| //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the abstract lowering for the Swift calling convention. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/CodeGen/SwiftCallingConv.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using namespace swiftcall; |
| |
| static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) { |
| return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo()); |
| } |
| |
| static bool isPowerOf2(unsigned n) { |
| return n == (n & -n); |
| } |
| |
| /// Given two types with the same size, try to find a common type. |
| static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) { |
| assert(first != second); |
| |
| // Allow pointers to merge with integers, but prefer the integer type. |
| if (first->isIntegerTy()) { |
| if (second->isPointerTy()) return first; |
| } else if (first->isPointerTy()) { |
| if (second->isIntegerTy()) return second; |
| if (second->isPointerTy()) return first; |
| |
| // Allow two vectors to be merged (given that they have the same size). |
| // This assumes that we never have two different vector register sets. |
| } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) { |
| if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) { |
| if (auto commonTy = getCommonType(firstVecTy->getElementType(), |
| secondVecTy->getElementType())) { |
| return (commonTy == firstVecTy->getElementType() ? first : second); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) { |
| return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type)); |
| } |
| |
| static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) { |
| return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type)); |
| } |
| |
| void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) { |
| // Deal with various aggregate types as special cases: |
| |
| // Record types. |
| if (auto recType = type->getAs<RecordType>()) { |
| addTypedData(recType->getDecl(), begin); |
| |
| // Array types. |
| } else if (type->isArrayType()) { |
| // Incomplete array types (flexible array members?) don't provide |
| // data to lay out, and the other cases shouldn't be possible. |
| auto arrayType = CGM.getContext().getAsConstantArrayType(type); |
| if (!arrayType) return; |
| |
| QualType eltType = arrayType->getElementType(); |
| auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); |
| for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) { |
| addTypedData(eltType, begin + i * eltSize); |
| } |
| |
| // Complex types. |
| } else if (auto complexType = type->getAs<ComplexType>()) { |
| auto eltType = complexType->getElementType(); |
| auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); |
| auto eltLLVMType = CGM.getTypes().ConvertType(eltType); |
| addTypedData(eltLLVMType, begin, begin + eltSize); |
| addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize); |
| |
| // Member pointer types. |
| } else if (type->getAs<MemberPointerType>()) { |
| // Just add it all as opaque. |
| addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type)); |
| |
| // Everything else is scalar and should not convert as an LLVM aggregate. |
| } else { |
| // We intentionally convert as !ForMem because we want to preserve |
| // that a type was an i1. |
| auto llvmType = CGM.getTypes().ConvertType(type); |
| addTypedData(llvmType, begin); |
| } |
| } |
| |
| void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) { |
| addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record)); |
| } |
| |
| void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin, |
| const ASTRecordLayout &layout) { |
| // Unions are a special case. |
| if (record->isUnion()) { |
| for (auto field : record->fields()) { |
| if (field->isBitField()) { |
| addBitFieldData(field, begin, 0); |
| } else { |
| addTypedData(field->getType(), begin); |
| } |
| } |
| return; |
| } |
| |
| // Note that correctness does not rely on us adding things in |
| // their actual order of layout; it's just somewhat more efficient |
| // for the builder. |
| |
| // With that in mind, add "early" C++ data. |
| auto cxxRecord = dyn_cast<CXXRecordDecl>(record); |
| if (cxxRecord) { |
| // - a v-table pointer, if the class adds its own |
| if (layout.hasOwnVFPtr()) { |
| addTypedData(CGM.Int8PtrTy, begin); |
| } |
| |
| // - non-virtual bases |
| for (auto &baseSpecifier : cxxRecord->bases()) { |
| if (baseSpecifier.isVirtual()) continue; |
| |
| auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl(); |
| addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord)); |
| } |
| |
| // - a vbptr if the class adds its own |
| if (layout.hasOwnVBPtr()) { |
| addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset()); |
| } |
| } |
| |
| // Add fields. |
| for (auto field : record->fields()) { |
| auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex()); |
| if (field->isBitField()) { |
| addBitFieldData(field, begin, fieldOffsetInBits); |
| } else { |
| addTypedData(field->getType(), |
| begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits)); |
| } |
| } |
| |
| // Add "late" C++ data: |
| if (cxxRecord) { |
| // - virtual bases |
| for (auto &vbaseSpecifier : cxxRecord->vbases()) { |
| auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl(); |
| addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord)); |
| } |
| } |
| } |
| |
| void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield, |
| CharUnits recordBegin, |
| uint64_t bitfieldBitBegin) { |
| assert(bitfield->isBitField()); |
| auto &ctx = CGM.getContext(); |
| auto width = bitfield->getBitWidthValue(ctx); |
| |
| // We can ignore zero-width bit-fields. |
| if (width == 0) return; |
| |
| // toCharUnitsFromBits rounds down. |
| CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin); |
| |
| // Find the offset of the last byte that is partially occupied by the |
| // bit-field; since we otherwise expect exclusive ends, the end is the |
| // next byte. |
| uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1; |
| CharUnits bitfieldByteEnd = |
| ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One(); |
| addOpaqueData(recordBegin + bitfieldByteBegin, |
| recordBegin + bitfieldByteEnd); |
| } |
| |
| void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) { |
| assert(type && "didn't provide type for typed data"); |
| addTypedData(type, begin, begin + getTypeStoreSize(CGM, type)); |
| } |
| |
| void SwiftAggLowering::addTypedData(llvm::Type *type, |
| CharUnits begin, CharUnits end) { |
| assert(type && "didn't provide type for typed data"); |
| assert(getTypeStoreSize(CGM, type) == end - begin); |
| |
| // Legalize vector types. |
| if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { |
| SmallVector<llvm::Type*, 4> componentTys; |
| legalizeVectorType(CGM, end - begin, vecTy, componentTys); |
| assert(componentTys.size() >= 1); |
| |
| // Walk the initial components. |
| for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) { |
| llvm::Type *componentTy = componentTys[i]; |
| auto componentSize = getTypeStoreSize(CGM, componentTy); |
| assert(componentSize < end - begin); |
| addLegalTypedData(componentTy, begin, begin + componentSize); |
| begin += componentSize; |
| } |
| |
| return addLegalTypedData(componentTys.back(), begin, end); |
| } |
| |
| // Legalize integer types. |
| if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { |
| if (!isLegalIntegerType(CGM, intTy)) |
| return addOpaqueData(begin, end); |
| } |
| |
| // All other types should be legal. |
| return addLegalTypedData(type, begin, end); |
| } |
| |
| void SwiftAggLowering::addLegalTypedData(llvm::Type *type, |
| CharUnits begin, CharUnits end) { |
| // Require the type to be naturally aligned. |
| if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) { |
| |
| // Try splitting vector types. |
| if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { |
| auto split = splitLegalVectorType(CGM, end - begin, vecTy); |
| auto eltTy = split.first; |
| auto numElts = split.second; |
| |
| auto eltSize = (end - begin) / numElts; |
| assert(eltSize == getTypeStoreSize(CGM, eltTy)); |
| for (size_t i = 0, e = numElts; i != e; ++i) { |
| addLegalTypedData(eltTy, begin, begin + eltSize); |
| begin += eltSize; |
| } |
| assert(begin == end); |
| return; |
| } |
| |
| return addOpaqueData(begin, end); |
| } |
| |
| addEntry(type, begin, end); |
| } |
| |
| void SwiftAggLowering::addEntry(llvm::Type *type, |
| CharUnits begin, CharUnits end) { |
| assert((!type || |
| (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) && |
| "cannot add aggregate-typed data"); |
| assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type))); |
| |
| // Fast path: we can just add entries to the end. |
| if (Entries.empty() || Entries.back().End <= begin) { |
| Entries.push_back({begin, end, type}); |
| return; |
| } |
| |
| // Find the first existing entry that ends after the start of the new data. |
| // TODO: do a binary search if Entries is big enough for it to matter. |
| size_t index = Entries.size() - 1; |
| while (index != 0) { |
| if (Entries[index - 1].End <= begin) break; |
| --index; |
| } |
| |
| // The entry ends after the start of the new data. |
| // If the entry starts after the end of the new data, there's no conflict. |
| if (Entries[index].Begin >= end) { |
| // This insertion is potentially O(n), but the way we generally build |
| // these layouts makes that unlikely to matter: we'd need a union of |
| // several very large types. |
| Entries.insert(Entries.begin() + index, {begin, end, type}); |
| return; |
| } |
| |
| // Otherwise, the ranges overlap. The new range might also overlap |
| // with later ranges. |
| restartAfterSplit: |
| |
| // Simplest case: an exact overlap. |
| if (Entries[index].Begin == begin && Entries[index].End == end) { |
| // If the types match exactly, great. |
| if (Entries[index].Type == type) return; |
| |
| // If either type is opaque, make the entry opaque and return. |
| if (Entries[index].Type == nullptr) { |
| return; |
| } else if (type == nullptr) { |
| Entries[index].Type = nullptr; |
| return; |
| } |
| |
| // If they disagree in an ABI-agnostic way, just resolve the conflict |
| // arbitrarily. |
| if (auto entryType = getCommonType(Entries[index].Type, type)) { |
| Entries[index].Type = entryType; |
| return; |
| } |
| |
| // Otherwise, make the entry opaque. |
| Entries[index].Type = nullptr; |
| return; |
| } |
| |
| // Okay, we have an overlapping conflict of some sort. |
| |
| // If we have a vector type, split it. |
| if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) { |
| auto eltTy = vecTy->getElementType(); |
| CharUnits eltSize = (end - begin) / vecTy->getNumElements(); |
| assert(eltSize == getTypeStoreSize(CGM, eltTy)); |
| for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) { |
| addEntry(eltTy, begin, begin + eltSize); |
| begin += eltSize; |
| } |
| assert(begin == end); |
| return; |
| } |
| |
| // If the entry is a vector type, split it and try again. |
| if (Entries[index].Type && Entries[index].Type->isVectorTy()) { |
| splitVectorEntry(index); |
| goto restartAfterSplit; |
| } |
| |
| // Okay, we have no choice but to make the existing entry opaque. |
| |
| Entries[index].Type = nullptr; |
| |
| // Stretch the start of the entry to the beginning of the range. |
| if (begin < Entries[index].Begin) { |
| Entries[index].Begin = begin; |
| assert(index == 0 || begin >= Entries[index - 1].End); |
| } |
| |
| // Stretch the end of the entry to the end of the range; but if we run |
| // into the start of the next entry, just leave the range there and repeat. |
| while (end > Entries[index].End) { |
| assert(Entries[index].Type == nullptr); |
| |
| // If the range doesn't overlap the next entry, we're done. |
| if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) { |
| Entries[index].End = end; |
| break; |
| } |
| |
| // Otherwise, stretch to the start of the next entry. |
| Entries[index].End = Entries[index + 1].Begin; |
| |
| // Continue with the next entry. |
| index++; |
| |
| // This entry needs to be made opaque if it is not already. |
| if (Entries[index].Type == nullptr) |
| continue; |
| |
| // Split vector entries unless we completely subsume them. |
| if (Entries[index].Type->isVectorTy() && |
| end < Entries[index].End) { |
| splitVectorEntry(index); |
| } |
| |
| // Make the entry opaque. |
| Entries[index].Type = nullptr; |
| } |
| } |
| |
| /// Replace the entry of vector type at offset 'index' with a sequence |
| /// of its component vectors. |
| void SwiftAggLowering::splitVectorEntry(unsigned index) { |
| auto vecTy = cast<llvm::VectorType>(Entries[index].Type); |
| auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy); |
| |
| auto eltTy = split.first; |
| CharUnits eltSize = getTypeStoreSize(CGM, eltTy); |
| auto numElts = split.second; |
| Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry()); |
| |
| CharUnits begin = Entries[index].Begin; |
| for (unsigned i = 0; i != numElts; ++i) { |
| Entries[index].Type = eltTy; |
| Entries[index].Begin = begin; |
| Entries[index].End = begin + eltSize; |
| begin += eltSize; |
| } |
| } |
| |
| /// Given a power-of-two unit size, return the offset of the aligned unit |
| /// of that size which contains the given offset. |
| /// |
| /// In other words, round down to the nearest multiple of the unit size. |
| static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) { |
| assert(isPowerOf2(unitSize.getQuantity())); |
| auto unitMask = ~(unitSize.getQuantity() - 1); |
| return CharUnits::fromQuantity(offset.getQuantity() & unitMask); |
| } |
| |
| static bool areBytesInSameUnit(CharUnits first, CharUnits second, |
| CharUnits chunkSize) { |
| return getOffsetAtStartOfUnit(first, chunkSize) |
| == getOffsetAtStartOfUnit(second, chunkSize); |
| } |
| |
| static bool isMergeableEntryType(llvm::Type *type) { |
| // Opaquely-typed memory is always mergeable. |
| if (type == nullptr) return true; |
| |
| // Pointers and integers are always mergeable. In theory we should not |
| // merge pointers, but (1) it doesn't currently matter in practice because |
| // the chunk size is never greater than the size of a pointer and (2) |
| // Swift IRGen uses integer types for a lot of things that are "really" |
| // just storing pointers (like Optional<SomePointer>). If we ever have a |
| // target that would otherwise combine pointers, we should put some effort |
| // into fixing those cases in Swift IRGen and then call out pointer types |
| // here. |
| |
| // Floating-point and vector types should never be merged. |
| // Most such types are too large and highly-aligned to ever trigger merging |
| // in practice, but it's important for the rule to cover at least 'half' |
| // and 'float', as well as things like small vectors of 'i1' or 'i8'. |
| return (!type->isFloatingPointTy() && !type->isVectorTy()); |
| } |
| |
| bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first, |
| const StorageEntry &second, |
| CharUnits chunkSize) { |
| // Only merge entries that overlap the same chunk. We test this first |
| // despite being a bit more expensive because this is the condition that |
| // tends to prevent merging. |
| if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin, |
| chunkSize)) |
| return false; |
| |
| return (isMergeableEntryType(first.Type) && |
| isMergeableEntryType(second.Type)); |
| } |
| |
| void SwiftAggLowering::finish() { |
| if (Entries.empty()) { |
| Finished = true; |
| return; |
| } |
| |
| // We logically split the layout down into a series of chunks of this size, |
| // which is generally the size of a pointer. |
| const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM); |
| |
| // First pass: if two entries should be merged, make them both opaque |
| // and stretch one to meet the next. |
| // Also, remember if there are any opaque entries. |
| bool hasOpaqueEntries = (Entries[0].Type == nullptr); |
| for (size_t i = 1, e = Entries.size(); i != e; ++i) { |
| if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) { |
| Entries[i - 1].Type = nullptr; |
| Entries[i].Type = nullptr; |
| Entries[i - 1].End = Entries[i].Begin; |
| hasOpaqueEntries = true; |
| |
| } else if (Entries[i].Type == nullptr) { |
| hasOpaqueEntries = true; |
| } |
| } |
| |
| // The rest of the algorithm leaves non-opaque entries alone, so if we |
| // have no opaque entries, we're done. |
| if (!hasOpaqueEntries) { |
| Finished = true; |
| return; |
| } |
| |
| // Okay, move the entries to a temporary and rebuild Entries. |
| auto orig = std::move(Entries); |
| assert(Entries.empty()); |
| |
| for (size_t i = 0, e = orig.size(); i != e; ++i) { |
| // Just copy over non-opaque entries. |
| if (orig[i].Type != nullptr) { |
| Entries.push_back(orig[i]); |
| continue; |
| } |
| |
| // Scan forward to determine the full extent of the next opaque range. |
| // We know from the first pass that only contiguous ranges will overlap |
| // the same aligned chunk. |
| auto begin = orig[i].Begin; |
| auto end = orig[i].End; |
| while (i + 1 != e && |
| orig[i + 1].Type == nullptr && |
| end == orig[i + 1].Begin) { |
| end = orig[i + 1].End; |
| i++; |
| } |
| |
| // Add an entry per intersected chunk. |
| do { |
| // Find the smallest aligned storage unit in the maximal aligned |
| // storage unit containing 'begin' that contains all the bytes in |
| // the intersection between the range and this chunk. |
| CharUnits localBegin = begin; |
| CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize); |
| CharUnits chunkEnd = chunkBegin + chunkSize; |
| CharUnits localEnd = std::min(end, chunkEnd); |
| |
| // Just do a simple loop over ever-increasing unit sizes. |
| CharUnits unitSize = CharUnits::One(); |
| CharUnits unitBegin, unitEnd; |
| for (; ; unitSize *= 2) { |
| assert(unitSize <= chunkSize); |
| unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize); |
| unitEnd = unitBegin + unitSize; |
| if (unitEnd >= localEnd) break; |
| } |
| |
| // Add an entry for this unit. |
| auto entryTy = |
| llvm::IntegerType::get(CGM.getLLVMContext(), |
| CGM.getContext().toBits(unitSize)); |
| Entries.push_back({unitBegin, unitEnd, entryTy}); |
| |
| // The next chunk starts where this chunk left off. |
| begin = localEnd; |
| } while (begin != end); |
| } |
| |
| // Okay, finally finished. |
| Finished = true; |
| } |
| |
| void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const { |
| assert(Finished && "haven't yet finished lowering"); |
| |
| for (auto &entry : Entries) { |
| callback(entry.Begin, entry.End, entry.Type); |
| } |
| } |
| |
| std::pair<llvm::StructType*, llvm::Type*> |
| SwiftAggLowering::getCoerceAndExpandTypes() const { |
| assert(Finished && "haven't yet finished lowering"); |
| |
| auto &ctx = CGM.getLLVMContext(); |
| |
| if (Entries.empty()) { |
| auto type = llvm::StructType::get(ctx); |
| return { type, type }; |
| } |
| |
| SmallVector<llvm::Type*, 8> elts; |
| CharUnits lastEnd = CharUnits::Zero(); |
| bool hasPadding = false; |
| bool packed = false; |
| for (auto &entry : Entries) { |
| if (entry.Begin != lastEnd) { |
| auto paddingSize = entry.Begin - lastEnd; |
| assert(!paddingSize.isNegative()); |
| |
| auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), |
| paddingSize.getQuantity()); |
| elts.push_back(padding); |
| hasPadding = true; |
| } |
| |
| if (!packed && !entry.Begin.isMultipleOf( |
| CharUnits::fromQuantity( |
| CGM.getDataLayout().getABITypeAlignment(entry.Type)))) |
| packed = true; |
| |
| elts.push_back(entry.Type); |
| |
| lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type); |
| assert(entry.End <= lastEnd); |
| } |
| |
| // We don't need to adjust 'packed' to deal with possible tail padding |
| // because we never do that kind of access through the coercion type. |
| auto coercionType = llvm::StructType::get(ctx, elts, packed); |
| |
| llvm::Type *unpaddedType = coercionType; |
| if (hasPadding) { |
| elts.clear(); |
| for (auto &entry : Entries) { |
| elts.push_back(entry.Type); |
| } |
| if (elts.size() == 1) { |
| unpaddedType = elts[0]; |
| } else { |
| unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false); |
| } |
| } else if (Entries.size() == 1) { |
| unpaddedType = Entries[0].Type; |
| } |
| |
| return { coercionType, unpaddedType }; |
| } |
| |
| bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const { |
| assert(Finished && "haven't yet finished lowering"); |
| |
| // Empty types don't need to be passed indirectly. |
| if (Entries.empty()) return false; |
| |
| // Avoid copying the array of types when there's just a single element. |
| if (Entries.size() == 1) { |
| return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift( |
| Entries.back().Type, |
| asReturnValue); |
| } |
| |
| SmallVector<llvm::Type*, 8> componentTys; |
| componentTys.reserve(Entries.size()); |
| for (auto &entry : Entries) { |
| componentTys.push_back(entry.Type); |
| } |
| return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys, |
| asReturnValue); |
| } |
| |
| bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM, |
| ArrayRef<llvm::Type*> componentTys, |
| bool asReturnValue) { |
| return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys, |
| asReturnValue); |
| } |
| |
| CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) { |
| // Currently always the size of an ordinary pointer. |
| return CGM.getContext().toCharUnitsFromBits( |
| CGM.getContext().getTargetInfo().getPointerWidth(0)); |
| } |
| |
| CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) { |
| // For Swift's purposes, this is always just the store size of the type |
| // rounded up to a power of 2. |
| auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity(); |
| if (!isPowerOf2(size)) { |
| size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1); |
| } |
| assert(size >= CGM.getDataLayout().getABITypeAlignment(type)); |
| return CharUnits::fromQuantity(size); |
| } |
| |
| bool swiftcall::isLegalIntegerType(CodeGenModule &CGM, |
| llvm::IntegerType *intTy) { |
| auto size = intTy->getBitWidth(); |
| switch (size) { |
| case 1: |
| case 8: |
| case 16: |
| case 32: |
| case 64: |
| // Just assume that the above are always legal. |
| return true; |
| |
| case 128: |
| return CGM.getContext().getTargetInfo().hasInt128Type(); |
| |
| default: |
| return false; |
| } |
| } |
| |
| bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, |
| llvm::VectorType *vectorTy) { |
| return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(), |
| vectorTy->getNumElements()); |
| } |
| |
| bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, |
| llvm::Type *eltTy, unsigned numElts) { |
| assert(numElts > 1 && "illegal vector length"); |
| return getSwiftABIInfo(CGM) |
| .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts); |
| } |
| |
| std::pair<llvm::Type*, unsigned> |
| swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, |
| llvm::VectorType *vectorTy) { |
| auto numElts = vectorTy->getNumElements(); |
| auto eltTy = vectorTy->getElementType(); |
| |
| // Try to split the vector type in half. |
| if (numElts >= 4 && isPowerOf2(numElts)) { |
| if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2)) |
| return {llvm::VectorType::get(eltTy, numElts / 2), 2}; |
| } |
| |
| return {eltTy, numElts}; |
| } |
| |
| void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize, |
| llvm::VectorType *origVectorTy, |
| llvm::SmallVectorImpl<llvm::Type*> &components) { |
| // If it's already a legal vector type, use it. |
| if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) { |
| components.push_back(origVectorTy); |
| return; |
| } |
| |
| // Try to split the vector into legal subvectors. |
| auto numElts = origVectorTy->getNumElements(); |
| auto eltTy = origVectorTy->getElementType(); |
| assert(numElts != 1); |
| |
| // The largest size that we're still considering making subvectors of. |
| // Always a power of 2. |
| unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined); |
| unsigned candidateNumElts = 1U << logCandidateNumElts; |
| assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts); |
| |
| // Minor optimization: don't check the legality of this exact size twice. |
| if (candidateNumElts == numElts) { |
| logCandidateNumElts--; |
| candidateNumElts >>= 1; |
| } |
| |
| CharUnits eltSize = (origVectorSize / numElts); |
| CharUnits candidateSize = eltSize * candidateNumElts; |
| |
| // The sensibility of this algorithm relies on the fact that we never |
| // have a legal non-power-of-2 vector size without having the power of 2 |
| // also be legal. |
| while (logCandidateNumElts > 0) { |
| assert(candidateNumElts == 1U << logCandidateNumElts); |
| assert(candidateNumElts <= numElts); |
| assert(candidateSize == eltSize * candidateNumElts); |
| |
| // Skip illegal vector sizes. |
| if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) { |
| logCandidateNumElts--; |
| candidateNumElts /= 2; |
| candidateSize /= 2; |
| continue; |
| } |
| |
| // Add the right number of vectors of this size. |
| auto numVecs = numElts >> logCandidateNumElts; |
| components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts)); |
| numElts -= (numVecs << logCandidateNumElts); |
| |
| if (numElts == 0) return; |
| |
| // It's possible that the number of elements remaining will be legal. |
| // This can happen with e.g. <7 x float> when <3 x float> is legal. |
| // This only needs to be separately checked if it's not a power of 2. |
| if (numElts > 2 && !isPowerOf2(numElts) && |
| isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) { |
| components.push_back(llvm::VectorType::get(eltTy, numElts)); |
| return; |
| } |
| |
| // Bring vecSize down to something no larger than numElts. |
| do { |
| logCandidateNumElts--; |
| candidateNumElts /= 2; |
| candidateSize /= 2; |
| } while (candidateNumElts > numElts); |
| } |
| |
| // Otherwise, just append a bunch of individual elements. |
| components.append(numElts, eltTy); |
| } |
| |
| bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM, |
| const RecordDecl *record) { |
| // FIXME: should we not rely on the standard computation in Sema, just in |
| // case we want to diverge from the platform ABI (e.g. on targets where |
| // that uses the MSVC rule)? |
| return !record->canPassInRegisters(); |
| } |
| |
| static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, |
| bool forReturn, |
| CharUnits alignmentForIndirect) { |
| if (lowering.empty()) { |
| return ABIArgInfo::getIgnore(); |
| } else if (lowering.shouldPassIndirectly(forReturn)) { |
| return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false); |
| } else { |
| auto types = lowering.getCoerceAndExpandTypes(); |
| return ABIArgInfo::getCoerceAndExpand(types.first, types.second); |
| } |
| } |
| |
| static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, |
| bool forReturn) { |
| if (auto recordType = dyn_cast<RecordType>(type)) { |
| auto record = recordType->getDecl(); |
| auto &layout = CGM.getContext().getASTRecordLayout(record); |
| |
| if (mustPassRecordIndirectly(CGM, record)) |
| return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false); |
| |
| SwiftAggLowering lowering(CGM); |
| lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout); |
| lowering.finish(); |
| |
| return classifyExpandedType(lowering, forReturn, layout.getAlignment()); |
| } |
| |
| // Just assume that all of our target ABIs can support returning at least |
| // two integer or floating-point values. |
| if (isa<ComplexType>(type)) { |
| return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand()); |
| } |
| |
| // Vector types may need to be legalized. |
| if (isa<VectorType>(type)) { |
| SwiftAggLowering lowering(CGM); |
| lowering.addTypedData(type, CharUnits::Zero()); |
| lowering.finish(); |
| |
| CharUnits alignment = CGM.getContext().getTypeAlignInChars(type); |
| return classifyExpandedType(lowering, forReturn, alignment); |
| } |
| |
| // Member pointer types need to be expanded, but it's a simple form of |
| // expansion that 'Direct' can handle. Note that CanBeFlattened should be |
| // true for this to work. |
| |
| // 'void' needs to be ignored. |
| if (type->isVoidType()) { |
| return ABIArgInfo::getIgnore(); |
| } |
| |
| // Everything else can be passed directly. |
| return ABIArgInfo::getDirect(); |
| } |
| |
| ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) { |
| return classifyType(CGM, type, /*forReturn*/ true); |
| } |
| |
| ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM, |
| CanQualType type) { |
| return classifyType(CGM, type, /*forReturn*/ false); |
| } |
| |
| void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { |
| auto &retInfo = FI.getReturnInfo(); |
| retInfo = classifyReturnType(CGM, FI.getReturnType()); |
| |
| for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) { |
| auto &argInfo = FI.arg_begin()[i]; |
| argInfo.info = classifyArgumentType(CGM, argInfo.type); |
| } |
| } |
| |
| // Is swifterror lowered to a register by the target ABI. |
| bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) { |
| return getSwiftABIInfo(CGM).isSwiftErrorInRegister(); |
| } |