blob: 8dba2e68d65628f1358767707848a77b86cbb486 [file] [log] [blame]
// RUN: %clang_cc1 -fsyntax-only -verify %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++98 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
template<typename T>
void call_f0(T x) {
x.Base::f0();
}
struct Base {
void f0();
};
struct X0 : Base {
typedef Base CrazyBase;
};
void test_f0(X0 x0) {
call_f0(x0);
}
template<typename TheBase, typename T>
void call_f0_through_typedef(T x) {
typedef TheBase Base2;
x.Base2::f0();
}
void test_f0_through_typedef(X0 x0) {
call_f0_through_typedef<Base>(x0);
}
template<typename TheBase, typename T>
void call_f0_through_typedef2(T x) {
typedef TheBase CrazyBase;
#if __cplusplus <= 199711L
// expected-note@-2 {{lookup from the current scope refers here}}
#endif
x.CrazyBase::f0(); // expected-error 2{{no member named}}
#if __cplusplus <= 199711L
// expected-error@-2 {{lookup of 'CrazyBase' in member access expression is ambiguous}}
#endif
}
struct OtherBase { };
struct X1 : Base, OtherBase {
typedef OtherBase CrazyBase;
#if __cplusplus <= 199711L
// expected-note@-2 {{lookup in the object type 'X1' refers here}}
#endif
};
void test_f0_through_typedef2(X0 x0, X1 x1) {
call_f0_through_typedef2<Base>(x0);
call_f0_through_typedef2<OtherBase>(x1); // expected-note{{instantiation}}
call_f0_through_typedef2<Base>(x1); // expected-note{{instantiation}}
}
struct X2 {
operator int() const;
};
template<typename T, typename U>
T convert(const U& value) {
return value.operator T(); // expected-error{{operator long}}
}
void test_convert(X2 x2) {
convert<int>(x2);
convert<long>(x2); // expected-note{{instantiation}}
}
template<typename T>
void destruct(T* ptr) {
ptr->~T();
ptr->T::~T();
}
template<typename T>
void destruct_intptr(int *ip) {
ip->~T();
ip->T::~T();
}
void test_destruct(X2 *x2p, int *ip) {
destruct(x2p);
destruct(ip);
destruct_intptr<int>(ip);
}
// PR5220
class X3 {
protected:
template <int> float* &f0();
template <int> const float* &f0() const;
void f1() {
(void)static_cast<float*>(f0<0>());
}
void f1() const{
(void)f0<0>();
}
};
// Fun with template instantiation and conversions
struct X4 {
int& member();
float& member() const;
};
template<typename T>
struct X5 {
void f(T* ptr) { int& ir = ptr->member(); }
void g(T* ptr) { float& fr = ptr->member(); }
};
void test_X5(X5<X4> x5, X5<const X4> x5c, X4 *xp, const X4 *cxp) {
x5.f(xp);
x5c.g(cxp);
}
// In theory we can do overload resolution at template-definition time on this.
// We should at least not assert.
namespace test4 {
struct Base {
template <class T> void foo() {}
};
template <class T> struct Foo : Base {
void test() {
foo<int>();
}
};
}
namespace test5 {
template<typename T>
struct X {
using T::value;
T &getValue() {
return &value;
}
};
}
// PR8739
namespace test6 {
struct A {};
struct B {};
template <class T> class Base;
template <class T> class Derived : public Base<T> {
A *field;
void get(B **ptr) {
// It's okay if at some point we figure out how to diagnose this
// at instantiation time.
*ptr = field;
}
};
}