blob: d3ab980332365df5fc39e06f7bd3822978ca8cbd [file] [log] [blame]
//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker defines the attack surface for generic taint propagation.
//
// The taint information produced by it might be useful to other checkers. For
// example, checkers should report errors which involve tainted data more
// aggressively, even if the involved symbols are under constrained.
//
//===----------------------------------------------------------------------===//
#include "Taint.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/AST/Attr.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include <climits>
#include <initializer_list>
#include <utility>
using namespace clang;
using namespace ento;
using namespace taint;
namespace {
class GenericTaintChecker
: public Checker<check::PostStmt<CallExpr>, check::PreStmt<CallExpr>> {
public:
static void *getTag() {
static int Tag;
return &Tag;
}
void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
void printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const override;
private:
static const unsigned InvalidArgIndex = UINT_MAX;
/// Denotes the return vale.
static const unsigned ReturnValueIndex = UINT_MAX - 1;
mutable std::unique_ptr<BugType> BT;
void initBugType() const {
if (!BT)
BT.reset(new BugType(this, "Use of Untrusted Data", "Untrusted Data"));
}
/// Catch taint related bugs. Check if tainted data is passed to a
/// system call etc.
bool checkPre(const CallExpr *CE, CheckerContext &C) const;
/// Add taint sources on a pre-visit.
void addSourcesPre(const CallExpr *CE, CheckerContext &C) const;
/// Propagate taint generated at pre-visit.
bool propagateFromPre(const CallExpr *CE, CheckerContext &C) const;
/// Check if the region the expression evaluates to is the standard input,
/// and thus, is tainted.
static bool isStdin(const Expr *E, CheckerContext &C);
/// Given a pointer argument, return the value it points to.
static Optional<SVal> getPointedToSVal(CheckerContext &C, const Expr *Arg);
/// Check for CWE-134: Uncontrolled Format String.
static const char MsgUncontrolledFormatString[];
bool checkUncontrolledFormatString(const CallExpr *CE,
CheckerContext &C) const;
/// Check for:
/// CERT/STR02-C. "Sanitize data passed to complex subsystems"
/// CWE-78, "Failure to Sanitize Data into an OS Command"
static const char MsgSanitizeSystemArgs[];
bool checkSystemCall(const CallExpr *CE, StringRef Name,
CheckerContext &C) const;
/// Check if tainted data is used as a buffer size ins strn.. functions,
/// and allocators.
static const char MsgTaintedBufferSize[];
bool checkTaintedBufferSize(const CallExpr *CE, const FunctionDecl *FDecl,
CheckerContext &C) const;
/// Generate a report if the expression is tainted or points to tainted data.
bool generateReportIfTainted(const Expr *E, const char Msg[],
CheckerContext &C) const;
using ArgVector = SmallVector<unsigned, 2>;
/// A struct used to specify taint propagation rules for a function.
///
/// If any of the possible taint source arguments is tainted, all of the
/// destination arguments should also be tainted. Use InvalidArgIndex in the
/// src list to specify that all of the arguments can introduce taint. Use
/// InvalidArgIndex in the dst arguments to signify that all the non-const
/// pointer and reference arguments might be tainted on return. If
/// ReturnValueIndex is added to the dst list, the return value will be
/// tainted.
struct TaintPropagationRule {
enum class VariadicType { None, Src, Dst };
using PropagationFuncType = bool (*)(bool IsTainted, const CallExpr *,
CheckerContext &C);
/// List of arguments which can be taint sources and should be checked.
ArgVector SrcArgs;
/// List of arguments which should be tainted on function return.
ArgVector DstArgs;
/// Index for the first variadic parameter if exist.
unsigned VariadicIndex;
/// Show when a function has variadic parameters. If it has, it marks all
/// of them as source or destination.
VariadicType VarType;
/// Special function for tainted source determination. If defined, it can
/// override the default behavior.
PropagationFuncType PropagationFunc;
TaintPropagationRule()
: VariadicIndex(InvalidArgIndex), VarType(VariadicType::None),
PropagationFunc(nullptr) {}
TaintPropagationRule(std::initializer_list<unsigned> &&Src,
std::initializer_list<unsigned> &&Dst,
VariadicType Var = VariadicType::None,
unsigned VarIndex = InvalidArgIndex,
PropagationFuncType Func = nullptr)
: SrcArgs(std::move(Src)), DstArgs(std::move(Dst)),
VariadicIndex(VarIndex), VarType(Var), PropagationFunc(Func) {}
/// Get the propagation rule for a given function.
static TaintPropagationRule
getTaintPropagationRule(const FunctionDecl *FDecl, StringRef Name,
CheckerContext &C);
void addSrcArg(unsigned A) { SrcArgs.push_back(A); }
void addDstArg(unsigned A) { DstArgs.push_back(A); }
bool isNull() const {
return SrcArgs.empty() && DstArgs.empty() &&
VariadicType::None == VarType;
}
bool isDestinationArgument(unsigned ArgNum) const {
return (llvm::find(DstArgs, ArgNum) != DstArgs.end());
}
static bool isTaintedOrPointsToTainted(const Expr *E, ProgramStateRef State,
CheckerContext &C) {
if (isTainted(State, E, C.getLocationContext()) || isStdin(E, C))
return true;
if (!E->getType().getTypePtr()->isPointerType())
return false;
Optional<SVal> V = getPointedToSVal(C, E);
return (V && isTainted(State, *V));
}
/// Pre-process a function which propagates taint according to the
/// taint rule.
ProgramStateRef process(const CallExpr *CE, CheckerContext &C) const;
// Functions for custom taintedness propagation.
static bool postSocket(bool IsTainted, const CallExpr *CE,
CheckerContext &C);
};
};
const unsigned GenericTaintChecker::ReturnValueIndex;
const unsigned GenericTaintChecker::InvalidArgIndex;
const char GenericTaintChecker::MsgUncontrolledFormatString[] =
"Untrusted data is used as a format string "
"(CWE-134: Uncontrolled Format String)";
const char GenericTaintChecker::MsgSanitizeSystemArgs[] =
"Untrusted data is passed to a system call "
"(CERT/STR02-C. Sanitize data passed to complex subsystems)";
const char GenericTaintChecker::MsgTaintedBufferSize[] =
"Untrusted data is used to specify the buffer size "
"(CERT/STR31-C. Guarantee that storage for strings has sufficient space "
"for character data and the null terminator)";
} // end of anonymous namespace
/// A set which is used to pass information from call pre-visit instruction
/// to the call post-visit. The values are unsigned integers, which are either
/// ReturnValueIndex, or indexes of the pointer/reference argument, which
/// points to data, which should be tainted on return.
REGISTER_SET_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, unsigned)
GenericTaintChecker::TaintPropagationRule
GenericTaintChecker::TaintPropagationRule::getTaintPropagationRule(
const FunctionDecl *FDecl, StringRef Name, CheckerContext &C) {
// TODO: Currently, we might lose precision here: we always mark a return
// value as tainted even if it's just a pointer, pointing to tainted data.
// Check for exact name match for functions without builtin substitutes.
TaintPropagationRule Rule =
llvm::StringSwitch<TaintPropagationRule>(Name)
// Source functions
// TODO: Add support for vfscanf & family.
.Case("fdopen", TaintPropagationRule({}, {ReturnValueIndex}))
.Case("fopen", TaintPropagationRule({}, {ReturnValueIndex}))
.Case("freopen", TaintPropagationRule({}, {ReturnValueIndex}))
.Case("getch", TaintPropagationRule({}, {ReturnValueIndex}))
.Case("getchar", TaintPropagationRule({}, {ReturnValueIndex}))
.Case("getchar_unlocked", TaintPropagationRule({}, {ReturnValueIndex}))
.Case("getenv", TaintPropagationRule({}, {ReturnValueIndex}))
.Case("gets", TaintPropagationRule({}, {0, ReturnValueIndex}))
.Case("scanf", TaintPropagationRule({}, {}, VariadicType::Dst, 1))
.Case("socket",
TaintPropagationRule({}, {ReturnValueIndex}, VariadicType::None,
InvalidArgIndex,
&TaintPropagationRule::postSocket))
.Case("wgetch", TaintPropagationRule({}, {ReturnValueIndex}))
// Propagating functions
.Case("atoi", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("atol", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("atoll", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("fgetc", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("fgetln", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("fgets", TaintPropagationRule({2}, {0, ReturnValueIndex}))
.Case("fscanf", TaintPropagationRule({0}, {}, VariadicType::Dst, 2))
.Case("getc", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("getc_unlocked", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("getdelim", TaintPropagationRule({3}, {0}))
.Case("getline", TaintPropagationRule({2}, {0}))
.Case("getw", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("pread",
TaintPropagationRule({0, 1, 2, 3}, {1, ReturnValueIndex}))
.Case("read", TaintPropagationRule({0, 2}, {1, ReturnValueIndex}))
.Case("strchr", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("strrchr", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("tolower", TaintPropagationRule({0}, {ReturnValueIndex}))
.Case("toupper", TaintPropagationRule({0}, {ReturnValueIndex}))
.Default(TaintPropagationRule());
if (!Rule.isNull())
return Rule;
// Check if it's one of the memory setting/copying functions.
// This check is specialized but faster then calling isCLibraryFunction.
unsigned BId = 0;
if ((BId = FDecl->getMemoryFunctionKind()))
switch (BId) {
case Builtin::BImemcpy:
case Builtin::BImemmove:
case Builtin::BIstrncpy:
case Builtin::BIstrncat:
return TaintPropagationRule({1, 2}, {0, ReturnValueIndex});
case Builtin::BIstrlcpy:
case Builtin::BIstrlcat:
return TaintPropagationRule({1, 2}, {0});
case Builtin::BIstrndup:
return TaintPropagationRule({0, 1}, {ReturnValueIndex});
default:
break;
};
// Process all other functions which could be defined as builtins.
if (Rule.isNull()) {
if (C.isCLibraryFunction(FDecl, "snprintf"))
return TaintPropagationRule({1}, {0, ReturnValueIndex}, VariadicType::Src,
3);
else if (C.isCLibraryFunction(FDecl, "sprintf"))
return TaintPropagationRule({}, {0, ReturnValueIndex}, VariadicType::Src,
2);
else if (C.isCLibraryFunction(FDecl, "strcpy") ||
C.isCLibraryFunction(FDecl, "stpcpy") ||
C.isCLibraryFunction(FDecl, "strcat"))
return TaintPropagationRule({1}, {0, ReturnValueIndex});
else if (C.isCLibraryFunction(FDecl, "bcopy"))
return TaintPropagationRule({0, 2}, {1});
else if (C.isCLibraryFunction(FDecl, "strdup") ||
C.isCLibraryFunction(FDecl, "strdupa"))
return TaintPropagationRule({0}, {ReturnValueIndex});
else if (C.isCLibraryFunction(FDecl, "wcsdup"))
return TaintPropagationRule({0}, {ReturnValueIndex});
}
// Skipping the following functions, since they might be used for cleansing
// or smart memory copy:
// - memccpy - copying until hitting a special character.
return TaintPropagationRule();
}
void GenericTaintChecker::checkPreStmt(const CallExpr *CE,
CheckerContext &C) const {
// Check for taintedness related errors first: system call, uncontrolled
// format string, tainted buffer size.
if (checkPre(CE, C))
return;
// Marks the function's arguments and/or return value tainted if it present in
// the list.
addSourcesPre(CE, C);
}
void GenericTaintChecker::checkPostStmt(const CallExpr *CE,
CheckerContext &C) const {
// Set the marked values as tainted. The return value only accessible from
// checkPostStmt.
propagateFromPre(CE, C);
}
void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
printTaint(State, Out, NL, Sep);
}
void GenericTaintChecker::addSourcesPre(const CallExpr *CE,
CheckerContext &C) const {
ProgramStateRef State = nullptr;
const FunctionDecl *FDecl = C.getCalleeDecl(CE);
if (!FDecl || FDecl->getKind() != Decl::Function)
return;
StringRef Name = C.getCalleeName(FDecl);
if (Name.empty())
return;
// First, try generating a propagation rule for this function.
TaintPropagationRule Rule =
TaintPropagationRule::getTaintPropagationRule(FDecl, Name, C);
if (!Rule.isNull()) {
State = Rule.process(CE, C);
if (!State)
return;
C.addTransition(State);
return;
}
if (!State)
return;
C.addTransition(State);
}
bool GenericTaintChecker::propagateFromPre(const CallExpr *CE,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
// Depending on what was tainted at pre-visit, we determined a set of
// arguments which should be tainted after the function returns. These are
// stored in the state as TaintArgsOnPostVisit set.
TaintArgsOnPostVisitTy TaintArgs = State->get<TaintArgsOnPostVisit>();
if (TaintArgs.isEmpty())
return false;
for (unsigned ArgNum : TaintArgs) {
// Special handling for the tainted return value.
if (ArgNum == ReturnValueIndex) {
State = addTaint(State, CE, C.getLocationContext());
continue;
}
// The arguments are pointer arguments. The data they are pointing at is
// tainted after the call.
if (CE->getNumArgs() < (ArgNum + 1))
return false;
const Expr *Arg = CE->getArg(ArgNum);
Optional<SVal> V = getPointedToSVal(C, Arg);
if (V)
State = addTaint(State, *V);
}
// Clear up the taint info from the state.
State = State->remove<TaintArgsOnPostVisit>();
if (State != C.getState()) {
C.addTransition(State);
return true;
}
return false;
}
bool GenericTaintChecker::checkPre(const CallExpr *CE,
CheckerContext &C) const {
if (checkUncontrolledFormatString(CE, C))
return true;
const FunctionDecl *FDecl = C.getCalleeDecl(CE);
if (!FDecl || FDecl->getKind() != Decl::Function)
return false;
StringRef Name = C.getCalleeName(FDecl);
if (Name.empty())
return false;
if (checkSystemCall(CE, Name, C))
return true;
if (checkTaintedBufferSize(CE, FDecl, C))
return true;
return false;
}
Optional<SVal> GenericTaintChecker::getPointedToSVal(CheckerContext &C,
const Expr *Arg) {
ProgramStateRef State = C.getState();
SVal AddrVal = C.getSVal(Arg->IgnoreParens());
if (AddrVal.isUnknownOrUndef())
return None;
Optional<Loc> AddrLoc = AddrVal.getAs<Loc>();
if (!AddrLoc)
return None;
QualType ArgTy = Arg->getType().getCanonicalType();
if (!ArgTy->isPointerType())
return None;
QualType ValTy = ArgTy->getPointeeType();
// Do not dereference void pointers. Treat them as byte pointers instead.
// FIXME: we might want to consider more than just the first byte.
if (ValTy->isVoidType())
ValTy = C.getASTContext().CharTy;
return State->getSVal(*AddrLoc, ValTy);
}
ProgramStateRef
GenericTaintChecker::TaintPropagationRule::process(const CallExpr *CE,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
// Check for taint in arguments.
bool IsTainted = true;
for (unsigned ArgNum : SrcArgs) {
if (ArgNum >= CE->getNumArgs())
return State;
if ((IsTainted = isTaintedOrPointsToTainted(CE->getArg(ArgNum), State, C)))
break;
}
// Check for taint in variadic arguments.
if (!IsTainted && VariadicType::Src == VarType) {
// Check if any of the arguments is tainted
for (unsigned int i = VariadicIndex; i < CE->getNumArgs(); ++i) {
if ((IsTainted = isTaintedOrPointsToTainted(CE->getArg(i), State, C)))
break;
}
}
if (PropagationFunc)
IsTainted = PropagationFunc(IsTainted, CE, C);
if (!IsTainted)
return State;
// Mark the arguments which should be tainted after the function returns.
for (unsigned ArgNum : DstArgs) {
// Should mark the return value?
if (ArgNum == ReturnValueIndex) {
State = State->add<TaintArgsOnPostVisit>(ReturnValueIndex);
continue;
}
// Mark the given argument.
assert(ArgNum < CE->getNumArgs());
State = State->add<TaintArgsOnPostVisit>(ArgNum);
}
// Mark all variadic arguments tainted if present.
if (VariadicType::Dst == VarType) {
// For all pointer and references that were passed in:
// If they are not pointing to const data, mark data as tainted.
// TODO: So far we are just going one level down; ideally we'd need to
// recurse here.
for (unsigned int i = VariadicIndex; i < CE->getNumArgs(); ++i) {
const Expr *Arg = CE->getArg(i);
// Process pointer argument.
const Type *ArgTy = Arg->getType().getTypePtr();
QualType PType = ArgTy->getPointeeType();
if ((!PType.isNull() && !PType.isConstQualified()) ||
(ArgTy->isReferenceType() && !Arg->getType().isConstQualified()))
State = State->add<TaintArgsOnPostVisit>(i);
}
}
return State;
}
// If argument 0(protocol domain) is network, the return value should get taint.
bool GenericTaintChecker::TaintPropagationRule::postSocket(bool /*IsTainted*/,
const CallExpr *CE,
CheckerContext &C) {
SourceLocation DomLoc = CE->getArg(0)->getExprLoc();
StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
// White list the internal communication protocols.
if (DomName.equals("AF_SYSTEM") || DomName.equals("AF_LOCAL") ||
DomName.equals("AF_UNIX") || DomName.equals("AF_RESERVED_36"))
return false;
return true;
}
bool GenericTaintChecker::isStdin(const Expr *E, CheckerContext &C) {
ProgramStateRef State = C.getState();
SVal Val = C.getSVal(E);
// stdin is a pointer, so it would be a region.
const MemRegion *MemReg = Val.getAsRegion();
// The region should be symbolic, we do not know it's value.
const SymbolicRegion *SymReg = dyn_cast_or_null<SymbolicRegion>(MemReg);
if (!SymReg)
return false;
// Get it's symbol and find the declaration region it's pointing to.
const SymbolRegionValue *Sm =
dyn_cast<SymbolRegionValue>(SymReg->getSymbol());
if (!Sm)
return false;
const DeclRegion *DeclReg = dyn_cast_or_null<DeclRegion>(Sm->getRegion());
if (!DeclReg)
return false;
// This region corresponds to a declaration, find out if it's a global/extern
// variable named stdin with the proper type.
if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
D = D->getCanonicalDecl();
if ((D->getName().find("stdin") != StringRef::npos) && D->isExternC()) {
const auto *PtrTy = dyn_cast<PointerType>(D->getType().getTypePtr());
if (PtrTy && PtrTy->getPointeeType().getCanonicalType() ==
C.getASTContext().getFILEType().getCanonicalType())
return true;
}
}
return false;
}
static bool getPrintfFormatArgumentNum(const CallExpr *CE,
const CheckerContext &C,
unsigned int &ArgNum) {
// Find if the function contains a format string argument.
// Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
// vsnprintf, syslog, custom annotated functions.
const FunctionDecl *FDecl = C.getCalleeDecl(CE);
if (!FDecl)
return false;
for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
ArgNum = Format->getFormatIdx() - 1;
if ((Format->getType()->getName() == "printf") && CE->getNumArgs() > ArgNum)
return true;
}
// Or if a function is named setproctitle (this is a heuristic).
if (C.getCalleeName(CE).find("setproctitle") != StringRef::npos) {
ArgNum = 0;
return true;
}
return false;
}
bool GenericTaintChecker::generateReportIfTainted(const Expr *E,
const char Msg[],
CheckerContext &C) const {
assert(E);
// Check for taint.
ProgramStateRef State = C.getState();
Optional<SVal> PointedToSVal = getPointedToSVal(C, E);
SVal TaintedSVal;
if (PointedToSVal && isTainted(State, *PointedToSVal))
TaintedSVal = *PointedToSVal;
else if (isTainted(State, E, C.getLocationContext()))
TaintedSVal = C.getSVal(E);
else
return false;
// Generate diagnostic.
if (ExplodedNode *N = C.generateNonFatalErrorNode()) {
initBugType();
auto report = llvm::make_unique<BugReport>(*BT, Msg, N);
report->addRange(E->getSourceRange());
report->addVisitor(llvm::make_unique<TaintBugVisitor>(TaintedSVal));
C.emitReport(std::move(report));
return true;
}
return false;
}
bool GenericTaintChecker::checkUncontrolledFormatString(
const CallExpr *CE, CheckerContext &C) const {
// Check if the function contains a format string argument.
unsigned int ArgNum = 0;
if (!getPrintfFormatArgumentNum(CE, C, ArgNum))
return false;
// If either the format string content or the pointer itself are tainted,
// warn.
return generateReportIfTainted(CE->getArg(ArgNum),
MsgUncontrolledFormatString, C);
}
bool GenericTaintChecker::checkSystemCall(const CallExpr *CE, StringRef Name,
CheckerContext &C) const {
// TODO: It might make sense to run this check on demand. In some cases,
// we should check if the environment has been cleansed here. We also might
// need to know if the user was reset before these calls(seteuid).
unsigned ArgNum = llvm::StringSwitch<unsigned>(Name)
.Case("system", 0)
.Case("popen", 0)
.Case("execl", 0)
.Case("execle", 0)
.Case("execlp", 0)
.Case("execv", 0)
.Case("execvp", 0)
.Case("execvP", 0)
.Case("execve", 0)
.Case("dlopen", 0)
.Default(UINT_MAX);
if (ArgNum == UINT_MAX || CE->getNumArgs() < (ArgNum + 1))
return false;
return generateReportIfTainted(CE->getArg(ArgNum), MsgSanitizeSystemArgs, C);
}
// TODO: Should this check be a part of the CString checker?
// If yes, should taint be a global setting?
bool GenericTaintChecker::checkTaintedBufferSize(const CallExpr *CE,
const FunctionDecl *FDecl,
CheckerContext &C) const {
// If the function has a buffer size argument, set ArgNum.
unsigned ArgNum = InvalidArgIndex;
unsigned BId = 0;
if ((BId = FDecl->getMemoryFunctionKind()))
switch (BId) {
case Builtin::BImemcpy:
case Builtin::BImemmove:
case Builtin::BIstrncpy:
ArgNum = 2;
break;
case Builtin::BIstrndup:
ArgNum = 1;
break;
default:
break;
};
if (ArgNum == InvalidArgIndex) {
if (C.isCLibraryFunction(FDecl, "malloc") ||
C.isCLibraryFunction(FDecl, "calloc") ||
C.isCLibraryFunction(FDecl, "alloca"))
ArgNum = 0;
else if (C.isCLibraryFunction(FDecl, "memccpy"))
ArgNum = 3;
else if (C.isCLibraryFunction(FDecl, "realloc"))
ArgNum = 1;
else if (C.isCLibraryFunction(FDecl, "bcopy"))
ArgNum = 2;
}
return ArgNum != InvalidArgIndex && CE->getNumArgs() > ArgNum &&
generateReportIfTainted(CE->getArg(ArgNum), MsgTaintedBufferSize, C);
}
void ento::registerGenericTaintChecker(CheckerManager &mgr) {
mgr.registerChecker<GenericTaintChecker>();
}
bool ento::shouldRegisterGenericTaintChecker(const LangOptions &LO) {
return true;
}