blob: 310fae03c632c9fdbbab58c0ddfe034e2ba89c7b [file] [log] [blame]
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "CGCall.h"
#include "CGObjCRuntime.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;
//===--------------------------------------------------------------------===//
// Miscellaneous Helper Methods
//===--------------------------------------------------------------------===//
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block.
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
const char *Name) {
if (!Builder.isNamePreserving())
Name = "";
return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
}
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
QualType BoolTy = getContext().BoolTy;
if (!E->getType()->isAnyComplexType())
return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
}
/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type. The result is returned as an RValue struct. If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
/// the result should be returned.
RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
bool IsAggLocVolatile, bool IgnoreResult,
bool IsInitializer) {
if (!hasAggregateLLVMType(E->getType()))
return RValue::get(EmitScalarExpr(E, IgnoreResult));
else if (E->getType()->isAnyComplexType())
return RValue::getComplex(EmitComplexExpr(E, false, false,
IgnoreResult, IgnoreResult));
EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer);
return RValue::getAggregate(AggLoc, IsAggLocVolatile);
}
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result
/// will always be accessible even if no aggregate location is
/// provided.
RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E,
bool IsAggLocVolatile,
bool IsInitializer) {
llvm::Value *AggLoc = 0;
if (hasAggregateLLVMType(E->getType()) &&
!E->getType()->isAnyComplexType())
AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp");
return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false,
IsInitializer);
}
RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E,
QualType DestType,
bool IsInitializer) {
RValue Val;
if (E->isLvalue(getContext()) == Expr::LV_Valid) {
// Emit the expr as an lvalue.
LValue LV = EmitLValue(E);
if (LV.isSimple())
return RValue::get(LV.getAddress());
Val = EmitLoadOfLValue(LV, E->getType());
} else {
// FIXME: Initializers don't work with casts yet. For example
// const A& a = B();
// if B inherits from A.
Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false,
IsInitializer);
if (IsInitializer) {
// We might have to destroy the temporary variable.
if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
if (!ClassDecl->hasTrivialDestructor()) {
const CXXDestructorDecl *Dtor =
ClassDecl->getDestructor(getContext());
CleanupScope scope(*this);
EmitCXXDestructorCall(Dtor, Dtor_Complete, Val.getAggregateAddr());
}
}
}
}
}
if (Val.isAggregate()) {
Val = RValue::get(Val.getAggregateAddr());
} else {
// Create a temporary variable that we can bind the reference to.
llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()),
"reftmp");
if (Val.isScalar())
EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
else
StoreComplexToAddr(Val.getComplexVal(), Temp, false);
Val = RValue::get(Temp);
}
return Val;
}
/// getAccessedFieldNo - Given an encoded value and a result number, return
/// the input field number being accessed.
unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
const llvm::Constant *Elts) {
if (isa<llvm::ConstantAggregateZero>(Elts))
return 0;
return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
}
//===----------------------------------------------------------------------===//
// LValue Expression Emission
//===----------------------------------------------------------------------===//
RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
if (Ty->isVoidType()) {
return RValue::get(0);
} else if (const ComplexType *CTy = Ty->getAsComplexType()) {
const llvm::Type *EltTy = ConvertType(CTy->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return RValue::getComplex(std::make_pair(U, U));
} else if (hasAggregateLLVMType(Ty)) {
const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty));
return RValue::getAggregate(llvm::UndefValue::get(LTy));
} else {
return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
}
}
RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
const char *Name) {
ErrorUnsupported(E, Name);
return GetUndefRValue(E->getType());
}
LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
const char *Name) {
ErrorUnsupported(E, Name);
llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
return LValue::MakeAddr(llvm::UndefValue::get(Ty),
E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue CodeGenFunction::EmitLValue(const Expr *E) {
switch (E->getStmtClass()) {
default: return EmitUnsupportedLValue(E, "l-value expression");
case Expr::BinaryOperatorClass:
return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
case Expr::CallExprClass:
case Expr::CXXOperatorCallExprClass:
return EmitCallExprLValue(cast<CallExpr>(E));
case Expr::VAArgExprClass:
return EmitVAArgExprLValue(cast<VAArgExpr>(E));
case Expr::DeclRefExprClass:
case Expr::QualifiedDeclRefExprClass:
return EmitDeclRefLValue(cast<DeclRefExpr>(E));
case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
case Expr::PredefinedExprClass:
return EmitPredefinedLValue(cast<PredefinedExpr>(E));
case Expr::StringLiteralClass:
return EmitStringLiteralLValue(cast<StringLiteral>(E));
case Expr::ObjCEncodeExprClass:
return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
case Expr::BlockDeclRefExprClass:
return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
case Expr::CXXConditionDeclExprClass:
return EmitCXXConditionDeclLValue(cast<CXXConditionDeclExpr>(E));
case Expr::CXXTemporaryObjectExprClass:
case Expr::CXXConstructExprClass:
return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
case Expr::CXXBindTemporaryExprClass:
return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
case Expr::ObjCMessageExprClass:
return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
case Expr::ObjCIvarRefExprClass:
return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
case Expr::ObjCPropertyRefExprClass:
return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
case Expr::ObjCImplicitSetterGetterRefExprClass:
return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E));
case Expr::ObjCSuperExprClass:
return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E));
case Expr::StmtExprClass:
return EmitStmtExprLValue(cast<StmtExpr>(E));
case Expr::UnaryOperatorClass:
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
case Expr::ArraySubscriptExprClass:
return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
case Expr::ExtVectorElementExprClass:
return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E));
case Expr::CompoundLiteralExprClass:
return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
case Expr::ConditionalOperatorClass:
return EmitConditionalOperator(cast<ConditionalOperator>(E));
case Expr::ChooseExprClass:
return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
case Expr::ImplicitCastExprClass:
case Expr::CStyleCastExprClass:
case Expr::CXXFunctionalCastExprClass:
case Expr::CXXStaticCastExprClass:
case Expr::CXXDynamicCastExprClass:
case Expr::CXXReinterpretCastExprClass:
case Expr::CXXConstCastExprClass:
return EmitCastLValue(cast<CastExpr>(E));
}
}
llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
QualType Ty) {
llvm::Value *V = Builder.CreateLoad(Addr, Volatile, "tmp");
// Bool can have different representation in memory than in registers.
if (Ty->isBooleanType())
if (V->getType() != llvm::Type::getInt1Ty(VMContext))
V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool");
return V;
}
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
bool Volatile, QualType Ty) {
if (Ty->isBooleanType()) {
// Bool can have different representation in memory than in registers.
const llvm::Type *SrcTy = Value->getType();
const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
if (DstPtr->getElementType() != SrcTy) {
const llvm::Type *MemTy =
llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
}
}
Builder.CreateStore(Value, Addr, Volatile);
}
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
if (LV.isObjCWeak()) {
// load of a __weak object.
llvm::Value *AddrWeakObj = LV.getAddress();
llvm::Value *read_weak = CGM.getObjCRuntime().EmitObjCWeakRead(*this,
AddrWeakObj);
return RValue::get(read_weak);
}
if (LV.isSimple()) {
llvm::Value *Ptr = LV.getAddress();
const llvm::Type *EltTy =
cast<llvm::PointerType>(Ptr->getType())->getElementType();
// Simple scalar l-value.
if (EltTy->isSingleValueType())
return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
ExprType));
assert(ExprType->isFunctionType() && "Unknown scalar value");
return RValue::get(Ptr);
}
if (LV.isVectorElt()) {
llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
LV.isVolatileQualified(), "tmp");
return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
"vecext"));
}
// If this is a reference to a subset of the elements of a vector, either
// shuffle the input or extract/insert them as appropriate.
if (LV.isExtVectorElt())
return EmitLoadOfExtVectorElementLValue(LV, ExprType);
if (LV.isBitfield())
return EmitLoadOfBitfieldLValue(LV, ExprType);
if (LV.isPropertyRef())
return EmitLoadOfPropertyRefLValue(LV, ExprType);
assert(LV.isKVCRef() && "Unknown LValue type!");
return EmitLoadOfKVCRefLValue(LV, ExprType);
}
RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
QualType ExprType) {
unsigned StartBit = LV.getBitfieldStartBit();
unsigned BitfieldSize = LV.getBitfieldSize();
llvm::Value *Ptr = LV.getBitfieldAddr();
const llvm::Type *EltTy =
cast<llvm::PointerType>(Ptr->getType())->getElementType();
unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
// In some cases the bitfield may straddle two memory locations.
// Currently we load the entire bitfield, then do the magic to
// sign-extend it if necessary. This results in somewhat more code
// than necessary for the common case (one load), since two shifts
// accomplish both the masking and sign extension.
unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
// Shift to proper location.
if (StartBit)
Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit),
"bf.lo");
// Mask off unused bits.
llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext,
llvm::APInt::getLowBitsSet(EltTySize, LowBits));
Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
// Fetch the high bits if necessary.
if (LowBits < BitfieldSize) {
unsigned HighBits = BitfieldSize - LowBits;
llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
LV.isVolatileQualified(),
"tmp");
// Mask off unused bits.
llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext,
llvm::APInt::getLowBitsSet(EltTySize, HighBits));
HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
// Shift to proper location and or in to bitfield value.
HighVal = Builder.CreateShl(HighVal,
llvm::ConstantInt::get(EltTy, LowBits));
Val = Builder.CreateOr(Val, HighVal, "bf.val");
}
// Sign extend if necessary.
if (LV.isBitfieldSigned()) {
llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
EltTySize - BitfieldSize);
Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
ExtraBits, "bf.val.sext");
}
// The bitfield type and the normal type differ when the storage sizes
// differ (currently just _Bool).
Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
return RValue::get(Val);
}
RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
QualType ExprType) {
return EmitObjCPropertyGet(LV.getPropertyRefExpr());
}
RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV,
QualType ExprType) {
return EmitObjCPropertyGet(LV.getKVCRefExpr());
}
// If this is a reference to a subset of the elements of a vector, create an
// appropriate shufflevector.
RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
QualType ExprType) {
llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
LV.isVolatileQualified(), "tmp");
const llvm::Constant *Elts = LV.getExtVectorElts();
// If the result of the expression is a non-vector type, we must be
// extracting a single element. Just codegen as an extractelement.
const VectorType *ExprVT = ExprType->getAsVectorType();
if (!ExprVT) {
unsigned InIdx = getAccessedFieldNo(0, Elts);
llvm::Value *Elt = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), InIdx);
return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
}
// Always use shuffle vector to try to retain the original program structure
unsigned NumResultElts = ExprVT->getNumElements();
llvm::SmallVector<llvm::Constant*, 4> Mask;
for (unsigned i = 0; i != NumResultElts; ++i) {
unsigned InIdx = getAccessedFieldNo(i, Elts);
Mask.push_back(llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), InIdx));
}
llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
Vec = Builder.CreateShuffleVector(Vec,
llvm::UndefValue::get(Vec->getType()),
MaskV, "tmp");
return RValue::get(Vec);
}
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
QualType Ty) {
if (!Dst.isSimple()) {
if (Dst.isVectorElt()) {
// Read/modify/write the vector, inserting the new element.
llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
Dst.isVolatileQualified(), "tmp");
Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
Dst.getVectorIdx(), "vecins");
Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
return;
}
// If this is an update of extended vector elements, insert them as
// appropriate.
if (Dst.isExtVectorElt())
return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
if (Dst.isBitfield())
return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
if (Dst.isPropertyRef())
return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty);
if (Dst.isKVCRef())
return EmitStoreThroughKVCRefLValue(Src, Dst, Ty);
assert(0 && "Unknown LValue type");
}
if (Dst.isObjCWeak() && !Dst.isNonGC()) {
// load of a __weak object.
llvm::Value *LvalueDst = Dst.getAddress();
llvm::Value *src = Src.getScalarVal();
CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
return;
}
if (Dst.isObjCStrong() && !Dst.isNonGC()) {
// load of a __strong object.
llvm::Value *LvalueDst = Dst.getAddress();
llvm::Value *src = Src.getScalarVal();
#if 0
// FIXME. We cannot positively determine if we have an 'ivar' assignment,
// object assignment or an unknown assignment. For now, generate call to
// objc_assign_strongCast assignment which is a safe, but consevative
// assumption.
if (Dst.isObjCIvar())
CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, LvalueDst);
else
CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
#endif
if (Dst.isGlobalObjCRef())
CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
else
CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
return;
}
assert(Src.isScalar() && "Can't emit an agg store with this method");
EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
Dst.isVolatileQualified(), Ty);
}
void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
QualType Ty,
llvm::Value **Result) {
unsigned StartBit = Dst.getBitfieldStartBit();
unsigned BitfieldSize = Dst.getBitfieldSize();
llvm::Value *Ptr = Dst.getBitfieldAddr();
const llvm::Type *EltTy =
cast<llvm::PointerType>(Ptr->getType())->getElementType();
unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
// Get the new value, cast to the appropriate type and masked to
// exactly the size of the bit-field.
llvm::Value *SrcVal = Src.getScalarVal();
llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
llvm::Constant *Mask = llvm::ConstantInt::get(VMContext,
llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");
// Return the new value of the bit-field, if requested.
if (Result) {
// Cast back to the proper type for result.
const llvm::Type *SrcTy = SrcVal->getType();
llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false,
"bf.reload.val");
// Sign extend if necessary.
if (Dst.isBitfieldSigned()) {
unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
SrcTySize - BitfieldSize);
SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
ExtraBits, "bf.reload.sext");
}
*Result = SrcTrunc;
}
// In some cases the bitfield may straddle two memory locations.
// Emit the low part first and check to see if the high needs to be
// done.
unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
"bf.prev.low");
// Compute the mask for zero-ing the low part of this bitfield.
llvm::Constant *InvMask =
llvm::ConstantInt::get(VMContext,
~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits));
// Compute the new low part as
// LowVal = (LowVal & InvMask) | (NewVal << StartBit),
// with the shift of NewVal implicitly stripping the high bits.
llvm::Value *NewLowVal =
Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit),
"bf.value.lo");
LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
// Write back.
Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
// If the low part doesn't cover the bitfield emit a high part.
if (LowBits < BitfieldSize) {
unsigned HighBits = BitfieldSize - LowBits;
llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
Dst.isVolatileQualified(),
"bf.prev.hi");
// Compute the mask for zero-ing the high part of this bitfield.
llvm::Constant *InvMask =
llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize,
HighBits));
// Compute the new high part as
// HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
// where the high bits of NewVal have already been cleared and the
// shift stripping the low bits.
llvm::Value *NewHighVal =
Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits),
"bf.value.high");
HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
// Write back.
Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
}
}
void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
LValue Dst,
QualType Ty) {
EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src);
}
void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src,
LValue Dst,
QualType Ty) {
EmitObjCPropertySet(Dst.getKVCRefExpr(), Src);
}
void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
LValue Dst,
QualType Ty) {
// This access turns into a read/modify/write of the vector. Load the input
// value now.
llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
Dst.isVolatileQualified(), "tmp");
const llvm::Constant *Elts = Dst.getExtVectorElts();
llvm::Value *SrcVal = Src.getScalarVal();
if (const VectorType *VTy = Ty->getAsVectorType()) {
unsigned NumSrcElts = VTy->getNumElements();
unsigned NumDstElts =
cast<llvm::VectorType>(Vec->getType())->getNumElements();
if (NumDstElts == NumSrcElts) {
// Use shuffle vector is the src and destination are the same number
// of elements and restore the vector mask since it is on the side
// it will be stored.
llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
for (unsigned i = 0; i != NumSrcElts; ++i) {
unsigned InIdx = getAccessedFieldNo(i, Elts);
Mask[InIdx] = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), i);
}
llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
Vec = Builder.CreateShuffleVector(SrcVal,
llvm::UndefValue::get(Vec->getType()),
MaskV, "tmp");
} else if (NumDstElts > NumSrcElts) {
// Extended the source vector to the same length and then shuffle it
// into the destination.
// FIXME: since we're shuffling with undef, can we just use the indices
// into that? This could be simpler.
llvm::SmallVector<llvm::Constant*, 4> ExtMask;
unsigned i;
for (i = 0; i != NumSrcElts; ++i)
ExtMask.push_back(llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), i));
for (; i != NumDstElts; ++i)
ExtMask.push_back(llvm::UndefValue::get(
llvm::Type::getInt32Ty(VMContext)));
llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
ExtMask.size());
llvm::Value *ExtSrcVal =
Builder.CreateShuffleVector(SrcVal,
llvm::UndefValue::get(SrcVal->getType()),
ExtMaskV, "tmp");
// build identity
llvm::SmallVector<llvm::Constant*, 4> Mask;
for (unsigned i = 0; i != NumDstElts; ++i) {
Mask.push_back(llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), i));
}
// modify when what gets shuffled in
for (unsigned i = 0; i != NumSrcElts; ++i) {
unsigned Idx = getAccessedFieldNo(i, Elts);
Mask[Idx] = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), i+NumDstElts);
}
llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
} else {
// We should never shorten the vector
assert(0 && "unexpected shorten vector length");
}
} else {
// If the Src is a scalar (not a vector) it must be updating one element.
unsigned InIdx = getAccessedFieldNo(0, Elts);
llvm::Value *Elt = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), InIdx);
Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
}
Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
}
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
if (VD && (VD->isBlockVarDecl() || isa<ParmVarDecl>(VD) ||
isa<ImplicitParamDecl>(VD))) {
LValue LV;
bool NonGCable = VD->hasLocalStorage() &&
!VD->hasAttr<BlocksAttr>();
if (VD->hasExternalStorage()) {
llvm::Value *V = CGM.GetAddrOfGlobalVar(VD);
if (VD->getType()->isReferenceType())
V = Builder.CreateLoad(V, "tmp");
LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
} else {
llvm::Value *V = LocalDeclMap[VD];
assert(V && "DeclRefExpr not entered in LocalDeclMap?");
// local variables do not get their gc attribute set.
QualType::GCAttrTypes attr = QualType::GCNone;
// local static?
if (!NonGCable)
attr = getContext().getObjCGCAttrKind(E->getType());
if (VD->hasAttr<BlocksAttr>()) {
bool needsCopyDispose = BlockRequiresCopying(VD->getType());
const llvm::Type *PtrStructTy = V->getType();
const llvm::Type *Ty = PtrStructTy;
Ty = llvm::PointerType::get(Ty, 0);
V = Builder.CreateStructGEP(V, 1, "forwarding");
V = Builder.CreateBitCast(V, Ty);
V = Builder.CreateLoad(V, false);
V = Builder.CreateBitCast(V, PtrStructTy);
V = Builder.CreateStructGEP(V, needsCopyDispose*2 + 4, "x");
}
if (VD->getType()->isReferenceType())
V = Builder.CreateLoad(V, "tmp");
LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(), attr,
E->getType().getAddressSpace());
}
LValue::SetObjCNonGC(LV, NonGCable);
return LV;
} else if (VD && VD->isFileVarDecl()) {
llvm::Value *V = CGM.GetAddrOfGlobalVar(VD);
if (VD->getType()->isReferenceType())
V = Builder.CreateLoad(V, "tmp");
LValue LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
if (LV.isObjCStrong())
LV.SetGlobalObjCRef(LV, true);
return LV;
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
llvm::Value* V = CGM.GetAddrOfFunction(GlobalDecl(FD));
if (!FD->hasPrototype()) {
if (const FunctionProtoType *Proto =
FD->getType()->getAsFunctionProtoType()) {
// Ugly case: for a K&R-style definition, the type of the definition
// isn't the same as the type of a use. Correct for this with a
// bitcast.
QualType NoProtoType =
getContext().getFunctionNoProtoType(Proto->getResultType());
NoProtoType = getContext().getPointerType(NoProtoType);
V = Builder.CreateBitCast(V, ConvertType(NoProtoType), "tmp");
}
}
return LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
} else if (const ImplicitParamDecl *IPD =
dyn_cast<ImplicitParamDecl>(E->getDecl())) {
llvm::Value *V = LocalDeclMap[IPD];
assert(V && "BlockVarDecl not entered in LocalDeclMap?");
return LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
assert(0 && "Unimp declref");
//an invalid LValue, but the assert will
//ensure that this point is never reached.
return LValue();
}
LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
return LValue::MakeAddr(GetAddrOfBlockDecl(E),
E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
// __extension__ doesn't affect lvalue-ness.
if (E->getOpcode() == UnaryOperator::Extension)
return EmitLValue(E->getSubExpr());
QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
switch (E->getOpcode()) {
default: assert(0 && "Unknown unary operator lvalue!");
case UnaryOperator::Deref:
{
QualType T = E->getSubExpr()->getType()->getPointeeType();
assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()),
T.getCVRQualifiers(),
getContext().getObjCGCAttrKind(T),
ExprTy.getAddressSpace());
// We should not generate __weak write barrier on indirect reference
// of a pointer to object; as in void foo (__weak id *param); *param = 0;
// But, we continue to generate __strong write barrier on indirect write
// into a pointer to object.
if (getContext().getLangOptions().ObjC1 &&
getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
LV.isObjCWeak())
LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
return LV;
}
case UnaryOperator::Real:
case UnaryOperator::Imag:
LValue LV = EmitLValue(E->getSubExpr());
unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
Idx, "idx"),
ExprTy.getCVRQualifiers(),
QualType::GCNone,
ExprTy.getAddressSpace());
}
}
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E), 0);
}
LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E), 0);
}
LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) {
std::string GlobalVarName;
switch (Type) {
default:
assert(0 && "Invalid type");
case PredefinedExpr::Func:
GlobalVarName = "__func__.";
break;
case PredefinedExpr::Function:
GlobalVarName = "__FUNCTION__.";
break;
case PredefinedExpr::PrettyFunction:
// FIXME:: Demangle C++ method names
GlobalVarName = "__PRETTY_FUNCTION__.";
break;
}
// FIXME: This isn't right at all. The logic for computing this should go
// into a method on PredefinedExpr. This would allow sema and codegen to be
// consistent for things like sizeof(__func__) etc.
std::string FunctionName;
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
FunctionName = CGM.getMangledName(FD);
} else {
// Just get the mangled name; skipping the asm prefix if it
// exists.
FunctionName = CurFn->getName();
if (FunctionName[0] == '\01')
FunctionName = FunctionName.substr(1, std::string::npos);
}
GlobalVarName += FunctionName;
llvm::Constant *C =
CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
return LValue::MakeAddr(C, 0);
}
LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
switch (E->getIdentType()) {
default:
return EmitUnsupportedLValue(E, "predefined expression");
case PredefinedExpr::Func:
case PredefinedExpr::Function:
case PredefinedExpr::PrettyFunction:
return EmitPredefinedFunctionName(E->getIdentType());
}
}
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
// The index must always be an integer, which is not an aggregate. Emit it.
llvm::Value *Idx = EmitScalarExpr(E->getIdx());
QualType IdxTy = E->getIdx()->getType();
bool IdxSigned = IdxTy->isSignedIntegerType();
// If the base is a vector type, then we are forming a vector element lvalue
// with this subscript.
if (E->getBase()->getType()->isVectorType()) {
// Emit the vector as an lvalue to get its address.
LValue LHS = EmitLValue(E->getBase());
assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
Idx = Builder.CreateIntCast(Idx,
llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx");
return LValue::MakeVectorElt(LHS.getAddress(), Idx,
E->getBase()->getType().getCVRQualifiers());
}
// The base must be a pointer, which is not an aggregate. Emit it.
llvm::Value *Base = EmitScalarExpr(E->getBase());
// Extend or truncate the index type to 32 or 64-bits.
unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
if (IdxBitwidth != LLVMPointerWidth)
Idx = Builder.CreateIntCast(Idx,
llvm::IntegerType::get(VMContext, LLVMPointerWidth),
IdxSigned, "idxprom");
// We know that the pointer points to a type of the correct size,
// unless the size is a VLA or Objective-C interface.
llvm::Value *Address = 0;
if (const VariableArrayType *VAT =
getContext().getAsVariableArrayType(E->getType())) {
llvm::Value *VLASize = GetVLASize(VAT);
Idx = Builder.CreateMul(Idx, VLASize);
QualType BaseType = getContext().getBaseElementType(VAT);
uint64_t BaseTypeSize = getContext().getTypeSize(BaseType) / 8;
Idx = Builder.CreateUDiv(Idx,
llvm::ConstantInt::get(Idx->getType(),
BaseTypeSize));
Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
} else if (const ObjCInterfaceType *OIT =
dyn_cast<ObjCInterfaceType>(E->getType())) {
llvm::Value *InterfaceSize =
llvm::ConstantInt::get(Idx->getType(),
getContext().getTypeSize(OIT) / 8);
Idx = Builder.CreateMul(Idx, InterfaceSize);
llvm::Type *i8PTy =
llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy),
Idx, "arrayidx");
Address = Builder.CreateBitCast(Address, Base->getType());
} else {
Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
}
QualType T = E->getBase()->getType()->getPointeeType();
assert(!T.isNull() &&
"CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
LValue LV = LValue::MakeAddr(Address,
T.getCVRQualifiers(),
getContext().getObjCGCAttrKind(T),
E->getBase()->getType().getAddressSpace());
if (getContext().getLangOptions().ObjC1 &&
getContext().getLangOptions().getGCMode() != LangOptions::NonGC)
LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
return LV;
}
static
llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
llvm::SmallVector<unsigned, 4> &Elts) {
llvm::SmallVector<llvm::Constant *, 4> CElts;
for (unsigned i = 0, e = Elts.size(); i != e; ++i)
CElts.push_back(llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), Elts[i]));
return llvm::ConstantVector::get(&CElts[0], CElts.size());
}
LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
// Emit the base vector as an l-value.
LValue Base;
// ExtVectorElementExpr's base can either be a vector or pointer to vector.
if (!E->isArrow()) {
assert(E->getBase()->getType()->isVectorType());
Base = EmitLValue(E->getBase());
} else {
const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
llvm::Value *Ptr = EmitScalarExpr(E->getBase());
Base = LValue::MakeAddr(Ptr, PT->getPointeeType().getCVRQualifiers(),
QualType::GCNone,
PT->getPointeeType().getAddressSpace());
}
// Encode the element access list into a vector of unsigned indices.
llvm::SmallVector<unsigned, 4> Indices;
E->getEncodedElementAccess(Indices);
if (Base.isSimple()) {
llvm::Constant *CV = GenerateConstantVector(VMContext, Indices);
return LValue::MakeExtVectorElt(Base.getAddress(), CV,
Base.getQualifiers());
}
assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
llvm::Constant *BaseElts = Base.getExtVectorElts();
llvm::SmallVector<llvm::Constant *, 4> CElts;
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
if (isa<llvm::ConstantAggregateZero>(BaseElts))
CElts.push_back(llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), 0));
else
CElts.push_back(BaseElts->getOperand(Indices[i]));
}
llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
Base.getQualifiers());
}
LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
bool isUnion = false;
bool isIvar = false;
bool isNonGC = false;
Expr *BaseExpr = E->getBase();
llvm::Value *BaseValue = NULL;
unsigned CVRQualifiers=0;
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
if (E->isArrow()) {
BaseValue = EmitScalarExpr(BaseExpr);
const PointerType *PTy =
BaseExpr->getType()->getAs<PointerType>();
if (PTy->getPointeeType()->isUnionType())
isUnion = true;
CVRQualifiers = PTy->getPointeeType().getCVRQualifiers();
} else if (isa<ObjCPropertyRefExpr>(BaseExpr) ||
isa<ObjCImplicitSetterGetterRefExpr>(BaseExpr)) {
RValue RV = EmitObjCPropertyGet(BaseExpr);
BaseValue = RV.getAggregateAddr();
if (BaseExpr->getType()->isUnionType())
isUnion = true;
CVRQualifiers = BaseExpr->getType().getCVRQualifiers();
} else {
LValue BaseLV = EmitLValue(BaseExpr);
if (BaseLV.isObjCIvar())
isIvar = true;
if (BaseLV.isNonGC())
isNonGC = true;
// FIXME: this isn't right for bitfields.
BaseValue = BaseLV.getAddress();
QualType BaseTy = BaseExpr->getType();
if (BaseTy->isUnionType())
isUnion = true;
CVRQualifiers = BaseTy.getCVRQualifiers();
}
FieldDecl *Field = dyn_cast<FieldDecl>(E->getMemberDecl());
// FIXME: Handle non-field member expressions
assert(Field && "No code generation for non-field member references");
LValue MemExpLV = EmitLValueForField(BaseValue, Field, isUnion,
CVRQualifiers);
LValue::SetObjCIvar(MemExpLV, isIvar);
LValue::SetObjCNonGC(MemExpLV, isNonGC);
return MemExpLV;
}
LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue,
FieldDecl* Field,
unsigned CVRQualifiers) {
CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field);
// FIXME: CodeGenTypes should expose a method to get the appropriate type for
// FieldTy (the appropriate type is ABI-dependent).
const llvm::Type *FieldTy =
CGM.getTypes().ConvertTypeForMem(Field->getType());
const llvm::PointerType *BaseTy =
cast<llvm::PointerType>(BaseValue->getType());
unsigned AS = BaseTy->getAddressSpace();
BaseValue = Builder.CreateBitCast(BaseValue,
llvm::PointerType::get(FieldTy, AS),
"tmp");
llvm::Value *Idx =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo);
llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp");
return LValue::MakeBitfield(V, Info.Start, Info.Size,
Field->getType()->isSignedIntegerType(),
Field->getType().getCVRQualifiers()|CVRQualifiers);
}
LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
FieldDecl* Field,
bool isUnion,
unsigned CVRQualifiers)
{
if (Field->isBitField())
return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
// Match union field type.
if (isUnion) {
const llvm::Type *FieldTy =
CGM.getTypes().ConvertTypeForMem(Field->getType());
const llvm::PointerType * BaseTy =
cast<llvm::PointerType>(BaseValue->getType());
unsigned AS = BaseTy->getAddressSpace();
V = Builder.CreateBitCast(V,
llvm::PointerType::get(FieldTy, AS),
"tmp");
}
if (Field->getType()->isReferenceType())
V = Builder.CreateLoad(V, "tmp");
QualType::GCAttrTypes attr = QualType::GCNone;
if (CGM.getLangOptions().ObjC1 &&
CGM.getLangOptions().getGCMode() != LangOptions::NonGC) {
QualType Ty = Field->getType();
attr = Ty.getObjCGCAttr();
if (attr != QualType::GCNone) {
// __weak attribute on a field is ignored.
if (attr == QualType::Weak)
attr = QualType::GCNone;
} else if (Ty->isObjCObjectPointerType())
attr = QualType::Strong;
}
LValue LV =
LValue::MakeAddr(V,
Field->getType().getCVRQualifiers()|CVRQualifiers,
attr,
Field->getType().getAddressSpace());
return LV;
}
LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){
const llvm::Type *LTy = ConvertType(E->getType());
llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral");
const Expr* InitExpr = E->getInitializer();
LValue Result = LValue::MakeAddr(DeclPtr, E->getType().getCVRQualifiers(),
QualType::GCNone,
E->getType().getAddressSpace());
if (E->getType()->isComplexType()) {
EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
} else if (hasAggregateLLVMType(E->getType())) {
EmitAnyExpr(InitExpr, DeclPtr, false);
} else {
EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
}
return Result;
}
LValue CodeGenFunction::EmitConditionalOperator(const ConditionalOperator* E) {
if (E->isLvalue(getContext()) == Expr::LV_Valid)
return EmitUnsupportedLValue(E, "conditional operator");
// ?: here should be an aggregate.
assert((hasAggregateLLVMType(E->getType()) &&
!E->getType()->isAnyComplexType()) &&
"Unexpected conditional operator!");
llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
EmitAggExpr(E, Temp, false);
return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
/// EmitCastLValue - Casts are never lvalues. If a cast is needed by the code
/// generator in an lvalue context, then it must mean that we need the address
/// of an aggregate in order to access one of its fields. This can happen for
/// all the reasons that casts are permitted with aggregate result, including
/// noop aggregate casts, and cast from scalar to union.
LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
// If this is an aggregate-to-aggregate cast, just use the input's address as
// the lvalue.
if (getContext().hasSameUnqualifiedType(E->getType(),
E->getSubExpr()->getType()))
return EmitLValue(E->getSubExpr());
// Otherwise, we must have a cast from scalar to union.
assert(E->getType()->isUnionType() && "Expected scalar-to-union cast");
// Casts are only lvalues when the source and destination types are the same.
llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
EmitAnyExpr(E->getSubExpr(), Temp, false);
return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
// Builtins never have block type.
if (E->getCallee()->getType()->isBlockPointerType())
return EmitBlockCallExpr(E);
if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
return EmitCXXMemberCallExpr(CE);
const Decl *TargetDecl = 0;
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
TargetDecl = DRE->getDecl();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
if (unsigned builtinID = FD->getBuiltinID(getContext()))
return EmitBuiltinExpr(FD, builtinID, E);
}
}
if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
return EmitCXXOperatorMemberCallExpr(CE, MD);
llvm::Value *Callee = EmitScalarExpr(E->getCallee());
return EmitCall(Callee, E->getCallee()->getType(),
E->arg_begin(), E->arg_end(), TargetDecl);
}
LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
// Comma expressions just emit their LHS then their RHS as an l-value.
if (E->getOpcode() == BinaryOperator::Comma) {
EmitAnyExpr(E->getLHS());
return EmitLValue(E->getRHS());
}
// Can only get l-value for binary operator expressions which are a
// simple assignment of aggregate type.
if (E->getOpcode() != BinaryOperator::Assign)
return EmitUnsupportedLValue(E, "binary l-value expression");
llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
EmitAggExpr(E, Temp, false);
// FIXME: Are these qualifiers correct?
return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
RValue RV = EmitCallExpr(E);
if (RV.isScalar()) {
assert(E->getCallReturnType()->isReferenceType() &&
"Can't have a scalar return unless the return type is a "
"reference type!");
return LValue::MakeAddr(RV.getScalarVal(), E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
return LValue::MakeAddr(RV.getAggregateAddr(),
E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
// FIXME: This shouldn't require another copy.
llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
EmitAggExpr(E, Temp, false);
return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
QualType::GCNone, E->getType().getAddressSpace());
}
LValue
CodeGenFunction::EmitCXXConditionDeclLValue(const CXXConditionDeclExpr *E) {
EmitLocalBlockVarDecl(*E->getVarDecl());
return EmitDeclRefLValue(E);
}
LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), "tmp");
EmitCXXConstructExpr(Temp, E);
return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
QualType::GCNone, E->getType().getAddressSpace());
}
LValue
CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
LValue LV = EmitLValue(E->getSubExpr());
PushCXXTemporary(E->getTemporary(), LV.getAddress());
return LV;
}
LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
// Can only get l-value for message expression returning aggregate type
RValue RV = EmitObjCMessageExpr(E);
// FIXME: can this be volatile?
return LValue::MakeAddr(RV.getAggregateAddr(),
E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar) {
return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
}
LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers) {
return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
Ivar, CVRQualifiers);
}
LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
// FIXME: A lot of the code below could be shared with EmitMemberExpr.
llvm::Value *BaseValue = 0;
const Expr *BaseExpr = E->getBase();
unsigned CVRQualifiers = 0;
QualType ObjectTy;
if (E->isArrow()) {
BaseValue = EmitScalarExpr(BaseExpr);
ObjectTy = BaseExpr->getType()->getPointeeType();
CVRQualifiers = ObjectTy.getCVRQualifiers();
} else {
LValue BaseLV = EmitLValue(BaseExpr);
// FIXME: this isn't right for bitfields.
BaseValue = BaseLV.getAddress();
ObjectTy = BaseExpr->getType();
CVRQualifiers = ObjectTy.getCVRQualifiers();
}
return EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), CVRQualifiers);
}
LValue
CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
// This is a special l-value that just issues sends when we load or
// store through it.
return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
}
LValue
CodeGenFunction::EmitObjCKVCRefLValue(
const ObjCImplicitSetterGetterRefExpr *E) {
// This is a special l-value that just issues sends when we load or
// store through it.
return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
}
LValue
CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) {
return EmitUnsupportedLValue(E, "use of super");
}
LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
// Can only get l-value for message expression returning aggregate type
RValue RV = EmitAnyExprToTemp(E);
// FIXME: can this be volatile?
return LValue::MakeAddr(RV.getAggregateAddr(),
E->getType().getCVRQualifiers(),
getContext().getObjCGCAttrKind(E->getType()),
E->getType().getAddressSpace());
}
RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd,
const Decl *TargetDecl) {
// Get the actual function type. The callee type will always be a
// pointer to function type or a block pointer type.
assert(CalleeType->isFunctionPointerType() &&
"Call must have function pointer type!");
QualType FnType = CalleeType->getAs<PointerType>()->getPointeeType();
QualType ResultType = FnType->getAsFunctionType()->getResultType();
CallArgList Args;
EmitCallArgs(Args, FnType->getAsFunctionProtoType(), ArgBeg, ArgEnd);
return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args),
Callee, Args, TargetDecl);
}