which defaults to the empty
/// location.
TypeSourceInfo *
getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
private:
ASTContext(const ASTContext&); // DO NOT IMPLEMENT
void operator=(const ASTContext&); // DO NOT IMPLEMENT
void InitBuiltinTypes();
void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
// Return the ObjC type encoding for a given type.
void getObjCEncodingForTypeImpl(QualType t, std::string &S,
bool ExpandPointedToStructures,
bool ExpandStructures,
const FieldDecl *Field,
bool OutermostType = false,
bool EncodingProperty = false);
const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl);
private:
// FIXME: This currently contains the set of StoredDeclMaps used
// by DeclContext objects. This probably should not be in ASTContext,
// but we include it here so that ASTContext can quickly deallocate them.
std::vector<void*> SDMs;
friend class DeclContext;
void *CreateStoredDeclsMap();
void ReleaseDeclContextMaps();
};
/// @brief Utility function for constructing a nullary selector.
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(0, &II);
}
/// @brief Utility function for constructing an unary selector.
static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(1, &II);
}
} // end namespace clang
// operator new and delete aren't allowed inside namespaces.
// The throw specifications are mandated by the standard.
/// @brief Placement new for using the ASTContext's allocator.
///
/// This placement form of operator new uses the ASTContext's allocator for
/// obtaining memory. It is a non-throwing new, which means that it returns
/// null on error. (If that is what the allocator does. The current does, so if
/// this ever changes, this operator will have to be changed, too.)
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (16)
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
/// // Specific alignment
/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
/// @endcode
/// Please note that you cannot use delete on the pointer; it must be
/// deallocated using an explicit destructor call followed by
/// @c Context.Deallocate(Ptr).
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
/// allocator supports it).
/// @return The allocated memory. Could be NULL.
inline void *operator new(size_t Bytes, clang::ASTContext &C,
size_t Alignment) throw () {
return C.Allocate(Bytes, Alignment);
}
/// @brief Placement delete companion to the new above.
///
/// This operator is just a companion to the new above. There is no way of
/// invoking it directly; see the new operator for more details. This operator
/// is called implicitly by the compiler if a placement new expression using
/// the ASTContext throws in the object constructor.
inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
throw () {
C.Deallocate(Ptr);
}
/// This placement form of operator new[] uses the ASTContext's allocator for
/// obtaining memory. It is a non-throwing new[], which means that it returns
/// null on error.
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (16)
/// char *data = new (Context) char[10];
/// // Specific alignment
/// char *data = new (Context, 8) char[10];
/// @endcode
/// Please note that you cannot use delete on the pointer; it must be
/// deallocated using an explicit destructor call followed by
/// @c Context.Deallocate(Ptr).
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
/// allocator supports it).
/// @return The allocated memory. Could be NULL.
inline void *operator new[](size_t Bytes, clang::ASTContext& C,
size_t Alignment = 16) throw () {
return C.Allocate(Bytes, Alignment);
}
/// @brief Placement delete[] companion to the new[] above.
///
/// This operator is just a companion to the new[] above. There is no way of
/// invoking it directly; see the new[] operator for more details. This operator
/// is called implicitly by the compiler if a placement new[] expression using
/// the ASTContext throws in the object constructor.
inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
throw () {
C.Deallocate(Ptr);
}
#endif