blob: 71bbd824812f470f803b5ac1f6e5e92e2a163283 [file] [log] [blame]
//===- ASTStructuralEquivalence.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implement StructuralEquivalenceContext class and helper functions
// for layout matching.
//
// The structural equivalence check could have been implemented as a parallel
// BFS on a pair of graphs. That must have been the original approach at the
// beginning.
// Let's consider this simple BFS algorithm from the `s` source:
// ```
// void bfs(Graph G, int s)
// {
// Queue<Integer> queue = new Queue<Integer>();
// marked[s] = true; // Mark the source
// queue.enqueue(s); // and put it on the queue.
// while (!q.isEmpty()) {
// int v = queue.dequeue(); // Remove next vertex from the queue.
// for (int w : G.adj(v))
// if (!marked[w]) // For every unmarked adjacent vertex,
// {
// marked[w] = true;
// queue.enqueue(w);
// }
// }
// }
// ```
// Indeed, it has it's queue, which holds pairs of nodes, one from each graph,
// this is the `DeclsToCheck` and it's pair is in `TentativeEquivalences`.
// `TentativeEquivalences` also plays the role of the marking (`marked`)
// functionality above, we use it to check whether we've already seen a pair of
// nodes.
//
// We put in the elements into the queue only in the toplevel decl check
// function:
// ```
// static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
// Decl *D1, Decl *D2);
// ```
// The `while` loop where we iterate over the children is implemented in
// `Finish()`. And `Finish` is called only from the two **member** functions
// which check the equivalency of two Decls or two Types. ASTImporter (and
// other clients) call only these functions.
//
// The `static` implementation functions are called from `Finish`, these push
// the children nodes to the queue via `static bool
// IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1,
// Decl *D2)`. So far so good, this is almost like the BFS. However, if we
// let a static implementation function to call `Finish` via another **member**
// function that means we end up with two nested while loops each of them
// working on the same queue. This is wrong and nobody can reason about it's
// doing. Thus, static implementation functions must not call the **member**
// functions.
//
// So, now `TentativeEquivalences` plays two roles. It is used to store the
// second half of the decls which we want to compare, plus it plays a role in
// closing the recursion. On a long term, we could refactor structural
// equivalency to be more alike to the traditional BFS.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTStructuralEquivalence.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <utility>
using namespace clang;
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateArgument &Arg1,
const TemplateArgument &Arg2);
/// Determine structural equivalence of two expressions.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const Expr *E1, const Expr *E2) {
if (!E1 || !E2)
return E1 == E2;
// FIXME: Actually perform a structural comparison!
return true;
}
/// Determine whether two identifiers are equivalent.
static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
const IdentifierInfo *Name2) {
if (!Name1 || !Name2)
return Name1 == Name2;
return Name1->getName() == Name2->getName();
}
/// Determine whether two nested-name-specifiers are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NestedNameSpecifier *NNS1,
NestedNameSpecifier *NNS2) {
if (NNS1->getKind() != NNS2->getKind())
return false;
NestedNameSpecifier *Prefix1 = NNS1->getPrefix(),
*Prefix2 = NNS2->getPrefix();
if ((bool)Prefix1 != (bool)Prefix2)
return false;
if (Prefix1)
if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2))
return false;
switch (NNS1->getKind()) {
case NestedNameSpecifier::Identifier:
return IsStructurallyEquivalent(NNS1->getAsIdentifier(),
NNS2->getAsIdentifier());
case NestedNameSpecifier::Namespace:
return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(),
NNS2->getAsNamespace());
case NestedNameSpecifier::NamespaceAlias:
return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(),
NNS2->getAsNamespaceAlias());
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0),
QualType(NNS2->getAsType(), 0));
case NestedNameSpecifier::Global:
return true;
case NestedNameSpecifier::Super:
return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(),
NNS2->getAsRecordDecl());
}
return false;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateName &N1,
const TemplateName &N2) {
if (N1.getKind() != N2.getKind())
return false;
switch (N1.getKind()) {
case TemplateName::Template:
return IsStructurallyEquivalent(Context, N1.getAsTemplateDecl(),
N2.getAsTemplateDecl());
case TemplateName::OverloadedTemplate: {
OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(),
*OS2 = N2.getAsOverloadedTemplate();
OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(),
E1 = OS1->end(), E2 = OS2->end();
for (; I1 != E1 && I2 != E2; ++I1, ++I2)
if (!IsStructurallyEquivalent(Context, *I1, *I2))
return false;
return I1 == E1 && I2 == E2;
}
case TemplateName::QualifiedTemplate: {
QualifiedTemplateName *QN1 = N1.getAsQualifiedTemplateName(),
*QN2 = N2.getAsQualifiedTemplateName();
return IsStructurallyEquivalent(Context, QN1->getDecl(), QN2->getDecl()) &&
IsStructurallyEquivalent(Context, QN1->getQualifier(),
QN2->getQualifier());
}
case TemplateName::DependentTemplate: {
DependentTemplateName *DN1 = N1.getAsDependentTemplateName(),
*DN2 = N2.getAsDependentTemplateName();
if (!IsStructurallyEquivalent(Context, DN1->getQualifier(),
DN2->getQualifier()))
return false;
if (DN1->isIdentifier() && DN2->isIdentifier())
return IsStructurallyEquivalent(DN1->getIdentifier(),
DN2->getIdentifier());
else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator())
return DN1->getOperator() == DN2->getOperator();
return false;
}
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *TS1 = N1.getAsSubstTemplateTemplateParm(),
*TS2 = N2.getAsSubstTemplateTemplateParm();
return IsStructurallyEquivalent(Context, TS1->getParameter(),
TS2->getParameter()) &&
IsStructurallyEquivalent(Context, TS1->getReplacement(),
TS2->getReplacement());
}
case TemplateName::SubstTemplateTemplateParmPack: {
SubstTemplateTemplateParmPackStorage
*P1 = N1.getAsSubstTemplateTemplateParmPack(),
*P2 = N2.getAsSubstTemplateTemplateParmPack();
return IsStructurallyEquivalent(Context, P1->getArgumentPack(),
P2->getArgumentPack()) &&
IsStructurallyEquivalent(Context, P1->getParameterPack(),
P2->getParameterPack());
}
}
return false;
}
/// Determine whether two template arguments are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateArgument &Arg1,
const TemplateArgument &Arg2) {
if (Arg1.getKind() != Arg2.getKind())
return false;
switch (Arg1.getKind()) {
case TemplateArgument::Null:
return true;
case TemplateArgument::Type:
return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType());
case TemplateArgument::Integral:
if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(),
Arg2.getIntegralType()))
return false;
return llvm::APSInt::isSameValue(Arg1.getAsIntegral(),
Arg2.getAsIntegral());
case TemplateArgument::Declaration:
return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl());
case TemplateArgument::NullPtr:
return true; // FIXME: Is this correct?
case TemplateArgument::Template:
return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(),
Arg2.getAsTemplate());
case TemplateArgument::TemplateExpansion:
return IsStructurallyEquivalent(Context,
Arg1.getAsTemplateOrTemplatePattern(),
Arg2.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return IsStructurallyEquivalent(Context, Arg1.getAsExpr(),
Arg2.getAsExpr());
case TemplateArgument::Pack:
if (Arg1.pack_size() != Arg2.pack_size())
return false;
for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I],
Arg2.pack_begin()[I]))
return false;
return true;
}
llvm_unreachable("Invalid template argument kind");
}
/// Determine structural equivalence for the common part of array
/// types.
static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
const ArrayType *Array1,
const ArrayType *Array2) {
if (!IsStructurallyEquivalent(Context, Array1->getElementType(),
Array2->getElementType()))
return false;
if (Array1->getSizeModifier() != Array2->getSizeModifier())
return false;
if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
return false;
return true;
}
/// Determine structural equivalence based on the ExtInfo of functions. This
/// is inspired by ASTContext::mergeFunctionTypes(), we compare calling
/// conventions bits but must not compare some other bits.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FunctionType::ExtInfo EI1,
FunctionType::ExtInfo EI2) {
// Compatible functions must have compatible calling conventions.
if (EI1.getCC() != EI2.getCC())
return false;
// Regparm is part of the calling convention.
if (EI1.getHasRegParm() != EI2.getHasRegParm())
return false;
if (EI1.getRegParm() != EI2.getRegParm())
return false;
if (EI1.getProducesResult() != EI2.getProducesResult())
return false;
if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs())
return false;
if (EI1.getNoCfCheck() != EI2.getNoCfCheck())
return false;
return true;
}
/// Determine structural equivalence of two types.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2) {
if (T1.isNull() || T2.isNull())
return T1.isNull() && T2.isNull();
QualType OrigT1 = T1;
QualType OrigT2 = T2;
if (!Context.StrictTypeSpelling) {
// We aren't being strict about token-to-token equivalence of types,
// so map down to the canonical type.
T1 = Context.FromCtx.getCanonicalType(T1);
T2 = Context.ToCtx.getCanonicalType(T2);
}
if (T1.getQualifiers() != T2.getQualifiers())
return false;
Type::TypeClass TC = T1->getTypeClass();
if (T1->getTypeClass() != T2->getTypeClass()) {
// Compare function types with prototypes vs. without prototypes as if
// both did not have prototypes.
if (T1->getTypeClass() == Type::FunctionProto &&
T2->getTypeClass() == Type::FunctionNoProto)
TC = Type::FunctionNoProto;
else if (T1->getTypeClass() == Type::FunctionNoProto &&
T2->getTypeClass() == Type::FunctionProto)
TC = Type::FunctionNoProto;
else
return false;
}
switch (TC) {
case Type::Builtin:
// FIXME: Deal with Char_S/Char_U.
if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
return false;
break;
case Type::Complex:
if (!IsStructurallyEquivalent(Context,
cast<ComplexType>(T1)->getElementType(),
cast<ComplexType>(T2)->getElementType()))
return false;
break;
case Type::Adjusted:
case Type::Decayed:
if (!IsStructurallyEquivalent(Context,
cast<AdjustedType>(T1)->getOriginalType(),
cast<AdjustedType>(T2)->getOriginalType()))
return false;
break;
case Type::Pointer:
if (!IsStructurallyEquivalent(Context,
cast<PointerType>(T1)->getPointeeType(),
cast<PointerType>(T2)->getPointeeType()))
return false;
break;
case Type::BlockPointer:
if (!IsStructurallyEquivalent(Context,
cast<BlockPointerType>(T1)->getPointeeType(),
cast<BlockPointerType>(T2)->getPointeeType()))
return false;
break;
case Type::LValueReference:
case Type::RValueReference: {
const auto *Ref1 = cast<ReferenceType>(T1);
const auto *Ref2 = cast<ReferenceType>(T2);
if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
return false;
if (Ref1->isInnerRef() != Ref2->isInnerRef())
return false;
if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(),
Ref2->getPointeeTypeAsWritten()))
return false;
break;
}
case Type::MemberPointer: {
const auto *MemPtr1 = cast<MemberPointerType>(T1);
const auto *MemPtr2 = cast<MemberPointerType>(T2);
if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(),
MemPtr2->getPointeeType()))
return false;
if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0),
QualType(MemPtr2->getClass(), 0)))
return false;
break;
}
case Type::ConstantArray: {
const auto *Array1 = cast<ConstantArrayType>(T1);
const auto *Array2 = cast<ConstantArrayType>(T2);
if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::IncompleteArray:
if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1),
cast<ArrayType>(T2)))
return false;
break;
case Type::VariableArray: {
const auto *Array1 = cast<VariableArrayType>(T1);
const auto *Array2 = cast<VariableArrayType>(T2);
if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentSizedArray: {
const auto *Array1 = cast<DependentSizedArrayType>(T1);
const auto *Array2 = cast<DependentSizedArrayType>(T2);
if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentAddressSpace: {
const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1);
const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2);
if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(),
DepAddressSpace2->getAddrSpaceExpr()))
return false;
if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(),
DepAddressSpace2->getPointeeType()))
return false;
break;
}
case Type::DependentSizedExtVector: {
const auto *Vec1 = cast<DependentSizedExtVectorType>(T1);
const auto *Vec2 = cast<DependentSizedExtVectorType>(T2);
if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
Vec2->getSizeExpr()))
return false;
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
Vec2->getElementType()))
return false;
break;
}
case Type::DependentVector: {
const auto *Vec1 = cast<DependentVectorType>(T1);
const auto *Vec2 = cast<DependentVectorType>(T2);
if (Vec1->getVectorKind() != Vec2->getVectorKind())
return false;
if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
Vec2->getSizeExpr()))
return false;
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
Vec2->getElementType()))
return false;
break;
}
case Type::Vector:
case Type::ExtVector: {
const auto *Vec1 = cast<VectorType>(T1);
const auto *Vec2 = cast<VectorType>(T2);
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
Vec2->getElementType()))
return false;
if (Vec1->getNumElements() != Vec2->getNumElements())
return false;
if (Vec1->getVectorKind() != Vec2->getVectorKind())
return false;
break;
}
case Type::FunctionProto: {
const auto *Proto1 = cast<FunctionProtoType>(T1);
const auto *Proto2 = cast<FunctionProtoType>(T2);
if (Proto1->getNumParams() != Proto2->getNumParams())
return false;
for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
Proto2->getParamType(I)))
return false;
}
if (Proto1->isVariadic() != Proto2->isVariadic())
return false;
if (Proto1->getMethodQuals() != Proto2->getMethodQuals())
return false;
// Check exceptions, this information is lost in canonical type.
const auto *OrigProto1 =
cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx));
const auto *OrigProto2 =
cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx));
auto Spec1 = OrigProto1->getExceptionSpecType();
auto Spec2 = OrigProto2->getExceptionSpecType();
if (Spec1 != Spec2)
return false;
if (Spec1 == EST_Dynamic) {
if (OrigProto1->getNumExceptions() != OrigProto2->getNumExceptions())
return false;
for (unsigned I = 0, N = OrigProto1->getNumExceptions(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, OrigProto1->getExceptionType(I),
OrigProto2->getExceptionType(I)))
return false;
}
} else if (isComputedNoexcept(Spec1)) {
if (!IsStructurallyEquivalent(Context, OrigProto1->getNoexceptExpr(),
OrigProto2->getNoexceptExpr()))
return false;
}
// Fall through to check the bits common with FunctionNoProtoType.
LLVM_FALLTHROUGH;
}
case Type::FunctionNoProto: {
const auto *Function1 = cast<FunctionType>(T1);
const auto *Function2 = cast<FunctionType>(T2);
if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
Function2->getReturnType()))
return false;
if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(),
Function2->getExtInfo()))
return false;
break;
}
case Type::UnresolvedUsing:
if (!IsStructurallyEquivalent(Context,
cast<UnresolvedUsingType>(T1)->getDecl(),
cast<UnresolvedUsingType>(T2)->getDecl()))
return false;
break;
case Type::Attributed:
if (!IsStructurallyEquivalent(Context,
cast<AttributedType>(T1)->getModifiedType(),
cast<AttributedType>(T2)->getModifiedType()))
return false;
if (!IsStructurallyEquivalent(
Context, cast<AttributedType>(T1)->getEquivalentType(),
cast<AttributedType>(T2)->getEquivalentType()))
return false;
break;
case Type::Paren:
if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(),
cast<ParenType>(T2)->getInnerType()))
return false;
break;
case Type::Typedef:
if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(),
cast<TypedefType>(T2)->getDecl()))
return false;
break;
case Type::TypeOfExpr:
if (!IsStructurallyEquivalent(
Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::TypeOf:
if (!IsStructurallyEquivalent(Context,
cast<TypeOfType>(T1)->getUnderlyingType(),
cast<TypeOfType>(T2)->getUnderlyingType()))
return false;
break;
case Type::UnaryTransform:
if (!IsStructurallyEquivalent(
Context, cast<UnaryTransformType>(T1)->getUnderlyingType(),
cast<UnaryTransformType>(T2)->getUnderlyingType()))
return false;
break;
case Type::Decltype:
if (!IsStructurallyEquivalent(Context,
cast<DecltypeType>(T1)->getUnderlyingExpr(),
cast<DecltypeType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::Auto:
if (!IsStructurallyEquivalent(Context, cast<AutoType>(T1)->getDeducedType(),
cast<AutoType>(T2)->getDeducedType()))
return false;
break;
case Type::DeducedTemplateSpecialization: {
const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1);
const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(),
DT2->getTemplateName()))
return false;
if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(),
DT2->getDeducedType()))
return false;
break;
}
case Type::Record:
case Type::Enum:
if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(),
cast<TagType>(T2)->getDecl()))
return false;
break;
case Type::TemplateTypeParm: {
const auto *Parm1 = cast<TemplateTypeParmType>(T1);
const auto *Parm2 = cast<TemplateTypeParmType>(T2);
if (Parm1->getDepth() != Parm2->getDepth())
return false;
if (Parm1->getIndex() != Parm2->getIndex())
return false;
if (Parm1->isParameterPack() != Parm2->isParameterPack())
return false;
// Names of template type parameters are never significant.
break;
}
case Type::SubstTemplateTypeParm: {
const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1);
const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(),
Subst2->getReplacementType()))
return false;
break;
}
case Type::SubstTemplateTypeParmPack: {
const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1);
const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(),
Subst2->getArgumentPack()))
return false;
break;
}
case Type::TemplateSpecialization: {
const auto *Spec1 = cast<TemplateSpecializationType>(T1);
const auto *Spec2 = cast<TemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(),
Spec2->getTemplateName()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
Spec2->getArg(I)))
return false;
}
break;
}
case Type::Elaborated: {
const auto *Elab1 = cast<ElaboratedType>(T1);
const auto *Elab2 = cast<ElaboratedType>(T2);
// CHECKME: what if a keyword is ETK_None or ETK_typename ?
if (Elab1->getKeyword() != Elab2->getKeyword())
return false;
if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(),
Elab2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(),
Elab2->getNamedType()))
return false;
break;
}
case Type::InjectedClassName: {
const auto *Inj1 = cast<InjectedClassNameType>(T1);
const auto *Inj2 = cast<InjectedClassNameType>(T2);
if (!IsStructurallyEquivalent(Context,
Inj1->getInjectedSpecializationType(),
Inj2->getInjectedSpecializationType()))
return false;
break;
}
case Type::DependentName: {
const auto *Typename1 = cast<DependentNameType>(T1);
const auto *Typename2 = cast<DependentNameType>(T2);
if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(),
Typename2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
Typename2->getIdentifier()))
return false;
break;
}
case Type::DependentTemplateSpecialization: {
const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1);
const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(),
Spec2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
Spec2->getIdentifier()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
Spec2->getArg(I)))
return false;
}
break;
}
case Type::PackExpansion:
if (!IsStructurallyEquivalent(Context,
cast<PackExpansionType>(T1)->getPattern(),
cast<PackExpansionType>(T2)->getPattern()))
return false;
break;
case Type::ObjCInterface: {
const auto *Iface1 = cast<ObjCInterfaceType>(T1);
const auto *Iface2 = cast<ObjCInterfaceType>(T2);
if (!IsStructurallyEquivalent(Context, Iface1->getDecl(),
Iface2->getDecl()))
return false;
break;
}
case Type::ObjCTypeParam: {
const auto *Obj1 = cast<ObjCTypeParamType>(T1);
const auto *Obj2 = cast<ObjCTypeParamType>(T2);
if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl()))
return false;
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
return false;
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
Obj2->getProtocol(I)))
return false;
}
break;
}
case Type::ObjCObject: {
const auto *Obj1 = cast<ObjCObjectType>(T1);
const auto *Obj2 = cast<ObjCObjectType>(T2);
if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(),
Obj2->getBaseType()))
return false;
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
return false;
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
Obj2->getProtocol(I)))
return false;
}
break;
}
case Type::ObjCObjectPointer: {
const auto *Ptr1 = cast<ObjCObjectPointerType>(T1);
const auto *Ptr2 = cast<ObjCObjectPointerType>(T2);
if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(),
Ptr2->getPointeeType()))
return false;
break;
}
case Type::Atomic:
if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(),
cast<AtomicType>(T2)->getValueType()))
return false;
break;
case Type::Pipe:
if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(),
cast<PipeType>(T2)->getElementType()))
return false;
break;
} // end switch
return true;
}
/// Determine structural equivalence of two fields.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FieldDecl *Field1, FieldDecl *Field2) {
const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
// For anonymous structs/unions, match up the anonymous struct/union type
// declarations directly, so that we don't go off searching for anonymous
// types
if (Field1->isAnonymousStructOrUnion() &&
Field2->isAnonymousStructOrUnion()) {
RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
return IsStructurallyEquivalent(Context, D1, D2);
}
// Check for equivalent field names.
IdentifierInfo *Name1 = Field1->getIdentifier();
IdentifierInfo *Name2 = Field2->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2)) {
if (Context.Complain) {
Context.Diag2(
Owner2->getLocation(),
Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field_name)
<< Field2->getDeclName();
Context.Diag1(Field1->getLocation(), diag::note_odr_field_name)
<< Field1->getDeclName();
}
return false;
}
if (!IsStructurallyEquivalent(Context, Field1->getType(),
Field2->getType())) {
if (Context.Complain) {
Context.Diag2(
Owner2->getLocation(),
Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
}
return false;
}
if (Field1->isBitField() != Field2->isBitField()) {
if (Context.Complain) {
Context.Diag2(
Owner2->getLocation(),
Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(Owner2);
if (Field1->isBitField()) {
Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
<< Field1->getDeclName() << Field1->getType()
<< Field1->getBitWidthValue(Context.FromCtx);
Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
<< Field2->getDeclName();
} else {
Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
<< Field2->getDeclName() << Field2->getType()
<< Field2->getBitWidthValue(Context.ToCtx);
Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field)
<< Field1->getDeclName();
}
}
return false;
}
if (Field1->isBitField()) {
// Make sure that the bit-fields are the same length.
unsigned Bits1 = Field1->getBitWidthValue(Context.FromCtx);
unsigned Bits2 = Field2->getBitWidthValue(Context.ToCtx);
if (Bits1 != Bits2) {
if (Context.Complain) {
Context.Diag2(Owner2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
<< Field2->getDeclName() << Field2->getType() << Bits2;
Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
<< Field1->getDeclName() << Field1->getType() << Bits1;
}
return false;
}
}
return true;
}
/// Determine structural equivalence of two methods.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
CXXMethodDecl *Method1,
CXXMethodDecl *Method2) {
bool PropertiesEqual =
Method1->getDeclKind() == Method2->getDeclKind() &&
Method1->getRefQualifier() == Method2->getRefQualifier() &&
Method1->getAccess() == Method2->getAccess() &&
Method1->getOverloadedOperator() == Method2->getOverloadedOperator() &&
Method1->isStatic() == Method2->isStatic() &&
Method1->isConst() == Method2->isConst() &&
Method1->isVolatile() == Method2->isVolatile() &&
Method1->isVirtual() == Method2->isVirtual() &&
Method1->isPure() == Method2->isPure() &&
Method1->isDefaulted() == Method2->isDefaulted() &&
Method1->isDeleted() == Method2->isDeleted();
if (!PropertiesEqual)
return false;
// FIXME: Check for 'final'.
if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) {
auto *Constructor2 = cast<CXXConstructorDecl>(Method2);
if (Constructor1->isExplicit() != Constructor2->isExplicit())
return false;
}
if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) {
auto *Conversion2 = cast<CXXConversionDecl>(Method2);
if (Conversion1->isExplicit() != Conversion2->isExplicit())
return false;
if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(),
Conversion2->getConversionType()))
return false;
}
const IdentifierInfo *Name1 = Method1->getIdentifier();
const IdentifierInfo *Name2 = Method2->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2)) {
return false;
// TODO: Names do not match, add warning like at check for FieldDecl.
}
// Check the prototypes.
if (!::IsStructurallyEquivalent(Context,
Method1->getType(), Method2->getType()))
return false;
return true;
}
/// Determine structural equivalence of two records.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
RecordDecl *D1, RecordDecl *D2) {
if (D1->isUnion() != D2->isUnion()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
<< D1->getDeclName() << (unsigned)D1->getTagKind();
}
return false;
}
if (!D1->getDeclName() && !D2->getDeclName()) {
// If both anonymous structs/unions are in a record context, make sure
// they occur in the same location in the context records.
if (Optional<unsigned> Index1 =
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) {
if (Optional<unsigned> Index2 =
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(
D2)) {
if (*Index1 != *Index2)
return false;
}
}
}
// If both declarations are class template specializations, we know
// the ODR applies, so check the template and template arguments.
const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1);
const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2);
if (Spec1 && Spec2) {
// Check that the specialized templates are the same.
if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
Spec2->getSpecializedTemplate()))
return false;
// Check that the template arguments are the same.
if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
return false;
for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I),
Spec2->getTemplateArgs().get(I)))
return false;
}
// If one is a class template specialization and the other is not, these
// structures are different.
else if (Spec1 || Spec2)
return false;
// Compare the definitions of these two records. If either or both are
// incomplete (i.e. it is a forward decl), we assume that they are
// equivalent.
D1 = D1->getDefinition();
D2 = D2->getDefinition();
if (!D1 || !D2)
return true;
// If any of the records has external storage and we do a minimal check (or
// AST import) we assume they are equivalent. (If we didn't have this
// assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger
// another AST import which in turn would call the structural equivalency
// check again and finally we'd have an improper result.)
if (Context.EqKind == StructuralEquivalenceKind::Minimal)
if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage())
return true;
// If one definition is currently being defined, we do not compare for
// equality and we assume that the decls are equal.
if (D1->isBeingDefined() || D2->isBeingDefined())
return true;
if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
if (D1CXX->hasExternalLexicalStorage() &&
!D1CXX->isCompleteDefinition()) {
D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX);
}
if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
<< D2CXX->getNumBases();
Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
<< D1CXX->getNumBases();
}
return false;
}
// Check the base classes.
for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
BaseEnd1 = D1CXX->bases_end(),
Base2 = D2CXX->bases_begin();
Base1 != BaseEnd1; ++Base1, ++Base2) {
if (!IsStructurallyEquivalent(Context, Base1->getType(),
Base2->getType())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base)
<< Base2->getType() << Base2->getSourceRange();
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
<< Base1->getType() << Base1->getSourceRange();
}
return false;
}
// Check virtual vs. non-virtual inheritance mismatch.
if (Base1->isVirtual() != Base2->isVirtual()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base)
<< Base2->isVirtual() << Base2->getSourceRange();
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
<< Base1->isVirtual() << Base1->getSourceRange();
}
return false;
}
}
// Check the friends for consistency.
CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(),
Friend2End = D2CXX->friend_end();
for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(),
Friend1End = D1CXX->friend_end();
Friend1 != Friend1End; ++Friend1, ++Friend2) {
if (Friend2 == Friend2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2CXX);
Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend);
}
return false;
}
if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2CXX);
Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
}
return false;
}
}
if (Friend2 != Friend2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend);
}
return false;
}
} else if (D1CXX->getNumBases() > 0) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
<< Base1->getType() << Base1->getSourceRange();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
}
return false;
}
}
// Check the fields for consistency.
RecordDecl::field_iterator Field2 = D2->field_begin(),
Field2End = D2->field_end();
for (RecordDecl::field_iterator Field1 = D1->field_begin(),
Field1End = D1->field_end();
Field1 != Field1End; ++Field1, ++Field2) {
if (Field2 == Field2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
}
return false;
}
if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
return false;
}
if (Field2 != Field2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
}
return false;
}
return true;
}
/// Determine structural equivalence of two enums.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
EnumDecl *D1, EnumDecl *D2) {
// Compare the definitions of these two enums. If either or both are
// incomplete (i.e. forward declared), we assume that they are equivalent.
D1 = D1->getDefinition();
D2 = D2->getDefinition();
if (!D1 || !D2)
return true;
EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
EC2End = D2->enumerator_end();
for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
EC1End = D1->enumerator_end();
EC1 != EC1End; ++EC1, ++EC2) {
if (EC2 == EC2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName() << EC1->getInitVal().toString(10);
Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
}
return false;
}
llvm::APSInt Val1 = EC1->getInitVal();
llvm::APSInt Val2 = EC2->getInitVal();
if (!llvm::APSInt::isSameValue(Val1, Val2) ||
!IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName() << EC2->getInitVal().toString(10);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName() << EC1->getInitVal().toString(10);
}
return false;
}
}
if (EC2 != EC2End) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
diag::err_odr_tag_type_inconsistent))
<< Context.ToCtx.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName() << EC2->getInitVal().toString(10);
Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateParameterList *Params1,
TemplateParameterList *Params2) {
if (Params1->size() != Params2->size()) {
if (Context.Complain) {
Context.Diag2(Params2->getTemplateLoc(),
Context.getApplicableDiagnostic(
diag::err_odr_different_num_template_parameters))
<< Params1->size() << Params2->size();
Context.Diag1(Params1->getTemplateLoc(),
diag::note_odr_template_parameter_list);
}
return false;
}
for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
if (Context.Complain) {
Context.Diag2(Params2->getParam(I)->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_different_template_parameter_kind));
Context.Diag1(Params1->getParam(I)->getLocation(),
diag::note_odr_template_parameter_here);
}
return false;
}
if (!IsStructurallyEquivalent(Context, Params1->getParam(I),
Params2->getParam(I)))
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateTypeParmDecl *D1,
TemplateTypeParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_parameter_pack_non_pack))
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NonTypeTemplateParmDecl *D1,
NonTypeTemplateParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_parameter_pack_non_pack))
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
// Check types.
if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_non_type_parameter_type_inconsistent))
<< D2->getType() << D1->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
<< D1->getType();
}
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateTemplateParmDecl *D1,
TemplateTemplateParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
if (Context.Complain) {
Context.Diag2(D2->getLocation(),
Context.getApplicableDiagnostic(
diag::err_odr_parameter_pack_non_pack))
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
}
return false;
}
// Check template parameter lists.
return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
D2->getTemplateParameters());
}
static bool IsTemplateDeclCommonStructurallyEquivalent(
StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) {
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
return false;
if (!D1->getIdentifier()) // Special name
if (D1->getNameAsString() != D2->getNameAsString())
return false;
return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(),
D2->getTemplateParameters());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
ClassTemplateDecl *D1,
ClassTemplateDecl *D2) {
// Check template parameters.
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
return false;
// Check the templated declaration.
return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(),
D2->getTemplatedDecl());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FunctionTemplateDecl *D1,
FunctionTemplateDecl *D2) {
// Check template parameters.
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
return false;
// Check the templated declaration.
return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(),
D2->getTemplatedDecl()->getType());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FriendDecl *D1, FriendDecl *D2) {
if ((D1->getFriendType() && D2->getFriendDecl()) ||
(D1->getFriendDecl() && D2->getFriendType())) {
return false;
}
if (D1->getFriendType() && D2->getFriendType())
return IsStructurallyEquivalent(Context,
D1->getFriendType()->getType(),
D2->getFriendType()->getType());
if (D1->getFriendDecl() && D2->getFriendDecl())
return IsStructurallyEquivalent(Context, D1->getFriendDecl(),
D2->getFriendDecl());
return false;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FunctionDecl *D1, FunctionDecl *D2) {
// FIXME: Consider checking for function attributes as well.
if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType()))
return false;
return true;
}
/// Determine structural equivalence of two declarations.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2) {
// FIXME: Check for known structural equivalences via a callback of some sort.
// Check whether we already know that these two declarations are not
// structurally equivalent.
if (Context.NonEquivalentDecls.count(
std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl())))
return false;
// Determine whether we've already produced a tentative equivalence for D1.
Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
if (EquivToD1)
return EquivToD1 == D2->getCanonicalDecl();
// Produce a tentative equivalence D1 <-> D2, which will be checked later.
EquivToD1 = D2->getCanonicalDecl();
Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
return true;
}
DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc,
unsigned DiagID) {
assert(Complain && "Not allowed to complain");
if (LastDiagFromC2)
FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics());
LastDiagFromC2 = false;
return FromCtx.getDiagnostics().Report(Loc, DiagID);
}
DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc,
unsigned DiagID) {
assert(Complain && "Not allowed to complain");
if (!LastDiagFromC2)
ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics());
LastDiagFromC2 = true;
return ToCtx.getDiagnostics().Report(Loc, DiagID);
}
Optional<unsigned>
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) {
ASTContext &Context = Anon->getASTContext();
QualType AnonTy = Context.getRecordType(Anon);
const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
if (!Owner)
return None;
unsigned Index = 0;
for (const auto *D : Owner->noload_decls()) {
const auto *F = dyn_cast<FieldDecl>(D);
if (!F)
continue;
if (F->isAnonymousStructOrUnion()) {
if (Context.hasSameType(F->getType(), AnonTy))
break;
++Index;
continue;
}
// If the field looks like this:
// struct { ... } A;
QualType FieldType = F->getType();
// In case of nested structs.
while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType))
FieldType = ElabType->getNamedType();
if (const auto *RecType = dyn_cast<RecordType>(FieldType)) {
const RecordDecl *RecDecl = RecType->getDecl();
if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) {
if (Context.hasSameType(FieldType, AnonTy))
break;
++Index;
continue;
}
}
}
return Index;
}
unsigned StructuralEquivalenceContext::getApplicableDiagnostic(
unsigned ErrorDiagnostic) {
if (ErrorOnTagTypeMismatch)
return ErrorDiagnostic;
switch (ErrorDiagnostic) {
case diag::err_odr_variable_type_inconsistent:
return diag::warn_odr_variable_type_inconsistent;
case diag::err_odr_variable_multiple_def:
return diag::warn_odr_variable_multiple_def;
case diag::err_odr_function_type_inconsistent:
return diag::warn_odr_function_type_inconsistent;
case diag::err_odr_tag_type_inconsistent:
return diag::warn_odr_tag_type_inconsistent;
case diag::err_odr_field_type_inconsistent:
return diag::warn_odr_field_type_inconsistent;
case diag::err_odr_ivar_type_inconsistent:
return diag::warn_odr_ivar_type_inconsistent;
case diag::err_odr_objc_superclass_inconsistent:
return diag::warn_odr_objc_superclass_inconsistent;
case diag::err_odr_objc_method_result_type_inconsistent:
return diag::warn_odr_objc_method_result_type_inconsistent;
case diag::err_odr_objc_method_num_params_inconsistent:
return diag::warn_odr_objc_method_num_params_inconsistent;
case diag::err_odr_objc_method_param_type_inconsistent:
return diag::warn_odr_objc_method_param_type_inconsistent;
case diag::err_odr_objc_method_variadic_inconsistent:
return diag::warn_odr_objc_method_variadic_inconsistent;
case diag::err_odr_objc_property_type_inconsistent:
return diag::warn_odr_objc_property_type_inconsistent;
case diag::err_odr_objc_property_impl_kind_inconsistent:
return diag::warn_odr_objc_property_impl_kind_inconsistent;
case diag::err_odr_objc_synthesize_ivar_inconsistent:
return diag::warn_odr_objc_synthesize_ivar_inconsistent;
case diag::err_odr_different_num_template_parameters:
return diag::warn_odr_different_num_template_parameters;
case diag::err_odr_different_template_parameter_kind:
return diag::warn_odr_different_template_parameter_kind;
case diag::err_odr_parameter_pack_non_pack:
return diag::warn_odr_parameter_pack_non_pack;
case diag::err_odr_non_type_parameter_type_inconsistent:
return diag::warn_odr_non_type_parameter_type_inconsistent;
}
llvm_unreachable("Diagnostic kind not handled in preceding switch");
}
bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) {
// Ensure that the implementation functions (all static functions in this TU)
// never call the public ASTStructuralEquivalence::IsEquivalent() functions,
// because that will wreak havoc the internal state (DeclsToCheck and
// TentativeEquivalences members) and can cause faulty behaviour. For
// instance, some leaf declarations can be stated and cached as inequivalent
// as a side effect of one inequivalent element in the DeclsToCheck list.
assert(DeclsToCheck.empty());
assert(TentativeEquivalences.empty());
if (!::IsStructurallyEquivalent(*this, D1, D2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) {
assert(DeclsToCheck.empty());
assert(TentativeEquivalences.empty());
if (!::IsStructurallyEquivalent(*this, T1, T2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) {
// Check for equivalent described template.
TemplateDecl *Template1 = D1->getDescribedTemplate();
TemplateDecl *Template2 = D2->getDescribedTemplate();
if ((Template1 != nullptr) != (Template2 != nullptr))
return false;
if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2))
return false;
// FIXME: Move check for identifier names into this function.
return true;
}
bool StructuralEquivalenceContext::CheckKindSpecificEquivalence(
Decl *D1, Decl *D2) {
// FIXME: Switch on all declaration kinds. For now, we're just going to
// check the obvious ones.
if (auto *Record1 = dyn_cast<RecordDecl>(D1)) {
if (auto *Record2 = dyn_cast<RecordDecl>(D2)) {
// Check for equivalent structure names.
IdentifierInfo *Name1 = Record1->getIdentifier();
if (!Name1 && Record1->getTypedefNameForAnonDecl())
Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = Record2->getIdentifier();
if (!Name2 && Record2->getTypedefNameForAnonDecl())
Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2) ||
!::IsStructurallyEquivalent(*this, Record1, Record2))
return false;
} else {
// Record/non-record mismatch.
return false;
}
} else if (auto *Enum1 = dyn_cast<EnumDecl>(D1)) {
if (auto *Enum2 = dyn_cast<EnumDecl>(D2)) {
// Check for equivalent enum names.
IdentifierInfo *Name1 = Enum1->getIdentifier();
if (!Name1 && Enum1->getTypedefNameForAnonDecl())
Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = Enum2->getIdentifier();
if (!Name2 && Enum2->getTypedefNameForAnonDecl())
Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2) ||
!::IsStructurallyEquivalent(*this, Enum1, Enum2))
return false;
} else {
// Enum/non-enum mismatch
return false;
}
} else if (const auto *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) {
if (const auto *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) {
if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
Typedef2->getIdentifier()) ||
!::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(),
Typedef2->getUnderlyingType()))
return false;
} else {
// Typedef/non-typedef mismatch.
return false;
}
} else if (auto *ClassTemplate1 = dyn_cast<ClassTemplateDecl>(D1)) {
if (auto *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, ClassTemplate1,
ClassTemplate2))
return false;
} else {
// Class template/non-class-template mismatch.
return false;
}
} else if (auto *FunctionTemplate1 = dyn_cast<FunctionTemplateDecl>(D1)) {
if (auto *FunctionTemplate2 = dyn_cast<FunctionTemplateDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, FunctionTemplate1,
FunctionTemplate2))
return false;
} else {
// Class template/non-class-template mismatch.
return false;
}
} else if (auto *TTP1 = dyn_cast<TemplateTypeParmDecl>(D1)) {
if (auto *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
return false;
} else {
// Kind mismatch.
return false;
}
} else if (auto *NTTP1 = dyn_cast<NonTypeTemplateParmDecl>(D1)) {
if (auto *NTTP2 = dyn_cast<NonTypeTemplateParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2))
return false;
} else {
// Kind mismatch.
return false;
}
} else if (auto *TTP1 = dyn_cast<TemplateTemplateParmDecl>(D1)) {
if (auto *TTP2 = dyn_cast<TemplateTemplateParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
return false;
} else {
// Kind mismatch.
return false;
}
} else if (auto *MD1 = dyn_cast<CXXMethodDecl>(D1)) {
if (auto *MD2 = dyn_cast<CXXMethodDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, MD1, MD2))
return false;
} else {
// Kind mismatch.
return false;
}
} else if (FunctionDecl *FD1 = dyn_cast<FunctionDecl>(D1)) {
if (FunctionDecl *FD2 = dyn_cast<FunctionDecl>(D2)) {
if (FD1->isOverloadedOperator()) {
if (!FD2->isOverloadedOperator())
return false;
if (FD1->getOverloadedOperator() != FD2->getOverloadedOperator())
return false;
}
if (!::IsStructurallyEquivalent(FD1->getIdentifier(),
FD2->getIdentifier()))
return false;
if (!::IsStructurallyEquivalent(*this, FD1, FD2))
return false;
} else {
// Kind mismatch.
return false;
}
} else if (FriendDecl *FrD1 = dyn_cast<FriendDecl>(D1)) {
if (FriendDecl *FrD2 = dyn_cast<FriendDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, FrD1, FrD2))
return false;
} else {
// Kind mismatch.
return false;
}
}
return true;
}
bool StructuralEquivalenceContext::Finish() {
while (!DeclsToCheck.empty()) {
// Check the next declaration.
Decl *D1 = DeclsToCheck.front();
DeclsToCheck.pop_front();
Decl *D2 = TentativeEquivalences[D1];
assert(D2 && "Unrecorded tentative equivalence?");
bool Equivalent =
CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2);
if (!Equivalent) {
// Note that these two declarations are not equivalent (and we already
// know about it).
NonEquivalentDecls.insert(
std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl()));
return true;
}
}
return false;
}