| //===--- PatternInit.cpp - Pattern Initialization -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PatternInit.h" |
| #include "CodeGenModule.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Type.h" |
| |
| llvm::Constant *clang::CodeGen::initializationPatternFor(CodeGenModule &CGM, |
| llvm::Type *Ty) { |
| // The following value is a guaranteed unmappable pointer value and has a |
| // repeated byte-pattern which makes it easier to synthesize. We use it for |
| // pointers as well as integers so that aggregates are likely to be |
| // initialized with this repeated value. |
| // For 32-bit platforms it's a bit trickier because, across systems, only the |
| // zero page can reasonably be expected to be unmapped. We use max 0xFFFFFFFF |
| // assuming that memory access will overlap into zero page. |
| const uint64_t IntValue = |
| CGM.getContext().getTargetInfo().getMaxPointerWidth() < 64 |
| ? 0xFFFFFFFFFFFFFFFFull |
| : 0xAAAAAAAAAAAAAAAAull; |
| // Floating-point values are initialized as NaNs because they propagate. Using |
| // a repeated byte pattern means that it will be easier to initialize |
| // all-floating-point aggregates and arrays with memset. Further, aggregates |
| // which mix integral and a few floats might also initialize with memset |
| // followed by a handful of stores for the floats. Using fairly unique NaNs |
| // also means they'll be easier to distinguish in a crash. |
| constexpr bool NegativeNaN = true; |
| constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull; |
| if (Ty->isIntOrIntVectorTy()) { |
| unsigned BitWidth = cast<llvm::IntegerType>( |
| Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) |
| ->getBitWidth(); |
| if (BitWidth <= 64) |
| return llvm::ConstantInt::get(Ty, IntValue); |
| return llvm::ConstantInt::get( |
| Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, IntValue))); |
| } |
| if (Ty->isPtrOrPtrVectorTy()) { |
| auto *PtrTy = cast<llvm::PointerType>( |
| Ty->isVectorTy() ? Ty->getVectorElementType() : Ty); |
| unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth( |
| PtrTy->getAddressSpace()); |
| if (PtrWidth > 64) |
| llvm_unreachable("pattern initialization of unsupported pointer width"); |
| llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth); |
| auto *Int = llvm::ConstantInt::get(IntTy, IntValue); |
| return llvm::ConstantExpr::getIntToPtr(Int, PtrTy); |
| } |
| if (Ty->isFPOrFPVectorTy()) { |
| unsigned BitWidth = llvm::APFloat::semanticsSizeInBits( |
| (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) |
| ->getFltSemantics()); |
| llvm::APInt Payload(64, NaNPayload); |
| if (BitWidth >= 64) |
| Payload = llvm::APInt::getSplat(BitWidth, Payload); |
| return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload); |
| } |
| if (Ty->isArrayTy()) { |
| // Note: this doesn't touch tail padding (at the end of an object, before |
| // the next array object). It is instead handled by replaceUndef. |
| auto *ArrTy = cast<llvm::ArrayType>(Ty); |
| llvm::SmallVector<llvm::Constant *, 8> Element( |
| ArrTy->getNumElements(), |
| initializationPatternFor(CGM, ArrTy->getElementType())); |
| return llvm::ConstantArray::get(ArrTy, Element); |
| } |
| |
| // Note: this doesn't touch struct padding. It will initialize as much union |
| // padding as is required for the largest type in the union. Padding is |
| // instead handled by replaceUndef. Stores to structs with volatile members |
| // don't have a volatile qualifier when initialized according to C++. This is |
| // fine because stack-based volatiles don't really have volatile semantics |
| // anyways, and the initialization shouldn't be observable. |
| auto *StructTy = cast<llvm::StructType>(Ty); |
| llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements()); |
| for (unsigned El = 0; El != Struct.size(); ++El) |
| Struct[El] = initializationPatternFor(CGM, StructTy->getElementType(El)); |
| return llvm::ConstantStruct::get(StructTy, Struct); |
| } |