blob: 006f69890ab9ac70b76738c6b09decde4d20cee6 [file] [log] [blame]
//===--- ExprCXX.cpp - (C++) Expression AST Node Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the subclesses of Expr class declared in ExprCXX.h
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/IdentifierTable.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
// CXXTypeidExpr - has child iterators if the operand is an expression
Stmt::child_iterator CXXTypeidExpr::child_begin() {
return isTypeOperand() ? child_iterator() : &Operand.Ex;
}
Stmt::child_iterator CXXTypeidExpr::child_end() {
return isTypeOperand() ? child_iterator() : &Operand.Ex+1;
}
// CXXBoolLiteralExpr
Stmt::child_iterator CXXBoolLiteralExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator CXXBoolLiteralExpr::child_end() {
return child_iterator();
}
// CXXNullPtrLiteralExpr
Stmt::child_iterator CXXNullPtrLiteralExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator CXXNullPtrLiteralExpr::child_end() {
return child_iterator();
}
// CXXThisExpr
Stmt::child_iterator CXXThisExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator CXXThisExpr::child_end() { return child_iterator(); }
// CXXThrowExpr
Stmt::child_iterator CXXThrowExpr::child_begin() { return &Op; }
Stmt::child_iterator CXXThrowExpr::child_end() {
// If Op is 0, we are processing throw; which has no children.
return Op ? &Op+1 : &Op;
}
// CXXDefaultArgExpr
Stmt::child_iterator CXXDefaultArgExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator CXXDefaultArgExpr::child_end() {
return child_iterator();
}
// CXXZeroInitValueExpr
Stmt::child_iterator CXXZeroInitValueExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator CXXZeroInitValueExpr::child_end() {
return child_iterator();
}
// CXXConditionDeclExpr
Stmt::child_iterator CXXConditionDeclExpr::child_begin() {
return getVarDecl();
}
Stmt::child_iterator CXXConditionDeclExpr::child_end() {
return child_iterator();
}
// CXXNewExpr
CXXNewExpr::CXXNewExpr(bool globalNew, FunctionDecl *operatorNew,
Expr **placementArgs, unsigned numPlaceArgs,
bool parenTypeId, Expr *arraySize,
CXXConstructorDecl *constructor, bool initializer,
Expr **constructorArgs, unsigned numConsArgs,
FunctionDecl *operatorDelete, QualType ty,
SourceLocation startLoc, SourceLocation endLoc)
: Expr(CXXNewExprClass, ty, ty->isDependentType(), ty->isDependentType()),
GlobalNew(globalNew), ParenTypeId(parenTypeId),
Initializer(initializer), Array(arraySize), NumPlacementArgs(numPlaceArgs),
NumConstructorArgs(numConsArgs), OperatorNew(operatorNew),
OperatorDelete(operatorDelete), Constructor(constructor),
StartLoc(startLoc), EndLoc(endLoc)
{
unsigned TotalSize = Array + NumPlacementArgs + NumConstructorArgs;
SubExprs = new Stmt*[TotalSize];
unsigned i = 0;
if (Array)
SubExprs[i++] = arraySize;
for (unsigned j = 0; j < NumPlacementArgs; ++j)
SubExprs[i++] = placementArgs[j];
for (unsigned j = 0; j < NumConstructorArgs; ++j)
SubExprs[i++] = constructorArgs[j];
assert(i == TotalSize);
}
Stmt::child_iterator CXXNewExpr::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator CXXNewExpr::child_end() {
return &SubExprs[0] + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
// CXXDeleteExpr
Stmt::child_iterator CXXDeleteExpr::child_begin() { return &Argument; }
Stmt::child_iterator CXXDeleteExpr::child_end() { return &Argument+1; }
// UnresolvedFunctionNameExpr
Stmt::child_iterator UnresolvedFunctionNameExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator UnresolvedFunctionNameExpr::child_end() {
return child_iterator();
}
// UnaryTypeTraitExpr
Stmt::child_iterator UnaryTypeTraitExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator UnaryTypeTraitExpr::child_end() {
return child_iterator();
}
// UnresolvedDeclRefExpr
StmtIterator UnresolvedDeclRefExpr::child_begin() {
return child_iterator();
}
StmtIterator UnresolvedDeclRefExpr::child_end() {
return child_iterator();
}
TemplateIdRefExpr::TemplateIdRefExpr(QualType T,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
TemplateName Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceLocation RAngleLoc)
: Expr(TemplateIdRefExprClass, T,
(Template.isDependent() ||
TemplateSpecializationType::anyDependentTemplateArguments(
TemplateArgs, NumTemplateArgs)),
(Template.isDependent() ||
TemplateSpecializationType::anyDependentTemplateArguments(
TemplateArgs, NumTemplateArgs))),
Qualifier(Qualifier), QualifierRange(QualifierRange), Template(Template),
TemplateNameLoc(TemplateNameLoc), LAngleLoc(LAngleLoc),
RAngleLoc(RAngleLoc), NumTemplateArgs(NumTemplateArgs)
{
TemplateArgument *StoredTemplateArgs
= reinterpret_cast<TemplateArgument *> (this+1);
for (unsigned I = 0; I != NumTemplateArgs; ++I)
new (StoredTemplateArgs + I) TemplateArgument(TemplateArgs[I]);
}
TemplateIdRefExpr *
TemplateIdRefExpr::Create(ASTContext &Context, QualType T,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
TemplateName Template, SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs, SourceLocation RAngleLoc) {
void *Mem = Context.Allocate(sizeof(TemplateIdRefExpr) +
sizeof(TemplateArgument) * NumTemplateArgs);
return new (Mem) TemplateIdRefExpr(T, Qualifier, QualifierRange, Template,
TemplateNameLoc, LAngleLoc, TemplateArgs,
NumTemplateArgs, RAngleLoc);
}
void TemplateIdRefExpr::DoDestroy(ASTContext &Context) {
const TemplateArgument *TemplateArgs = getTemplateArgs();
for (unsigned I = 0; I != NumTemplateArgs; ++I)
if (Expr *E = TemplateArgs[I].getAsExpr())
E->Destroy(Context);
this->~TemplateIdRefExpr();
Context.Deallocate(this);
}
Stmt::child_iterator TemplateIdRefExpr::child_begin() {
// FIXME: Walk the expressions in the template arguments (?)
return Stmt::child_iterator();
}
Stmt::child_iterator TemplateIdRefExpr::child_end() {
// FIXME: Walk the expressions in the template arguments (?)
return Stmt::child_iterator();
}
bool UnaryTypeTraitExpr::EvaluateTrait(ASTContext& C) const {
switch(UTT) {
default: assert(false && "Unknown type trait or not implemented");
case UTT_IsPOD: return QueriedType->isPODType();
case UTT_IsClass: // Fallthrough
case UTT_IsUnion:
if (const RecordType *Record = QueriedType->getAs<RecordType>()) {
bool Union = Record->getDecl()->isUnion();
return UTT == UTT_IsUnion ? Union : !Union;
}
return false;
case UTT_IsEnum: return QueriedType->isEnumeralType();
case UTT_IsPolymorphic:
if (const RecordType *Record = QueriedType->getAs<RecordType>()) {
// Type traits are only parsed in C++, so we've got CXXRecords.
return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
}
return false;
case UTT_IsAbstract:
if (const RecordType *RT = QueriedType->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
return false;
case UTT_IsEmpty:
if (const RecordType *Record = QueriedType->getAs<RecordType>()) {
return !Record->getDecl()->isUnion()
&& cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
}
return false;
case UTT_HasTrivialConstructor:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true then the trait is true, else if type is
// a cv class or union type (or array thereof) with a trivial default
// constructor ([class.ctor]) then the trait is true, else it is false.
if (QueriedType->isPODType())
return true;
if (const RecordType *RT =
C.getBaseElementType(QueriedType)->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
return false;
case UTT_HasTrivialCopy:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true or type is a reference type then
// the trait is true, else if type is a cv class or union type
// with a trivial copy constructor ([class.copy]) then the trait
// is true, else it is false.
if (QueriedType->isPODType() || QueriedType->isReferenceType())
return true;
if (const RecordType *RT = QueriedType->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
return false;
case UTT_HasTrivialAssign:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If type is const qualified or is a reference type then the
// trait is false. Otherwise if __is_pod (type) is true then the
// trait is true, else if type is a cv class or union type with
// a trivial copy assignment ([class.copy]) then the trait is
// true, else it is false.
// Note: the const and reference restrictions are interesting,
// given that const and reference members don't prevent a class
// from having a trivial copy assignment operator (but do cause
// errors if the copy assignment operator is actually used, q.v.
// [class.copy]p12).
if (C.getBaseElementType(QueriedType).isConstQualified())
return false;
if (QueriedType->isPODType())
return true;
if (const RecordType *RT = QueriedType->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
return false;
case UTT_HasTrivialDestructor:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true or type is a reference type
// then the trait is true, else if type is a cv class or union
// type (or array thereof) with a trivial destructor
// ([class.dtor]) then the trait is true, else it is
// false.
if (QueriedType->isPODType() || QueriedType->isReferenceType())
return true;
if (const RecordType *RT =
C.getBaseElementType(QueriedType)->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
return false;
}
}
SourceRange CXXOperatorCallExpr::getSourceRange() const {
OverloadedOperatorKind Kind = getOperator();
if (Kind == OO_PlusPlus || Kind == OO_MinusMinus) {
if (getNumArgs() == 1)
// Prefix operator
return SourceRange(getOperatorLoc(),
getArg(0)->getSourceRange().getEnd());
else
// Postfix operator
return SourceRange(getArg(0)->getSourceRange().getEnd(),
getOperatorLoc());
} else if (Kind == OO_Call) {
return SourceRange(getArg(0)->getSourceRange().getBegin(), getRParenLoc());
} else if (Kind == OO_Subscript) {
return SourceRange(getArg(0)->getSourceRange().getBegin(), getRParenLoc());
} else if (getNumArgs() == 1) {
return SourceRange(getOperatorLoc(), getArg(0)->getSourceRange().getEnd());
} else if (getNumArgs() == 2) {
return SourceRange(getArg(0)->getSourceRange().getBegin(),
getArg(1)->getSourceRange().getEnd());
} else {
return SourceRange();
}
}
Expr *CXXMemberCallExpr::getImplicitObjectArgument() {
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(getCallee()->IgnoreParens()))
return MemExpr->getBase();
// FIXME: Will eventually need to cope with member pointers.
return 0;
}
//===----------------------------------------------------------------------===//
// Named casts
//===----------------------------------------------------------------------===//
/// getCastName - Get the name of the C++ cast being used, e.g.,
/// "static_cast", "dynamic_cast", "reinterpret_cast", or
/// "const_cast". The returned pointer must not be freed.
const char *CXXNamedCastExpr::getCastName() const {
switch (getStmtClass()) {
case CXXStaticCastExprClass: return "static_cast";
case CXXDynamicCastExprClass: return "dynamic_cast";
case CXXReinterpretCastExprClass: return "reinterpret_cast";
case CXXConstCastExprClass: return "const_cast";
default: return "<invalid cast>";
}
}
CXXTemporary *CXXTemporary::Create(ASTContext &C,
const CXXDestructorDecl *Destructor) {
return new (C) CXXTemporary(Destructor);
}
void CXXTemporary::Destroy(ASTContext &Ctx) {
this->~CXXTemporary();
Ctx.Deallocate(this);
}
CXXBindTemporaryExpr *CXXBindTemporaryExpr::Create(ASTContext &C,
CXXTemporary *Temp,
Expr* SubExpr) {
assert(SubExpr->getType()->isRecordType() &&
"Expression bound to a temporary must have record type!");
return new (C) CXXBindTemporaryExpr(Temp, SubExpr);
}
void CXXBindTemporaryExpr::DoDestroy(ASTContext &C) {
Temp->Destroy(C);
this->~CXXBindTemporaryExpr();
C.Deallocate(this);
}
CXXTemporaryObjectExpr::CXXTemporaryObjectExpr(ASTContext &C,
CXXConstructorDecl *Cons,
QualType writtenTy,
SourceLocation tyBeginLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation rParenLoc)
: CXXConstructExpr(C, CXXTemporaryObjectExprClass, writtenTy, Cons,
false, Args, NumArgs),
TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {
}
CXXConstructExpr *CXXConstructExpr::Create(ASTContext &C, QualType T,
CXXConstructorDecl *D, bool Elidable,
Expr **Args, unsigned NumArgs) {
return new (C) CXXConstructExpr(C, CXXConstructExprClass, T, D, Elidable,
Args, NumArgs);
}
CXXConstructExpr::CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
CXXConstructorDecl *D, bool elidable,
Expr **args, unsigned numargs)
: Expr(SC, T,
T->isDependentType(),
(T->isDependentType() ||
CallExpr::hasAnyValueDependentArguments(args, numargs))),
Constructor(D), Elidable(elidable), Args(0), NumArgs(numargs) {
// leave room for default arguments;
FunctionDecl *FDecl = cast<FunctionDecl>(D);
unsigned NumArgsInProto = FDecl->param_size();
NumArgs += (NumArgsInProto - numargs);
if (NumArgs > 0) {
Args = new (C) Stmt*[NumArgs];
for (unsigned i = 0; i < numargs; ++i)
Args[i] = args[i];
}
}
void CXXConstructExpr::DoDestroy(ASTContext &C) {
DestroyChildren(C);
if (Args)
C.Deallocate(Args);
this->~CXXConstructExpr();
C.Deallocate(this);
}
CXXExprWithTemporaries::CXXExprWithTemporaries(Expr *subexpr,
CXXTemporary **temps,
unsigned numtemps,
bool shoulddestroytemps)
: Expr(CXXExprWithTemporariesClass, subexpr->getType(),
subexpr->isTypeDependent(), subexpr->isValueDependent()),
SubExpr(subexpr), Temps(0), NumTemps(numtemps),
ShouldDestroyTemps(shoulddestroytemps) {
if (NumTemps > 0) {
Temps = new CXXTemporary*[NumTemps];
for (unsigned i = 0; i < NumTemps; ++i)
Temps[i] = temps[i];
}
}
CXXExprWithTemporaries *CXXExprWithTemporaries::Create(ASTContext &C,
Expr *SubExpr,
CXXTemporary **Temps,
unsigned NumTemps,
bool ShouldDestroyTemps){
return new (C) CXXExprWithTemporaries(SubExpr, Temps, NumTemps,
ShouldDestroyTemps);
}
void CXXExprWithTemporaries::DoDestroy(ASTContext &C) {
DestroyChildren(C);
this->~CXXExprWithTemporaries();
C.Deallocate(this);
}
CXXExprWithTemporaries::~CXXExprWithTemporaries() {
delete[] Temps;
}
// CXXBindTemporaryExpr
Stmt::child_iterator CXXBindTemporaryExpr::child_begin() {
return &SubExpr;
}
Stmt::child_iterator CXXBindTemporaryExpr::child_end() {
return &SubExpr + 1;
}
// CXXConstructExpr
Stmt::child_iterator CXXConstructExpr::child_begin() {
return &Args[0];
}
Stmt::child_iterator CXXConstructExpr::child_end() {
return &Args[0]+NumArgs;
}
// CXXExprWithTemporaries
Stmt::child_iterator CXXExprWithTemporaries::child_begin() {
return &SubExpr;
}
Stmt::child_iterator CXXExprWithTemporaries::child_end() {
return &SubExpr + 1;
}
CXXUnresolvedConstructExpr::CXXUnresolvedConstructExpr(
SourceLocation TyBeginLoc,
QualType T,
SourceLocation LParenLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation RParenLoc)
: Expr(CXXUnresolvedConstructExprClass, T.getNonReferenceType(),
T->isDependentType(), true),
TyBeginLoc(TyBeginLoc),
Type(T),
LParenLoc(LParenLoc),
RParenLoc(RParenLoc),
NumArgs(NumArgs) {
Stmt **StoredArgs = reinterpret_cast<Stmt **>(this + 1);
memcpy(StoredArgs, Args, sizeof(Expr *) * NumArgs);
}
CXXUnresolvedConstructExpr *
CXXUnresolvedConstructExpr::Create(ASTContext &C,
SourceLocation TyBegin,
QualType T,
SourceLocation LParenLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation RParenLoc) {
void *Mem = C.Allocate(sizeof(CXXUnresolvedConstructExpr) +
sizeof(Expr *) * NumArgs);
return new (Mem) CXXUnresolvedConstructExpr(TyBegin, T, LParenLoc,
Args, NumArgs, RParenLoc);
}
Stmt::child_iterator CXXUnresolvedConstructExpr::child_begin() {
return child_iterator(reinterpret_cast<Stmt **>(this + 1));
}
Stmt::child_iterator CXXUnresolvedConstructExpr::child_end() {
return child_iterator(reinterpret_cast<Stmt **>(this + 1) + NumArgs);
}
Stmt::child_iterator CXXUnresolvedMemberExpr::child_begin() {
return child_iterator(&Base);
}
Stmt::child_iterator CXXUnresolvedMemberExpr::child_end() {
return child_iterator(&Base + 1);
}