blob: ed539226558b676b2496b9a7d942dd3e7be9eca3 [file] [log] [blame]
//== MemRegion.cpp - Abstract memory regions for static analysis --*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines MemRegion and its subclasses. MemRegion defines a
// partially-typed abstraction of memory useful for path-sensitive dataflow
// analyses.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/raw_ostream.h"
#include "clang/Analysis/PathSensitive/MemRegion.h"
#include "clang/Analysis/PathSensitive/ValueManager.h"
#include "clang/Analysis/PathSensitive/AnalysisContext.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Basic methods.
//===----------------------------------------------------------------------===//
MemRegion::~MemRegion() {}
bool SubRegion::isSubRegionOf(const MemRegion* R) const {
const MemRegion* r = getSuperRegion();
while (r != 0) {
if (r == R)
return true;
if (const SubRegion* sr = dyn_cast<SubRegion>(r))
r = sr->getSuperRegion();
else
break;
}
return false;
}
MemRegionManager* SubRegion::getMemRegionManager() const {
const SubRegion* r = this;
do {
const MemRegion *superRegion = r->getSuperRegion();
if (const SubRegion *sr = dyn_cast<SubRegion>(superRegion)) {
r = sr;
continue;
}
return superRegion->getMemRegionManager();
} while (1);
}
void MemSpaceRegion::Profile(llvm::FoldingSetNodeID& ID) const {
ID.AddInteger((unsigned)getKind());
}
void StringRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const StringLiteral* Str,
const MemRegion* superRegion) {
ID.AddInteger((unsigned) StringRegionKind);
ID.AddPointer(Str);
ID.AddPointer(superRegion);
}
void AllocaRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const Expr* Ex, unsigned cnt,
const MemRegion *) {
ID.AddInteger((unsigned) AllocaRegionKind);
ID.AddPointer(Ex);
ID.AddInteger(cnt);
}
void AllocaRegion::Profile(llvm::FoldingSetNodeID& ID) const {
ProfileRegion(ID, Ex, Cnt, superRegion);
}
void CompoundLiteralRegion::Profile(llvm::FoldingSetNodeID& ID) const {
CompoundLiteralRegion::ProfileRegion(ID, CL, superRegion);
}
void CompoundLiteralRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
const CompoundLiteralExpr* CL,
const MemRegion* superRegion) {
ID.AddInteger((unsigned) CompoundLiteralRegionKind);
ID.AddPointer(CL);
ID.AddPointer(superRegion);
}
void DeclRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, const Decl* D,
const MemRegion* superRegion, Kind k) {
ID.AddInteger((unsigned) k);
ID.AddPointer(D);
ID.AddPointer(superRegion);
}
void DeclRegion::Profile(llvm::FoldingSetNodeID& ID) const {
DeclRegion::ProfileRegion(ID, D, superRegion, getKind());
}
void VarRegion::Profile(llvm::FoldingSetNodeID &ID) const {
VarRegion::ProfileRegion(ID, getDecl(), LC, superRegion);
}
void SymbolicRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, SymbolRef sym,
const MemRegion *sreg) {
ID.AddInteger((unsigned) MemRegion::SymbolicRegionKind);
ID.Add(sym);
ID.AddPointer(sreg);
}
void SymbolicRegion::Profile(llvm::FoldingSetNodeID& ID) const {
SymbolicRegion::ProfileRegion(ID, sym, getSuperRegion());
}
void ElementRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
QualType ElementType, SVal Idx,
const MemRegion* superRegion) {
ID.AddInteger(MemRegion::ElementRegionKind);
ID.Add(ElementType);
ID.AddPointer(superRegion);
Idx.Profile(ID);
}
void ElementRegion::Profile(llvm::FoldingSetNodeID& ID) const {
ElementRegion::ProfileRegion(ID, ElementType, Index, superRegion);
}
void CodeTextRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, const void* data,
QualType t, const MemRegion*) {
ID.AddInteger(MemRegion::CodeTextRegionKind);
ID.AddPointer(data);
ID.Add(t);
}
void CodeTextRegion::Profile(llvm::FoldingSetNodeID& ID) const {
CodeTextRegion::ProfileRegion(ID, Data, LocationType, superRegion);
}
//===----------------------------------------------------------------------===//
// Region pretty-printing.
//===----------------------------------------------------------------------===//
void MemRegion::dump() const {
dumpToStream(llvm::errs());
}
std::string MemRegion::getString() const {
std::string s;
llvm::raw_string_ostream os(s);
dumpToStream(os);
return os.str();
}
void MemRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "<Unknown Region>";
}
void AllocaRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "alloca{" << (void*) Ex << ',' << Cnt << '}';
}
void CodeTextRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "code{";
if (isDeclared())
os << getDecl()->getDeclName().getAsString();
else
os << '$' << getSymbol();
os << '}';
}
void CompoundLiteralRegion::dumpToStream(llvm::raw_ostream& os) const {
// FIXME: More elaborate pretty-printing.
os << "{ " << (void*) CL << " }";
}
void ElementRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "element{" << superRegion << ','
<< Index << ',' << getElementType().getAsString() << '}';
}
void FieldRegion::dumpToStream(llvm::raw_ostream& os) const {
os << superRegion << "->" << getDecl()->getNameAsString();
}
void ObjCIvarRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "ivar{" << superRegion << ',' << getDecl()->getNameAsString() << '}';
}
void StringRegion::dumpToStream(llvm::raw_ostream& os) const {
Str->printPretty(os, 0, PrintingPolicy(getContext().getLangOptions()));
}
void SymbolicRegion::dumpToStream(llvm::raw_ostream& os) const {
os << "SymRegion{" << sym << '}';
}
void VarRegion::dumpToStream(llvm::raw_ostream& os) const {
os << cast<VarDecl>(D)->getNameAsString();
}
void RegionRawOffset::dump() const {
dumpToStream(llvm::errs());
}
void RegionRawOffset::dumpToStream(llvm::raw_ostream& os) const {
os << "raw_offset{" << getRegion() << ',' << getByteOffset() << '}';
}
//===----------------------------------------------------------------------===//
// MemRegionManager methods.
//===----------------------------------------------------------------------===//
MemSpaceRegion* MemRegionManager::LazyAllocate(MemSpaceRegion*& region) {
if (!region) {
region = (MemSpaceRegion*) A.Allocate<MemSpaceRegion>();
new (region) MemSpaceRegion(this);
}
return region;
}
MemSpaceRegion* MemRegionManager::getStackRegion() {
return LazyAllocate(stack);
}
MemSpaceRegion* MemRegionManager::getStackArgumentsRegion() {
return LazyAllocate(stackArguments);
}
MemSpaceRegion* MemRegionManager::getGlobalsRegion() {
return LazyAllocate(globals);
}
MemSpaceRegion* MemRegionManager::getHeapRegion() {
return LazyAllocate(heap);
}
MemSpaceRegion* MemRegionManager::getUnknownRegion() {
return LazyAllocate(unknown);
}
MemSpaceRegion* MemRegionManager::getCodeRegion() {
return LazyAllocate(code);
}
//===----------------------------------------------------------------------===//
// Constructing regions.
//===----------------------------------------------------------------------===//
StringRegion* MemRegionManager::getStringRegion(const StringLiteral* Str) {
return getRegion<StringRegion>(Str);
}
VarRegion* MemRegionManager::getVarRegion(const VarDecl *D,
const LocationContext *LC) {
// FIXME: Once we implement scope handling, we will need to properly lookup
// 'D' to the proper LocationContext. For now, just strip down to the
// StackFrame.
while (!isa<StackFrameContext>(LC))
LC = LC->getParent();
return getRegion<VarRegion>(D, LC);
}
CompoundLiteralRegion*
MemRegionManager::getCompoundLiteralRegion(const CompoundLiteralExpr* CL) {
return getRegion<CompoundLiteralRegion>(CL);
}
ElementRegion*
MemRegionManager::getElementRegion(QualType elementType, SVal Idx,
const MemRegion* superRegion,
ASTContext& Ctx){
QualType T = Ctx.getCanonicalType(elementType);
llvm::FoldingSetNodeID ID;
ElementRegion::ProfileRegion(ID, T, Idx, superRegion);
void* InsertPos;
MemRegion* data = Regions.FindNodeOrInsertPos(ID, InsertPos);
ElementRegion* R = cast_or_null<ElementRegion>(data);
if (!R) {
R = (ElementRegion*) A.Allocate<ElementRegion>();
new (R) ElementRegion(T, Idx, superRegion);
Regions.InsertNode(R, InsertPos);
}
return R;
}
CodeTextRegion* MemRegionManager::getCodeTextRegion(const FunctionDecl* fd,
QualType t) {
return getRegion<CodeTextRegion>(fd, t);
}
CodeTextRegion* MemRegionManager::getCodeTextRegion(SymbolRef sym, QualType t) {
return getRegion<CodeTextRegion>(sym, t);
}
/// getSymbolicRegion - Retrieve or create a "symbolic" memory region.
SymbolicRegion* MemRegionManager::getSymbolicRegion(SymbolRef sym) {
return getRegion<SymbolicRegion>(sym);
}
FieldRegion* MemRegionManager::getFieldRegion(const FieldDecl* d,
const MemRegion* superRegion) {
return getSubRegion<FieldRegion>(d, superRegion);
}
ObjCIvarRegion*
MemRegionManager::getObjCIvarRegion(const ObjCIvarDecl* d,
const MemRegion* superRegion) {
return getSubRegion<ObjCIvarRegion>(d, superRegion);
}
ObjCObjectRegion*
MemRegionManager::getObjCObjectRegion(const ObjCInterfaceDecl* d,
const MemRegion* superRegion) {
return getSubRegion<ObjCObjectRegion>(d, superRegion);
}
AllocaRegion* MemRegionManager::getAllocaRegion(const Expr* E, unsigned cnt) {
return getRegion<AllocaRegion>(E, cnt);
}
const MemSpaceRegion *MemRegion::getMemorySpace() const {
const MemRegion *R = this;
const SubRegion* SR = dyn_cast<SubRegion>(this);
while (SR) {
R = SR->getSuperRegion();
SR = dyn_cast<SubRegion>(R);
}
return dyn_cast<MemSpaceRegion>(R);
}
bool MemRegion::hasStackStorage() const {
if (const MemSpaceRegion *MS = getMemorySpace()) {
MemRegionManager *Mgr = getMemRegionManager();
return MS == Mgr->getStackRegion() || MS == Mgr->getStackArgumentsRegion();
}
return false;
}
bool MemRegion::hasHeapStorage() const {
if (const MemSpaceRegion *MS = getMemorySpace())
return MS == getMemRegionManager()->getHeapRegion();
return false;
}
bool MemRegion::hasHeapOrStackStorage() const {
if (const MemSpaceRegion *MS = getMemorySpace()) {
MemRegionManager *Mgr = getMemRegionManager();
return MS == Mgr->getHeapRegion()
|| MS == Mgr->getStackRegion()
|| MS == Mgr->getStackArgumentsRegion();
}
return false;
}
bool MemRegion::hasGlobalsStorage() const {
if (const MemSpaceRegion *MS = getMemorySpace())
return MS == getMemRegionManager()->getGlobalsRegion();
return false;
}
bool MemRegion::hasParametersStorage() const {
if (const MemSpaceRegion *MS = getMemorySpace())
return MS == getMemRegionManager()->getStackArgumentsRegion();
return false;
}
bool MemRegion::hasGlobalsOrParametersStorage() const {
if (const MemSpaceRegion *MS = getMemorySpace()) {
MemRegionManager *Mgr = getMemRegionManager();
return MS == Mgr->getGlobalsRegion()
|| MS == Mgr->getStackArgumentsRegion();
}
return false;
}
//===----------------------------------------------------------------------===//
// View handling.
//===----------------------------------------------------------------------===//
const MemRegion *MemRegion::getBaseRegion() const {
const MemRegion *R = this;
while (true) {
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
// FIXME: generalize. Essentially we want to strip away ElementRegions
// that were layered on a symbolic region because of casts. We only
// want to strip away ElementRegions, however, where the index is 0.
SVal index = ER->getIndex();
if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&index)) {
if (CI->getValue().getSExtValue() == 0) {
R = ER->getSuperRegion();
continue;
}
}
}
break;
}
return R;
}
// FIXME: Merge with the implementation of the same method in Store.cpp
static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *D = RT->getDecl();
if (!D->getDefinition(Ctx))
return false;
}
return true;
}
RegionRawOffset ElementRegion::getAsRawOffset() const {
int64_t offset = 0;
const ElementRegion *ER = this;
const MemRegion *superR = NULL;
ASTContext &C = getContext();
// FIXME: Handle multi-dimensional arrays.
while (ER) {
superR = ER->getSuperRegion();
// FIXME: generalize to symbolic offsets.
SVal index = ER->getIndex();
if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&index)) {
// Update the offset.
int64_t i = CI->getValue().getSExtValue();
if (i != 0) {
QualType elemType = ER->getElementType();
// If we are pointing to an incomplete type, go no further.
if (!IsCompleteType(C, elemType)) {
superR = ER;
break;
}
int64_t size = (int64_t) (C.getTypeSize(elemType) / 8);
offset += (i * size);
}
// Go to the next ElementRegion (if any).
ER = dyn_cast<ElementRegion>(superR);
continue;
}
return NULL;
}
assert(superR && "super region cannot be NULL");
return RegionRawOffset(superR, offset);
}