blob: f9ec6afc28d916105fd8dacc08e6db5d34f73e9e [file] [log] [blame]
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Designator.h"
#include "clang/Parse/Scope.h"
using namespace clang;
/// \brief Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
///
/// This routine diagnoses various problems with referencing
/// declarations that can occur when using a declaration. For example,
/// it might warn if a deprecated or unavailable declaration is being
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
// See if the decl is deprecated.
if (D->getAttr<DeprecatedAttr>()) {
// Implementing deprecated stuff requires referencing deprecated
// stuff. Don't warn if we are implementing a deprecated
// construct.
bool isSilenced = false;
if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
// If this reference happens *in* a deprecated function or method, don't
// warn.
isSilenced = ND->getAttr<DeprecatedAttr>();
// If this is an Objective-C method implementation, check to see if the
// method was deprecated on the declaration, not the definition.
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
// The semantic decl context of a ObjCMethodDecl is the
// ObjCImplementationDecl.
if (ObjCImplementationDecl *Impl
= dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
MD->isInstanceMethod());
isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
}
}
}
if (!isSilenced)
Diag(Loc, diag::warn_deprecated) << D->getDeclName();
}
// See if this is a deleted function.
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isDeleted()) {
Diag(Loc, diag::err_deleted_function_use);
Diag(D->getLocation(), diag::note_unavailable_here) << true;
return true;
}
}
// See if the decl is unavailable
if (D->getAttr<UnavailableAttr>()) {
Diag(Loc, diag::warn_unavailable) << D->getDeclName();
Diag(D->getLocation(), diag::note_unavailable_here) << 0;
}
return false;
}
/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
/// (and other functions in future), which have been declared with sentinel
/// attribute. It warns if call does not have the sentinel argument.
///
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
Expr **Args, unsigned NumArgs)
{
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
if (!attr)
return;
int sentinelPos = attr->getSentinel();
int nullPos = attr->getNullPos();
// FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
// base class. Then we won't be needing two versions of the same code.
unsigned int i = 0;
bool warnNotEnoughArgs = false;
int isMethod = 0;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
// skip over named parameters.
ObjCMethodDecl::param_iterator P, E = MD->param_end();
for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (P != E || i >= NumArgs);
isMethod = 1;
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// skip over named parameters.
ObjCMethodDecl::param_iterator P, E = FD->param_end();
for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (P != E || i >= NumArgs);
} else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
// block or function pointer call.
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType()
? Ty->getAs<PointerType>()->getPointeeType()->getAsFunctionType()
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned k;
for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
}
if (Ty->isBlockPointerType())
isMethod = 2;
} else
return;
} else
return;
if (warnNotEnoughArgs) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
return;
}
int sentinel = i;
while (sentinelPos > 0 && i < NumArgs-1) {
--sentinelPos;
++i;
}
if (sentinelPos > 0) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
return;
}
while (i < NumArgs-1) {
++i;
++sentinel;
}
Expr *sentinelExpr = Args[sentinel];
if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
!sentinelExpr->isNullPointerConstant(Context))) {
Diag(Loc, diag::warn_missing_sentinel) << isMethod;
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
}
return;
}
SourceRange Sema::getExprRange(ExprTy *E) const {
Expr *Ex = (Expr *)E;
return Ex? Ex->getSourceRange() : SourceRange();
}
//===----------------------------------------------------------------------===//
// Standard Promotions and Conversions
//===----------------------------------------------------------------------===//
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
if (Ty->isFunctionType())
ImpCastExprToType(E, Context.getPointerType(Ty));
else if (Ty->isArrayType()) {
// In C90 mode, arrays only promote to pointers if the array expression is
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
// type 'array of type' is converted to an expression that has type 'pointer
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
// that has type 'array of type' ...". The relevant change is "an lvalue"
// (C90) to "an expression" (C99).
//
// C++ 4.2p1:
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
// T" can be converted to an rvalue of type "pointer to T".
//
if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
E->isLvalue(Context) == Expr::LV_Valid)
ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
CastExpr::CK_ArrayToPointerDecay);
}
}
/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes surpressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
// C99 6.3.1.1p2:
//
// The following may be used in an expression wherever an int or
// unsigned int may be used:
// - an object or expression with an integer type whose integer
// conversion rank is less than or equal to the rank of int
// and unsigned int.
// - A bit-field of type _Bool, int, signed int, or unsigned int.
//
// If an int can represent all values of the original type, the
// value is converted to an int; otherwise, it is converted to an
// unsigned int. These are called the integer promotions. All
// other types are unchanged by the integer promotions.
QualType PTy = Context.isPromotableBitField(Expr);
if (!PTy.isNull()) {
ImpCastExprToType(Expr, PTy);
return Expr;
}
if (Ty->isPromotableIntegerType()) {
QualType PT = Context.getPromotedIntegerType(Ty);
ImpCastExprToType(Expr, PT);
return Expr;
}
DefaultFunctionArrayConversion(Expr);
return Expr;
}
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float are promoted to
/// double. All other argument types are converted by UsualUnaryConversions().
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
// If this is a 'float' (CVR qualified or typedef) promote to double.
if (const BuiltinType *BT = Ty->getAsBuiltinType())
if (BT->getKind() == BuiltinType::Float)
return ImpCastExprToType(Expr, Context.DoubleTy);
UsualUnaryConversions(Expr);
}
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
/// will warn if the resulting type is not a POD type, and rejects ObjC
/// interfaces passed by value. This returns true if the argument type is
/// completely illegal.
bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
DefaultArgumentPromotion(Expr);
if (Expr->getType()->isObjCInterfaceType()) {
Diag(Expr->getLocStart(),
diag::err_cannot_pass_objc_interface_to_vararg)
<< Expr->getType() << CT;
return true;
}
if (!Expr->getType()->isPODType())
Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
<< Expr->getType() << CT;
return false;
}
/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
/// FIXME: verify the conversion rules for "complex int" are consistent with
/// GCC.
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
bool isCompAssign) {
if (!isCompAssign)
UsualUnaryConversions(lhsExpr);
UsualUnaryConversions(rhsExpr);
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhs =
Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
QualType rhs =
Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
// Perform bitfield promotions.
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
if (!LHSBitfieldPromoteTy.isNull())
lhs = LHSBitfieldPromoteTy;
QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
if (!RHSBitfieldPromoteTy.isNull())
rhs = RHSBitfieldPromoteTy;
QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
if (!isCompAssign)
ImpCastExprToType(lhsExpr, destType);
ImpCastExprToType(rhsExpr, destType);
return destType;
}
//===----------------------------------------------------------------------===//
// Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens. However, the common case is that StringToks points to one
/// string.
///
Action::OwningExprResult
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
assert(NumStringToks && "Must have at least one string!");
StringLiteralParser Literal(StringToks, NumStringToks, PP);
if (Literal.hadError)
return ExprError();
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
for (unsigned i = 0; i != NumStringToks; ++i)
StringTokLocs.push_back(StringToks[i].getLocation());
QualType StrTy = Context.CharTy;
if (Literal.AnyWide) StrTy = Context.getWCharType();
if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOptions().CPlusPlus)
StrTy.addConst();
// Get an array type for the string, according to C99 6.4.5. This includes
// the nul terminator character as well as the string length for pascal
// strings.
StrTy = Context.getConstantArrayType(StrTy,
llvm::APInt(32, Literal.GetNumStringChars()+1),
ArrayType::Normal, 0);
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
return Owned(StringLiteral::Create(Context, Literal.GetString(),
Literal.GetStringLength(),
Literal.AnyWide, StrTy,
&StringTokLocs[0],
StringTokLocs.size()));
}
/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
/// variables defined outside the block) or false if this is not needed (e.g.
/// for values inside the block or for globals).
///
/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
/// up-to-date.
///
static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
ValueDecl *VD) {
// If the value is defined inside the block, we couldn't snapshot it even if
// we wanted to.
if (CurBlock->TheDecl == VD->getDeclContext())
return false;
// If this is an enum constant or function, it is constant, don't snapshot.
if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
return false;
// If this is a reference to an extern, static, or global variable, no need to
// snapshot it.
// FIXME: What about 'const' variables in C++?
if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
if (!Var->hasLocalStorage())
return false;
// Blocks that have these can't be constant.
CurBlock->hasBlockDeclRefExprs = true;
// If we have nested blocks, the decl may be declared in an outer block (in
// which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
// be defined outside all of the current blocks (in which case the blocks do
// all get the bit). Walk the nesting chain.
for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
NextBlock = NextBlock->PrevBlockInfo) {
// If we found the defining block for the variable, don't mark the block as
// having a reference outside it.
if (NextBlock->TheDecl == VD->getDeclContext())
break;
// Otherwise, the DeclRef from the inner block causes the outer one to need
// a snapshot as well.
NextBlock->hasBlockDeclRefExprs = true;
}
return true;
}
/// ActOnIdentifierExpr - The parser read an identifier in expression context,
/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
/// identifier is used in a function call context.
/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
/// class or namespace that the identifier must be a member of.
Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
IdentifierInfo &II,
bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand) {
return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
isAddressOfOperand);
}
/// BuildDeclRefExpr - Build either a DeclRefExpr or a
/// QualifiedDeclRefExpr based on whether or not SS is a
/// nested-name-specifier.
Sema::OwningExprResult
Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
bool TypeDependent, bool ValueDependent,
const CXXScopeSpec *SS) {
if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
Diag(Loc,
diag::err_auto_variable_cannot_appear_in_own_initializer)
<< D->getDeclName();
return ExprError();
}
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
<< D->getIdentifier() << FD->getDeclName();
Diag(D->getLocation(), diag::note_local_variable_declared_here)
<< D->getIdentifier();
return ExprError();
}
}
}
}
MarkDeclarationReferenced(Loc, D);
Expr *E;
if (SS && !SS->isEmpty()) {
E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
ValueDependent, SS->getRange(),
static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
} else
E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
return Owned(E);
}
/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
/// variable corresponding to the anonymous union or struct whose type
/// is Record.
static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
RecordDecl *Record) {
assert(Record->isAnonymousStructOrUnion() &&
"Record must be an anonymous struct or union!");
// FIXME: Once Decls are directly linked together, this will be an O(1)
// operation rather than a slow walk through DeclContext's vector (which
// itself will be eliminated). DeclGroups might make this even better.
DeclContext *Ctx = Record->getDeclContext();
for (DeclContext::decl_iterator D = Ctx->decls_begin(),
DEnd = Ctx->decls_end();
D != DEnd; ++D) {
if (*D == Record) {
// The object for the anonymous struct/union directly
// follows its type in the list of declarations.
++D;
assert(D != DEnd && "Missing object for anonymous record");
assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
return *D;
}
}
assert(false && "Missing object for anonymous record");
return 0;
}
/// \brief Given a field that represents a member of an anonymous
/// struct/union, build the path from that field's context to the
/// actual member.
///
/// Construct the sequence of field member references we'll have to
/// perform to get to the field in the anonymous union/struct. The
/// list of members is built from the field outward, so traverse it
/// backwards to go from an object in the current context to the field
/// we found.
///
/// \returns The variable from which the field access should begin,
/// for an anonymous struct/union that is not a member of another
/// class. Otherwise, returns NULL.
VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
llvm::SmallVectorImpl<FieldDecl *> &Path) {
assert(Field->getDeclContext()->isRecord() &&
cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
&& "Field must be stored inside an anonymous struct or union");
Path.push_back(Field);
VarDecl *BaseObject = 0;
DeclContext *Ctx = Field->getDeclContext();
do {
RecordDecl *Record = cast<RecordDecl>(Ctx);
Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
Path.push_back(AnonField);
else {
BaseObject = cast<VarDecl>(AnonObject);
break;
}
Ctx = Ctx->getParent();
} while (Ctx->isRecord() &&
cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
return BaseObject;
}
Sema::OwningExprResult
Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
FieldDecl *Field,
Expr *BaseObjectExpr,
SourceLocation OpLoc) {
llvm::SmallVector<FieldDecl *, 4> AnonFields;
VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
AnonFields);
// Build the expression that refers to the base object, from
// which we will build a sequence of member references to each
// of the anonymous union objects and, eventually, the field we
// found via name lookup.
bool BaseObjectIsPointer = false;
unsigned ExtraQuals = 0;
if (BaseObject) {
// BaseObject is an anonymous struct/union variable (and is,
// therefore, not part of another non-anonymous record).
if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
MarkDeclarationReferenced(Loc, BaseObject);
BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
SourceLocation());
ExtraQuals
= Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
} else if (BaseObjectExpr) {
// The caller provided the base object expression. Determine
// whether its a pointer and whether it adds any qualifiers to the
// anonymous struct/union fields we're looking into.
QualType ObjectType = BaseObjectExpr->getType();
if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
BaseObjectIsPointer = true;
ObjectType = ObjectPtr->getPointeeType();
}
ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
} else {
// We've found a member of an anonymous struct/union that is
// inside a non-anonymous struct/union, so in a well-formed
// program our base object expression is "this".
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (!MD->isStatic()) {
QualType AnonFieldType
= Context.getTagDeclType(
cast<RecordDecl>(AnonFields.back()->getDeclContext()));
QualType ThisType = Context.getTagDeclType(MD->getParent());
if ((Context.getCanonicalType(AnonFieldType)
== Context.getCanonicalType(ThisType)) ||
IsDerivedFrom(ThisType, AnonFieldType)) {
// Our base object expression is "this".
BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
MD->getThisType(Context));
BaseObjectIsPointer = true;
}
} else {
return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
<< Field->getDeclName());
}
ExtraQuals = MD->getTypeQualifiers();
}
if (!BaseObjectExpr)
return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
<< Field->getDeclName());
}
// Build the implicit member references to the field of the
// anonymous struct/union.
Expr *Result = BaseObjectExpr;
unsigned BaseAddrSpace = BaseObjectExpr->getType().getAddressSpace();
for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
FI != FIEnd; ++FI) {
QualType MemberType = (*FI)->getType();
if (!(*FI)->isMutable()) {
unsigned combinedQualifiers
= MemberType.getCVRQualifiers() | ExtraQuals;
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
if (BaseAddrSpace != MemberType.getAddressSpace())
MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
MarkDeclarationReferenced(Loc, *FI);
Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
OpLoc, MemberType);
BaseObjectIsPointer = false;
ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
}
return Owned(Result);
}
/// ActOnDeclarationNameExpr - The parser has read some kind of name
/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
/// performs lookup on that name and returns an expression that refers
/// to that name. This routine isn't directly called from the parser,
/// because the parser doesn't know about DeclarationName. Rather,
/// this routine is called by ActOnIdentifierExpr,
/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
/// which form the DeclarationName from the corresponding syntactic
/// forms.
///
/// HasTrailingLParen indicates whether this identifier is used in a
/// function call context. LookupCtx is only used for a C++
/// qualified-id (foo::bar) to indicate the class or namespace that
/// the identifier must be a member of.
///
/// isAddressOfOperand means that this expression is the direct operand
/// of an address-of operator. This matters because this is the only
/// situation where a qualified name referencing a non-static member may
/// appear outside a member function of this class.
Sema::OwningExprResult
Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
DeclarationName Name, bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand) {
// Could be enum-constant, value decl, instance variable, etc.
if (SS && SS->isInvalid())
return ExprError();
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// -- a nested-name-specifier that contains a class-name that
// names a dependent type.
// FIXME: Member of the current instantiation.
if (SS && isDependentScopeSpecifier(*SS)) {
return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
Loc, SS->getRange(),
static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
isAddressOfOperand));
}
LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
false, true, Loc);
if (Lookup.isAmbiguous()) {
DiagnoseAmbiguousLookup(Lookup, Name, Loc,
SS && SS->isSet() ? SS->getRange()
: SourceRange());
return ExprError();
}
NamedDecl *D = Lookup.getAsDecl();
// If this reference is in an Objective-C method, then ivar lookup happens as
// well.
IdentifierInfo *II = Name.getAsIdentifierInfo();
if (II && getCurMethodDecl()) {
// There are two cases to handle here. 1) scoped lookup could have failed,
// in which case we should look for an ivar. 2) scoped lookup could have
// found a decl, but that decl is outside the current instance method (i.e.
// a global variable). In these two cases, we do a lookup for an ivar with
// this name, if the lookup sucedes, we replace it our current decl.
if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
// Check if referencing a field with __attribute__((deprecated)).
if (DiagnoseUseOfDecl(IV, Loc))
return ExprError();
// If we're referencing an invalid decl, just return this as a silent
// error node. The error diagnostic was already emitted on the decl.
if (IV->isInvalidDecl())
return ExprError();
bool IsClsMethod = getCurMethodDecl()->isClassMethod();
// If a class method attemps to use a free standing ivar, this is
// an error.
if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
<< IV->getDeclName());
// If a class method uses a global variable, even if an ivar with
// same name exists, use the global.
if (!IsClsMethod) {
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
ClassDeclared != IFace)
Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
// FIXME: This should use a new expr for a direct reference, don't
// turn this into Self->ivar, just return a BareIVarExpr or something.
IdentifierInfo &II = Context.Idents.get("self");
OwningExprResult SelfExpr = ActOnIdentifierExpr(S, SourceLocation(),
II, false);
MarkDeclarationReferenced(Loc, IV);
return Owned(new (Context)
ObjCIvarRefExpr(IV, IV->getType(), Loc,
SelfExpr.takeAs<Expr>(), true, true));
}
}
} else if (getCurMethodDecl()->isInstanceMethod()) {
// We should warn if a local variable hides an ivar.
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
IFace == ClassDeclared)
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
}
}
// Needed to implement property "super.method" notation.
if (D == 0 && II->isStr("super")) {
QualType T;
if (getCurMethodDecl()->isInstanceMethod())
T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
getCurMethodDecl()->getClassInterface()));
else
T = Context.getObjCClassType();
return Owned(new (Context) ObjCSuperExpr(Loc, T));
}
}
// Determine whether this name might be a candidate for
// argument-dependent lookup.
bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
HasTrailingLParen;
if (ADL && D == 0) {
// We've seen something of the form
//
// identifier(
//
// and we did not find any entity by the name
// "identifier". However, this identifier is still subject to
// argument-dependent lookup, so keep track of the name.
return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
Context.OverloadTy,
Loc));
}
if (D == 0) {
// Otherwise, this could be an implicitly declared function reference (legal
// in C90, extension in C99).
if (HasTrailingLParen && II &&
!getLangOptions().CPlusPlus) // Not in C++.
D = ImplicitlyDefineFunction(Loc, *II, S);
else {
// If this name wasn't predeclared and if this is not a function call,
// diagnose the problem.
if (SS && !SS->isEmpty())
return ExprError(Diag(Loc, diag::err_typecheck_no_member)
<< Name << SS->getRange());
else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
return ExprError(Diag(Loc, diag::err_undeclared_use)
<< Name.getAsString());
else
return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
}
}
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
// Warn about constructs like:
// if (void *X = foo()) { ... } else { X }.
// In the else block, the pointer is always false.
// FIXME: In a template instantiation, we don't have scope
// information to check this property.
if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
Scope *CheckS = S;
while (CheckS) {
if (CheckS->isWithinElse() &&
CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
if (Var->getType()->isBooleanType())
ExprError(Diag(Loc, diag::warn_value_always_false)
<< Var->getDeclName());
else
ExprError(Diag(Loc, diag::warn_value_always_zero)
<< Var->getDeclName());
break;
}
// Move up one more control parent to check again.
CheckS = CheckS->getControlParent();
if (CheckS)
CheckS = CheckS->getParent();
}
}
} else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
// C99 DR 316 says that, if a function type comes from a
// function definition (without a prototype), that type is only
// used for checking compatibility. Therefore, when referencing
// the function, we pretend that we don't have the full function
// type.
if (DiagnoseUseOfDecl(Func, Loc))
return ExprError();
QualType T = Func->getType();
QualType NoProtoType = T;
if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
}
}
return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
}
/// \brief Cast member's object to its own class if necessary.
bool
Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
if (CXXRecordDecl *RD =
dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
QualType DestType =
Context.getCanonicalType(Context.getTypeDeclType(RD));
if (DestType->isDependentType() || From->getType()->isDependentType())
return false;
QualType FromRecordType = From->getType();
QualType DestRecordType = DestType;
if (FromRecordType->getAs<PointerType>()) {
DestType = Context.getPointerType(DestType);
FromRecordType = FromRecordType->getPointeeType();
}
if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
CheckDerivedToBaseConversion(FromRecordType,
DestRecordType,
From->getSourceRange().getBegin(),
From->getSourceRange()))
return true;
ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
/*isLvalue=*/true);
}
return false;
}
/// \brief Complete semantic analysis for a reference to the given declaration.
Sema::OwningExprResult
Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand) {
assert(D && "Cannot refer to a NULL declaration");
DeclarationName Name = D->getDeclName();
// If this is an expression of the form &Class::member, don't build an
// implicit member ref, because we want a pointer to the member in general,
// not any specific instance's member.
if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
DeclContext *DC = computeDeclContext(*SS);
if (D && isa<CXXRecordDecl>(DC)) {
QualType DType;
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
DType = FD->getType().getNonReferenceType();
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
DType = Method->getType();
} else if (isa<OverloadedFunctionDecl>(D)) {
DType = Context.OverloadTy;
}
// Could be an inner type. That's diagnosed below, so ignore it here.
if (!DType.isNull()) {
// The pointer is type- and value-dependent if it points into something
// dependent.
bool Dependent = DC->isDependentContext();
return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
}
}
}
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
return BuildAnonymousStructUnionMemberReference(Loc, FD);
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (!MD->isStatic()) {
// C++ [class.mfct.nonstatic]p2:
// [...] if name lookup (3.4.1) resolves the name in the
// id-expression to a nonstatic nontype member of class X or of
// a base class of X, the id-expression is transformed into a
// class member access expression (5.2.5) using (*this) (9.3.2)
// as the postfix-expression to the left of the '.' operator.
DeclContext *Ctx = 0;
QualType MemberType;
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
Ctx = FD->getDeclContext();
MemberType = FD->getType();
if (const ReferenceType *RefType = MemberType->getAs<ReferenceType>())
MemberType = RefType->getPointeeType();
else if (!FD->isMutable()) {
unsigned combinedQualifiers
= MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (!Method->isStatic()) {
Ctx = Method->getParent();
MemberType = Method->getType();
}
} else if (FunctionTemplateDecl *FunTmpl
= dyn_cast<FunctionTemplateDecl>(D)) {
if (CXXMethodDecl *Method
= dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())) {
if (!Method->isStatic()) {
Ctx = Method->getParent();
MemberType = Context.OverloadTy;
}
}
} else if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(D)) {
// FIXME: We need an abstraction for iterating over one or more function
// templates or functions. This code is far too repetitive!
for (OverloadedFunctionDecl::function_iterator
Func = Ovl->function_begin(),
FuncEnd = Ovl->function_end();
Func != FuncEnd; ++Func) {
CXXMethodDecl *DMethod = 0;
if (FunctionTemplateDecl *FunTmpl
= dyn_cast<FunctionTemplateDecl>(*Func))
DMethod = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
else
DMethod = dyn_cast<CXXMethodDecl>(*Func);
if (DMethod && !DMethod->isStatic()) {
Ctx = DMethod->getDeclContext();
MemberType = Context.OverloadTy;
break;
}
}
}
if (Ctx && Ctx->isRecord()) {
QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
QualType ThisType = Context.getTagDeclType(MD->getParent());
if ((Context.getCanonicalType(CtxType)
== Context.getCanonicalType(ThisType)) ||
IsDerivedFrom(ThisType, CtxType)) {
// Build the implicit member access expression.
Expr *This = new (Context) CXXThisExpr(SourceLocation(),
MD->getThisType(Context));
MarkDeclarationReferenced(Loc, D);
if (PerformObjectMemberConversion(This, D))
return ExprError();
if (DiagnoseUseOfDecl(D, Loc))
return ExprError();
return Owned(new (Context) MemberExpr(This, true, D,
Loc, MemberType));
}
}
}
}
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (MD->isStatic())
// "invalid use of member 'x' in static member function"
return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
<< FD->getDeclName());
}
// Any other ways we could have found the field in a well-formed
// program would have been turned into implicit member expressions
// above.
return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
<< FD->getDeclName());
}
if (isa<TypedefDecl>(D))
return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
if (isa<ObjCInterfaceDecl>(D))
return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
if (isa<NamespaceDecl>(D))
return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
// Make the DeclRefExpr or BlockDeclRefExpr for the decl.
if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
false, false, SS);
else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
false, false, SS);
ValueDecl *VD = cast<ValueDecl>(D);
// Check whether this declaration can be used. Note that we suppress
// this check when we're going to perform argument-dependent lookup
// on this function name, because this might not be the function
// that overload resolution actually selects.
bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
HasTrailingLParen;
if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
return ExprError();
// Only create DeclRefExpr's for valid Decl's.
if (VD->isInvalidDecl())
return ExprError();
// If the identifier reference is inside a block, and it refers to a value
// that is outside the block, create a BlockDeclRefExpr instead of a
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
// the block is formed.
//
// We do not do this for things like enum constants, global variables, etc,
// as they do not get snapshotted.
//
if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
MarkDeclarationReferenced(Loc, VD);
QualType ExprTy = VD->getType().getNonReferenceType();
// The BlocksAttr indicates the variable is bound by-reference.
if (VD->getAttr<BlocksAttr>())
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
// This is to record that a 'const' was actually synthesize and added.
bool constAdded = !ExprTy.isConstQualified();
// Variable will be bound by-copy, make it const within the closure.
ExprTy.addConst();
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
constAdded));
}
// If this reference is not in a block or if the referenced variable is
// within the block, create a normal DeclRefExpr.
bool TypeDependent = false;
bool ValueDependent = false;
if (getLangOptions().CPlusPlus) {
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// - an identifier that was declared with a dependent type,
if (VD->getType()->isDependentType())
TypeDependent = true;
// - FIXME: a template-id that is dependent,
// - a conversion-function-id that specifies a dependent type,
else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
Name.getCXXNameType()->isDependentType())
TypeDependent = true;
// - a nested-name-specifier that contains a class-name that
// names a dependent type.
else if (SS && !SS->isEmpty()) {
for (DeclContext *DC = computeDeclContext(*SS);
DC; DC = DC->getParent()) {
// FIXME: could stop early at namespace scope.
if (DC->isRecord()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
if (Context.getTypeDeclType(Record)->isDependentType()) {
TypeDependent = true;
break;
}
}
}
}
// C++ [temp.dep.constexpr]p2:
//
// An identifier is value-dependent if it is:
// - a name declared with a dependent type,
if (TypeDependent)
ValueDependent = true;
// - the name of a non-type template parameter,
else if (isa<NonTypeTemplateParmDecl>(VD))
ValueDependent = true;
// - a constant with integral or enumeration type and is
// initialized with an expression that is value-dependent
else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
Dcl->getInit()) {
ValueDependent = Dcl->getInit()->isValueDependent();
}
}
}
return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
TypeDependent, ValueDependent, SS);
}
Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
tok::TokenKind Kind) {
PredefinedExpr::IdentType IT;
switch (Kind) {
default: assert(0 && "Unknown simple primary expr!");
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
}
// Pre-defined identifiers are of type char[x], where x is the length of the
// string.
unsigned Length;
if (FunctionDecl *FD = getCurFunctionDecl())
Length = FD->getIdentifier()->getLength();
else if (ObjCMethodDecl *MD = getCurMethodDecl())
Length = MD->getSynthesizedMethodSize();
else {
Diag(Loc, diag::ext_predef_outside_function);
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
}
llvm::APInt LengthI(32, Length + 1);
QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
}
Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
llvm::SmallString<16> CharBuffer;
CharBuffer.resize(Tok.getLength());
const char *ThisTokBegin = &CharBuffer[0];
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError())
return ExprError();
QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
return Owned(new (Context) CharacterLiteral(Literal.getValue(),
Literal.isWide(),
type, Tok.getLocation()));
}
Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// Fast path for a single digit (which is quite common). A single digit
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
if (Tok.getLength() == 1) {
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
unsigned IntSize = Context.Target.getIntWidth();
return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
Context.IntTy, Tok.getLocation()));
}
llvm::SmallString<512> IntegerBuffer;
// Add padding so that NumericLiteralParser can overread by one character.
IntegerBuffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &IntegerBuffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError)
return ExprError();
Expr *Res;
if (Literal.isFloatingLiteral()) {
QualType Ty;
if (Literal.isFloat)
Ty = Context.FloatTy;
else if (!Literal.isLong)
Ty = Context.DoubleTy;
else
Ty = Context.LongDoubleTy;
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
// isExact will be set by GetFloatValue().
bool isExact = false;
llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
} else if (!Literal.isIntegerLiteral()) {
return ExprError();
} else {
QualType Ty;
// long long is a C99 feature.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
Literal.isLongLong)
Diag(Tok.getLocation(), diag::ext_longlong);
// Get the value in the widest-possible width.
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
if (Literal.GetIntegerValue(ResultVal)) {
// If this value didn't fit into uintmax_t, warn and force to ull.
Diag(Tok.getLocation(), diag::warn_integer_too_large);
Ty = Context.UnsignedLongLongTy;
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?");
} else {
// If this value fits into a ULL, try to figure out what else it fits into
// according to the rules of C99 6.4.4.1p5.
// Octal, Hexadecimal, and integers with a U suffix are allowed to
// be an unsigned int.
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
// Check from smallest to largest, picking the smallest type we can.
unsigned Width = 0;
if (!Literal.isLong && !Literal.isLongLong) {
// Are int/unsigned possibilities?
unsigned IntSize = Context.Target.getIntWidth();
// Does it fit in a unsigned int?
if (ResultVal.isIntN(IntSize)) {
// Does it fit in a signed int?
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
Ty = Context.IntTy;
else if (AllowUnsigned)
Ty = Context.UnsignedIntTy;
Width = IntSize;
}
}
// Are long/unsigned long possibilities?
if (Ty.isNull() && !Literal.isLongLong) {
unsigned LongSize = Context.Target.getLongWidth();
// Does it fit in a unsigned long?
if (ResultVal.isIntN(LongSize)) {
// Does it fit in a signed long?
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
Ty = Context.LongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongTy;
Width = LongSize;
}
}
// Finally, check long long if needed.
if (Ty.isNull()) {
unsigned LongLongSize = Context.Target.getLongLongWidth();
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
// Does it fit in a signed long long?
if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
Ty = Context.LongLongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongLongTy;
Width = LongLongSize;
}
}
// If we still couldn't decide a type, we probably have something that
// does not fit in a signed long long, but has no U suffix.
if (Ty.isNull()) {
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
Ty = Context.UnsignedLongLongTy;
Width = Context.Target.getLongLongWidth();
}
if (ResultVal.getBitWidth() != Width)
ResultVal.trunc(Width);
}
Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
}
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
if (Literal.isImaginary)
Res = new (Context) ImaginaryLiteral(Res,
Context.getComplexType(Res->getType()));
return Owned(Res);
}
Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
SourceLocation R, ExprArg Val) {
Expr *E = Val.takeAs<Expr>();
assert((E != 0) && "ActOnParenExpr() missing expr");
return Owned(new (Context) ParenExpr(L, R, E));
}
/// The UsualUnaryConversions() function is *not* called by this routine.
/// See C99 6.3.2.1p[2-4] for more details.
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
SourceLocation OpLoc,
const SourceRange &ExprRange,
bool isSizeof) {
if (exprType->isDependentType())
return false;
// C99 6.5.3.4p1:
if (isa<FunctionType>(exprType)) {
// alignof(function) is allowed as an extension.
if (isSizeof)
Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
return false;
}
// Allow sizeof(void)/alignof(void) as an extension.
if (exprType->isVoidType()) {
Diag(OpLoc, diag::ext_sizeof_void_type)
<< (isSizeof ? "sizeof" : "__alignof") << ExprRange;
return false;
}
if (RequireCompleteType(OpLoc, exprType,
isSizeof ? diag::err_sizeof_incomplete_type :
diag::err_alignof_incomplete_type,
ExprRange))
return true;
// Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
<< exprType << isSizeof << ExprRange;
return true;
}
return false;
}
bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
const SourceRange &ExprRange) {
E = E->IgnoreParens();
// alignof decl is always ok.
if (isa<DeclRefExpr>(E))
return false;
// Cannot know anything else if the expression is dependent.
if (E->isTypeDependent())
return false;
if (E->getBitField()) {
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
return true;
}
// Alignment of a field access is always okay, so long as it isn't a
// bit-field.
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
if (isa<FieldDecl>(ME->getMemberDecl()))
return false;
return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
}
/// \brief Build a sizeof or alignof expression given a type operand.
Action::OwningExprResult
Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
bool isSizeOf, SourceRange R) {
if (T.isNull())
return ExprError();
if (!T->isDependentType() &&
CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
Context.getSizeType(), OpLoc,
R.getEnd()));
}
/// \brief Build a sizeof or alignof expression given an expression
/// operand.
Action::OwningExprResult
Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
bool isSizeOf, SourceRange R) {
// Verify that the operand is valid.
bool isInvalid = false;
if (E->isTypeDependent()) {
// Delay type-checking for type-dependent expressions.
} else if (!isSizeOf) {
isInvalid = CheckAlignOfExpr(E, OpLoc, R);
} else if (E->getBitField()) { // C99 6.5.3.4p1.
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
isInvalid = true;
} else {
isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
}
if (isInvalid)
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
Context.getSizeType(), OpLoc,
R.getEnd()));
}
/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
/// the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
Action::OwningExprResult
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
// If error parsing type, ignore.
if (TyOrEx == 0) return ExprError();
if (isType) {
// FIXME: Preserve type source info.
QualType ArgTy = GetTypeFromParser(TyOrEx);
return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
}
// Get the end location.
Expr *ArgEx = (Expr *)TyOrEx;
Action::OwningExprResult Result
= CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
if (Result.isInvalid())
DeleteExpr(ArgEx);
return move(Result);
}
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
if (V->isTypeDependent())
return Context.DependentTy;
// These operators return the element type of a complex type.
if (const ComplexType *CT = V->getType()->getAsComplexType())
return CT->getElementType();
// Otherwise they pass through real integer and floating point types here.
if (V->getType()->isArithmeticType())
return V->getType();
// Reject anything else.
Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
<< (isReal ? "__real" : "__imag");
return QualType();
}
Action::OwningExprResult
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, ExprArg Input) {
// Since this might be a postfix expression, get rid of ParenListExprs.
Input = MaybeConvertParenListExprToParenExpr(S, move(Input));
Expr *Arg = (Expr *)Input.get();
UnaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
}
if (getLangOptions().CPlusPlus &&
(Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
// Which overloaded operator?
OverloadedOperatorKind OverOp =
(Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
// C++ [over.inc]p1:
//
// [...] If the function is a member function with one
// parameter (which shall be of type int) or a non-member
// function with two parameters (the second of which shall be
// of type int), it defines the postfix increment operator ++
// for objects of that type. When the postfix increment is
// called as a result of using the ++ operator, the int
// argument will have value zero.
Expr *Args[2] = {
Arg,
new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
/*isSigned=*/true), Context.IntTy, SourceLocation())
};
// Build the candidate set for overloading
OverloadCandidateSet CandidateSet;
AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
case OR_Success: {
// We found a built-in operator or an overloaded operator.
FunctionDecl *FnDecl = Best->Function;
if (FnDecl) {
// We matched an overloaded operator. Build a call to that
// operator.
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(Arg, Method))
return ExprError();
} else {
// Convert the arguments.
if (PerformCopyInitialization(Arg,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return ExprError();
}
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
Input.release();
Args[0] = Arg;
return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
Args, 2, ResultTy,
OpLoc));
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
"passing"))
return ExprError();
break;
}
}
case OR_No_Viable_Function:
// No viable function; fall through to handling this as a
// built-in operator, which will produce an error message for us.
break;
case OR_Ambiguous:
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
<< UnaryOperator::getOpcodeStr(Opc)
<< Arg->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return ExprError();
case OR_Deleted:
Diag(OpLoc, diag::err_ovl_deleted_oper)
<< Best->Function->isDeleted()
<< UnaryOperator::getOpcodeStr(Opc)
<< Arg->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return ExprError();
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
}
Input.release();
Input = Arg;
return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
}
Action::OwningExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
ExprArg Idx, SourceLocation RLoc) {
// Since this might be a postfix expression, get rid of ParenListExprs.
Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
Expr *LHSExp = static_cast<Expr*>(Base.get()),
*RHSExp = static_cast<Expr*>(Idx.get());
if (getLangOptions().CPlusPlus &&
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
Base.release();
Idx.release();
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
Context.DependentTy, RLoc));
}
if (getLangOptions().CPlusPlus &&
(LHSExp->getType()->isRecordType() ||
LHSExp->getType()->isEnumeralType() ||
RHSExp->getType()->isRecordType() ||
RHSExp->getType()->isEnumeralType())) {
// Add the appropriate overloaded operators (C++ [over.match.oper])
// to the candidate set.
OverloadCandidateSet CandidateSet;
Expr *Args[2] = { LHSExp, RHSExp };
AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
SourceRange(LLoc, RLoc));
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, LLoc, Best)) {
case OR_Success: {
// We found a built-in operator or an overloaded operator.
FunctionDecl *FnDecl = Best->Function;
if (FnDecl) {
// We matched an overloaded operator. Build a call to that
// operator.
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(LHSExp, Method) ||
PerformCopyInitialization(RHSExp,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return ExprError();
} else {
// Convert the arguments.
if (PerformCopyInitialization(LHSExp,
FnDecl->getParamDecl(0)->getType(),
"passing") ||
PerformCopyInitialization(RHSExp,
FnDecl->getParamDecl(1)->getType(),
"passing"))
return ExprError();
}
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
Base.release();
Idx.release();
Args[0] = LHSExp;
Args[1] = RHSExp;
return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
FnExpr, Args, 2,
ResultTy, LLoc));
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
"passing") ||
PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
"passing"))
return ExprError();
break;
}
}
case OR_No_Viable_Function:
// No viable function; fall through to handling this as a
// built-in operator, which will produce an error message for us.
break;
case OR_Ambiguous:
Diag(LLoc, diag::err_ovl_ambiguous_oper)
<< "[]"
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return ExprError();
case OR_Deleted:
Diag(LLoc, diag::err_ovl_deleted_oper)
<< Best->Function->isDeleted()
<< "[]"
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return ExprError();
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
}
// Perform default conversions.
DefaultFunctionArrayConversion(LHSExp);
DefaultFunctionArrayConversion(RHSExp);
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
// in the subscript position. As a result, we need to derive the array base
// and index from the expression types.
Expr *BaseExpr, *IndexExpr;
QualType ResultType;
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = Context.DependentTy;
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
LHSTy->getAsObjCObjectPointerType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
RHSTy->getAsObjCObjectPointerType()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
// FIXME: need to deal with const...
ResultType = VTy->getElementType();
} else if (LHSTy->isArrayType()) {
// If we see an array that wasn't promoted by
// DefaultFunctionArrayConversion, it must be an array that
// wasn't promoted because of the C90 rule that doesn't
// allow promoting non-lvalue arrays. Warn, then
// force the promotion here.
Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
LHSExp->getSourceRange();
ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
LHSTy = LHSExp->getType();
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
} else if (RHSTy->isArrayType()) {
// Same as previous, except for 123[f().a] case
Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
RHSExp->getSourceRange();
ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
RHSTy = RHSExp->getType();
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
} else {
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
}
// C99 6.5.2.1p1
if (!(IndexExpr->getType()->isIntegerType() &&
IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
<< IndexExpr->getSourceRange());
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
// type. Note that Functions are not objects, and that (in C99 parlance)
// incomplete types are not object types.
if (ResultType->isFunctionType()) {
Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
if (!ResultType->isDependentType() &&
RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
BaseExpr->getSourceRange()))
return ExprError();
// Diagnose bad cases where we step over interface counts.
if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
Diag(LLoc, diag::err_subscript_nonfragile_interface)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
Base.release();
Idx.release();
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
ResultType, RLoc));
}
QualType Sema::
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
IdentifierInfo &CompName, SourceLocation CompLoc) {
const ExtVectorType *vecType = baseType->getAsExtVectorType();
// The vector accessor can't exceed the number of elements.
const char *compStr = CompName.getName();
// This flag determines whether or not the component is one of the four
// special names that indicate a subset of exactly half the elements are
// to be selected.
bool HalvingSwizzle = false;
// This flag determines whether or not CompName has an 's' char prefix,
// indicating that it is a string of hex values to be used as vector indices.
bool HexSwizzle = *compStr == 's' || *compStr == 'S';
// Check that we've found one of the special components, or that the component
// names must come from the same set.
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
!strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
HalvingSwizzle = true;
} else if (vecType->getPointAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
} else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
}
if (!HalvingSwizzle && *compStr) {
// We didn't get to the end of the string. This means the component names
// didn't come from the same set *or* we encountered an illegal name.
Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
<< std::string(compStr,compStr+1) << SourceRange(CompLoc);
return QualType();
}
// Ensure no component accessor exceeds the width of the vector type it
// operates on.
if (!HalvingSwizzle) {
compStr = CompName.getName();
if (HexSwizzle)
compStr++;
while (*compStr) {
if (!vecType->isAccessorWithinNumElements(*compStr++)) {
Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
<< baseType << SourceRange(CompLoc);
return QualType();
}
}
}
// If this is a halving swizzle, verify that the base type has an even
// number of elements.
if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
Diag(OpLoc, diag::err_ext_vector_component_requires_even)
<< baseType << SourceRange(CompLoc);
return QualType();
}
// The component accessor looks fine - now we need to compute the actual type.
// The vector type is implied by the component accessor. For example,
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
// vec4.s0 is a float, vec4.s23 is a vec3, etc.
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
: CompName.getLength();
if (HexSwizzle)
CompSize--;
if (CompSize == 1)
return vecType->getElementType();
QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
// Now look up the TypeDefDecl from the vector type. Without this,
// diagostics look bad. We want extended vector types to appear built-in.
for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
if (ExtVectorDecls[i]->getUnderlyingType() == VT)
return Context.getTypedefType(ExtVectorDecls[i]);
}
return VT; // should never get here (a typedef type should always be found).
}
static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
IdentifierInfo &Member,
const Selector &Sel,
ASTContext &Context) {
if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
return PD;
if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
return OMD;
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
E = PDecl->protocol_end(); I != E; ++I) {
if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
Context))
return D;
}
return 0;
}
static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
IdentifierInfo &Member,
const Selector &Sel,
ASTContext &Context) {
// Check protocols on qualified interfaces.
Decl *GDecl = 0;
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
GDecl = PD;
break;
}
// Also must look for a getter name which uses property syntax.
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
GDecl = OMD;
break;
}
}
if (!GDecl) {
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
// Search in the protocol-qualifier list of current protocol.
GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
if (GDecl)
return GDecl;
}
}
return GDecl;
}
/// FindMethodInNestedImplementations - Look up a method in current and
/// all base class implementations.
///
ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
const ObjCInterfaceDecl *IFace,
const Selector &Sel) {
ObjCMethodDecl *Method = 0;
if (ObjCImplementationDecl *ImpDecl = IFace->getImplementation())
Method = ImpDecl->getInstanceMethod(Sel);
if (!Method && IFace->getSuperClass())
return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
return Method;
}
Action::OwningExprResult
Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
tok::TokenKind OpKind, SourceLocation MemberLoc,
IdentifierInfo &Member,
DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS) {
// FIXME: handle the CXXScopeSpec for proper lookup of qualified-ids
if (SS && SS->isInvalid())
return ExprError();
// Since this might be a postfix expression, get rid of ParenListExprs.
Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
Expr *BaseExpr = Base.takeAs<Expr>();
assert(BaseExpr && "no record expression");
// Perform default conversions.
DefaultFunctionArrayConversion(BaseExpr);
QualType BaseType = BaseExpr->getType();
// If this is an Objective-C pseudo-builtin and a definition is provided then
// use that.
if (BaseType->isObjCIdType()) {
// We have an 'id' type. Rather than fall through, we check if this
// is a reference to 'isa'.
if (BaseType != Context.ObjCIdRedefinitionType) {
BaseType = Context.ObjCIdRedefinitionType;
ImpCastExprToType(BaseExpr, BaseType);
}
} else if (BaseType->isObjCClassType() &&
BaseType != Context.ObjCClassRedefinitionType) {
BaseType = Context.ObjCClassRedefinitionType;
ImpCastExprToType(BaseExpr, BaseType);
}
assert(!BaseType.isNull() && "no type for member expression");
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
// must have pointer type, and the accessed type is the pointee.
if (OpKind == tok::arrow) {
if (BaseType->isDependentType())
return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
BaseExpr, true,
OpLoc,
DeclarationName(&Member),
MemberLoc));
else if (const PointerType *PT = BaseType->getAs<PointerType>())
BaseType = PT->getPointeeType();
else if (BaseType->isObjCObjectPointerType())
;
else
return ExprError(Diag(MemberLoc,
diag::err_typecheck_member_reference_arrow)
<< BaseType << BaseExpr->getSourceRange());
} else {
if (BaseType->isDependentType()) {
// Require that the base type isn't a pointer type
// (so we'll report an error for)
// T* t;
// t.f;
//
// In Obj-C++, however, the above expression is valid, since it could be
// accessing the 'f' property if T is an Obj-C interface. The extra check
// allows this, while still reporting an error if T is a struct pointer.
const PointerType *PT = BaseType->getAs<PointerType>();
if (!PT || (getLangOptions().ObjC1 &&
!PT->getPointeeType()->isRecordType()))
return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
BaseExpr, false,
OpLoc,
DeclarationName(&Member),
MemberLoc));
}
}
// Handle field access to simple records. This also handles access to fields
// of the ObjC 'id' struct.
if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
RecordDecl *RDecl = RTy->getDecl();
if (RequireCompleteType(OpLoc, BaseType,
diag::err_typecheck_incomplete_tag,
BaseExpr->getSourceRange()))
return ExprError();
DeclContext *DC = RDecl;
if (SS && SS->isSet()) {
// If the member name was a qualified-id, look into the
// nested-name-specifier.
DC = computeDeclContext(*SS, false);
// FIXME: If DC is not computable, we should build a
// CXXUnresolvedMemberExpr.
assert(DC && "Cannot handle non-computable dependent contexts in lookup");
}
// The record definition is complete, now make sure the member is valid.
LookupResult Result
= LookupQualifiedName(DC, DeclarationName(&Member),
LookupMemberName, false);
if (SS && SS->isSet()) {
QualType BaseTypeCanon
= Context.getCanonicalType(BaseType).getUnqualifiedType();
QualType MemberTypeCanon
= Context.getCanonicalType(
Context.getTypeDeclType(
dyn_cast<TypeDecl>(Result.getAsDecl()->getDeclContext())));
if (BaseTypeCanon != MemberTypeCanon &&
!IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
return ExprError(Diag(SS->getBeginLoc(),
diag::err_not_direct_base_or_virtual)
<< MemberTypeCanon << BaseTypeCanon);
}
if (!Result)
return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
<< &Member << BaseExpr->getSourceRange());
if (Result.isAmbiguous()) {
DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
MemberLoc, BaseExpr->getSourceRange());
return ExprError();
}
NamedDecl *MemberDecl = Result;
// If the decl being referenced had an error, return an error for this
// sub-expr without emitting another error, in order to avoid cascading
// error cases.
if (MemberDecl->isInvalidDecl())
return ExprError();
// Check the use of this field
if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
return ExprError();
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
BaseExpr, OpLoc);
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
QualType MemberType = FD->getType();
if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
MemberType = Ref->getPointeeType();
else {
unsigned BaseAddrSpace = BaseType.getAddressSpace();
unsigned combinedQualifiers =
MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
if (FD->isMutable())
combinedQualifiers &= ~QualType::Const;
MemberType = MemberType.getQualifiedType(combinedQualifiers);
if (BaseAddrSpace != MemberType.getAddressSpace())
MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
}
MarkDeclarationReferenced(MemberLoc, FD);
if (PerformObjectMemberConversion(BaseExpr, FD))
return ExprError();
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
MemberLoc, MemberType));
}
if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
Var, MemberLoc,
Var->getType().getNonReferenceType()));
}
if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
MemberFn, MemberLoc,
MemberFn->getType()));
}
if (FunctionTemplateDecl *FunTmpl
= dyn_cast<FunctionTemplateDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
FunTmpl, MemberLoc,
Context.OverloadTy));
}
if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(MemberDecl))
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
MemberLoc, Context.OverloadTy));
if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
Enum, MemberLoc, Enum->getType()));
}
if (isa<TypeDecl>(MemberDecl))
return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
<< DeclarationName(&Member) << int(OpKind == tok::arrow));
// We found a declaration kind that we didn't expect. This is a
// generic error message that tells the user that she can't refer
// to this member with '.' or '->'.
return ExprError(Diag(MemberLoc,
diag::err_typecheck_member_reference_unknown)
<< DeclarationName(&Member) << int(OpKind == tok::arrow));
}
// Handle properties on ObjC 'Class' types.
if (OpKind == tok::period && BaseType->isObjCClassType()) {
// Also must look for a getter name which uses property syntax.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
if (ObjCMethodDecl *MD = getCurMethodDecl()) {
ObjCInterfaceDecl *IFace = MD->getClassInterface();
ObjCMethodDecl *Getter;
// FIXME: need to also look locally in the implementation.
if ((Getter = IFace->lookupClassMethod(Sel))) {
// Check the use of this method.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
}
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &Member);
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = FindMethodInNestedImplementations(IFace, SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter)
Setter = IFace->getCategoryClassMethod(SetterSel);
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
return ExprError();
if (Getter || Setter) {
QualType PType;
if (Getter)
PType = Getter->getResultType();
else
// Get the expression type from Setter's incoming parameter.
PType = (*(Setter->param_end() -1))->getType();
// FIXME: we must check that the setter has property type.
return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
Setter, MemberLoc, BaseExpr));
}
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< &Member << BaseType);
}
}
// Handle access to Objective-C instance variables, such as "Obj->ivar" and
// (*Obj).ivar.
if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
(OpKind == tok::period && BaseType->isObjCInterfaceType())) {
const ObjCObjectPointerType *OPT = BaseType->getAsObjCObjectPointerType();
const ObjCInterfaceType *IFaceT =
OPT ? OPT->getInterfaceType() : BaseType->getAsObjCInterfaceType();
if (IFaceT) {
ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
ObjCInterfaceDecl *ClassDeclared;
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(&Member, ClassDeclared);
if (IV) {
// If the decl being referenced had an error, return an error for this
// sub-expr without emitting another error, in order to avoid cascading
// error cases.
if (IV->isInvalidDecl())
return ExprError();
// Check whether we can reference this field.
if (DiagnoseUseOfDecl(IV, MemberLoc))
return ExprError();
if (IV->getAccessControl() != ObjCIvarDecl::Public &&
IV->getAccessControl() != ObjCIvarDecl::Package) {
ObjCInterfaceDecl *ClassOfMethodDecl = 0;
if (ObjCMethodDecl *MD = getCurMethodDecl())
ClassOfMethodDecl = MD->getClassInterface();
else if (ObjCImpDecl && getCurFunctionDecl()) {
// Case of a c-function declared inside an objc implementation.
// FIXME: For a c-style function nested inside an objc implementation
// class, there is no implementation context available, so we pass
// down the context as argument to this routine. Ideally, this context
// need be passed down in the AST node and somehow calculated from the
// AST for a function decl.
Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
if (ObjCImplementationDecl *IMPD =
dyn_cast<ObjCImplementationDecl>(ImplDecl))
ClassOfMethodDecl = IMPD->getClassInterface();
else if (ObjCCategoryImplDecl* CatImplClass =
dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
ClassOfMethodDecl = CatImplClass->getClassInterface();
}
if (IV->getAccessControl() == ObjCIvarDecl::Private) {
if (ClassDeclared != IDecl ||
ClassOfMethodDecl != ClassDeclared)
Diag(MemberLoc, diag::error_private_ivar_access)
<< IV->getDeclName();
} else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
// @protected
Diag(MemberLoc, diag::error_protected_ivar_access)
<< IV->getDeclName();
}
return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
MemberLoc, BaseExpr,
OpKind == tok::arrow));
}
return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
<< IDecl->getDeclName() << &Member
<< BaseExpr->getSourceRange());
}
}
// Handle properties on 'id' and qualified "id".
if (OpKind == tok::period && (BaseType->isObjCIdType() ||
BaseType->isObjCQualifiedIdType())) {
const ObjCObjectPointerType *QIdTy = BaseType->getAsObjCObjectPointerType();
// Check protocols on qualified interfaces.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
// Check the use of this declaration
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
}
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
// Check the use of this method.
if (DiagnoseUseOfDecl(OMD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
OMD->getResultType(),
OMD, OpLoc, MemberLoc,
NULL, 0));
}
}
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< &Member << BaseType);
}
// Handle Objective-C property access, which is "Obj.property" where Obj is a
// pointer to a (potentially qualified) interface type.
const ObjCObjectPointerType *OPT;
if (OpKind == tok::period &&
(OPT = BaseType->getAsObjCInterfacePointerType())) {
const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
ObjCInterfaceDecl *IFace = IFaceT->getDecl();
// Search for a declared property first.
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
QualType ResTy = PD->getType();
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
ResTy = Getter->getResultType();
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
MemberLoc, BaseExpr));
}
// Check protocols on qualified interfaces.
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
}
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
}
// If that failed, look for an "implicit" property by seeing if the nullary
// selector is implemented.
// FIXME: The logic for looking up nullary and unary selectors should be
// shared with the code in ActOnInstanceMessage.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
Getter = FindMethodInNestedImplementations(IFace, Sel);
// Look through local category implementations associated with the class.
if (!Getter)
Getter = IFace->getCategoryInstanceMethod(Sel);
if (Getter) {
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
}
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &Member);
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = FindMethodInNestedImplementations(IFace, SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter)
Setter = IFace->getCategoryInstanceMethod(SetterSel);
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
return ExprError();
if (Getter || Setter) {
QualType PType;
if (Getter)
PType = Getter->getResultType();
else
// Get the expression type from Setter's incoming parameter.
PType = (*(Setter->param_end() -1))->getType();
// FIXME: we must check that the setter has property type.
return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
Setter, MemberLoc, BaseExpr));
}
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< &Member << BaseType);
}
// Handle the following exceptional case (*Obj).isa.
if (OpKind == tok::period &&
BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
Member.isStr("isa"))
return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
Context.getObjCIdType()));
// Handle 'field access' to vectors, such as 'V.xx'.
if (BaseType->isExtVectorType()) {
QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
if (ret.isNull())
return ExprError();
return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
MemberLoc));
}
Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
<< BaseType << BaseExpr->getSourceRange();
// If the user is trying to apply -> or . to a function or function
// pointer, it's probably because they forgot parentheses to call
// the function. Suggest the addition of those parentheses.
if (BaseType == Context.OverloadTy ||
BaseType->isFunctionType() ||
(BaseType->isPointerType() &&
BaseType->getAs<PointerType>()->isFunctionType())) {
SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
Diag(Loc, diag::note_member_reference_needs_call)
<< CodeModificationHint::CreateInsertion(Loc, "()");
}
return ExprError();
}
/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc) {
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
// assignment, to the types of the corresponding parameter, ...
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned NumArgsToCheck = NumArgs;
bool Invalid = false;
// If too few arguments are available (and we don't have default
// arguments for the remaining parameters), don't make the call.
if (NumArgs < NumArgsInProto) {
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
// Use default arguments for missing arguments
NumArgsToCheck = NumArgsInProto;
Call->setNumArgs(Context, NumArgsInProto);
}
// If too many are passed and not variadic, error on the extras and drop
// them.
if (NumArgs > NumArgsInProto) {
if (!Proto->isVariadic()) {
Diag(Args[NumArgsInProto]->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
// This deletes the extra arguments.
Call->setNumArgs(Context, NumArgsInProto);
Invalid = true;
}
NumArgsToCheck = NumArgsInProto;
}
// Continue to check argument types (even if we have too few/many args).
for (unsigned i = 0; i != NumArgsToCheck; i++) {
QualType ProtoArgType = Proto->getArgType(i);
Expr *Arg;
if (i < NumArgs) {
Arg = Args[i];
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
ProtoArgType,
diag::err_call_incomplete_argument,
Arg->getSourceRange()))
return true;
// Pass the argument.
if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
return true;
} else {
if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
Diag (Call->getSourceRange().getBegin(),
diag::err_use_of_default_argument_to_function_declared_later) <<
FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
diag::note_default_argument_declared_here);
} else {
Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
// If the default expression creates temporaries, we need to
// push them to the current stack of expression temporaries so they'll
// be properly destroyed.
if (CXXExprWithTemporaries *E
= dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
assert(!E->shouldDestroyTemporaries() &&
"Can't destroy temporaries in a default argument expr!");
for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
ExprTemporaries.push_back(E->getTemporary(I));
}
}
// We already type-checked the argument, so we know it works.
Arg = CXXDefaultArgExpr::Create(Context, FDecl->getParamDecl(i));
}
QualType ArgType = Arg->getType();
Call->setArg(i, Arg);
}
// If this is a variadic call, handle args passed through "...".
if (Proto->isVariadic()) {
VariadicCallType CallType = VariadicFunction;
if (Fn->getType()->isBlockPointerType())
CallType = VariadicBlock; // Block
else if (isa<MemberExpr>(Fn))
CallType = VariadicMethod;
// Promote the arguments (C99 6.5.2.2p7).
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
Expr *Arg = Args[i];
Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
Call->setArg(i, Arg);
}
}
return Invalid;
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
Action::OwningExprResult
Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
MultiExprArg args,
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
unsigned NumArgs = args.size();
// Since this might be a postfix expression, get rid of ParenListExprs.
fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
Expr *Fn = fn.takeAs<Expr>();
Expr **Args = reinterpret_cast<Expr**>(args.release());
assert(Fn && "no function call expression");
FunctionDecl *FDecl = NULL;
NamedDecl *NDecl = NULL;
DeclarationName UnqualifiedName;
if (getLangOptions().CPlusPlus) {
// Determine whether this is a dependent call inside a C++ template,
// in which case we won't do any semantic analysis now.
// FIXME: Will need to cache the results of name lookup (including ADL) in
// Fn.
bool Dependent = false;
if (Fn->isTypeDependent())
Dependent = true;
else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
Dependent = true;
if (Dependent)
return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
Context.DependentTy, RParenLoc));
// Determine whether this is a call to an object (C++ [over.call.object]).
if (Fn->getType()->isRecordType())
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc));
// Determine whether this is a call to a member function.
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
NamedDecl *MemDecl = MemExpr->getMemberDecl();
if (isa<OverloadedFunctionDecl>(MemDecl) ||
isa<CXXMethodDecl>(MemDecl) ||
(isa<FunctionTemplateDecl>(MemDecl) &&
isa<CXXMethodDecl>(
cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc));
}
}
// If we're directly calling a function, get the appropriate declaration.
// Also, in C++, keep track of whether we should perform argument-dependent
// lookup and whether there were any explicitly-specified template arguments.
Expr *FnExpr = Fn;
bool ADL = true;
bool HasExplicitTemplateArgs = 0;
const TemplateArgument *ExplicitTemplateArgs = 0;
unsigned NumExplicitTemplateArgs = 0;
while (true) {
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
FnExpr = IcExpr->getSubExpr();
else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
// Parentheses around a function disable ADL
// (C++0x [basic.lookup.argdep]p1).
ADL = false;
FnExpr = PExpr->getSubExpr();
} else if (isa<UnaryOperator>(FnExpr) &&
cast<UnaryOperator>(FnExpr)->getOpcode()
== UnaryOperator::AddrOf) {
FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
} else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
// Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
break;
} else if (UnresolvedFunctionNameExpr *DepName
= dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
UnqualifiedName = DepName->getName();
break;
} else if (TemplateIdRefExpr *TemplateIdRef
= dyn_cast<TemplateIdRefExpr>(FnExpr)) {
NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
if (!NDecl)
NDecl = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
HasExplicitTemplateArgs = true;
ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
// C++ [temp.arg.explicit]p6:
// [Note: For simple function names, argument dependent lookup (3.4.2)
// applies even when the function name is not visible within the
// scope of the call. This is because the call still has the syntactic
// form of a function call (3.4.1). But when a function template with
// explicit template arguments is used, the call does not have the
// correct syntactic form unless there is a function template with
// that name visible at the point of the call. If no such name is
// visible, the call is not syntactically well-formed and
// argument-dependent lookup does not apply. If some such name is
// visible, argument dependent lookup applies and additional function
// templates may be found in other namespaces.
//
// The summary of this paragraph is that, if we get to this point and the
// template-id was not a qualified name, then argument-dependent lookup
// is still possible.
if (TemplateIdRef->getQualifier())
ADL = false;
break;
} else {
// Any kind of name that does not refer to a declaration (or
// set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
ADL = false;
break;
}
}
OverloadedFunctionDecl *Ovl = 0;
FunctionTemplateDecl *FunctionTemplate = 0;
if (NDecl) {