blob: 5b58eab95d60d7797366b41f2160e55e5adabc27 [file] [log] [blame]
//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the RecursiveASTVisitor interface, which recursively
// traverses the entire AST.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_RECURSIVEASTVISITOR_H
#define LLVM_CLANG_AST_RECURSIVEASTVISITOR_H
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cstddef>
#include <type_traits>
// The following three macros are used for meta programming. The code
// using them is responsible for defining macro OPERATOR().
// All unary operators.
#define UNARYOP_LIST() \
OPERATOR(PostInc) OPERATOR(PostDec) OPERATOR(PreInc) OPERATOR(PreDec) \
OPERATOR(AddrOf) OPERATOR(Deref) OPERATOR(Plus) OPERATOR(Minus) \
OPERATOR(Not) OPERATOR(LNot) OPERATOR(Real) OPERATOR(Imag) \
OPERATOR(Extension) OPERATOR(Coawait)
// All binary operators (excluding compound assign operators).
#define BINOP_LIST() \
OPERATOR(PtrMemD) OPERATOR(PtrMemI) OPERATOR(Mul) OPERATOR(Div) \
OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) OPERATOR(Shr) \
OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) OPERATOR(GE) OPERATOR(EQ) \
OPERATOR(NE) OPERATOR(Cmp) OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \
OPERATOR(LAnd) OPERATOR(LOr) OPERATOR(Assign) OPERATOR(Comma)
// All compound assign operators.
#define CAO_LIST() \
OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \
OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor)
namespace clang {
// A helper macro to implement short-circuiting when recursing. It
// invokes CALL_EXPR, which must be a method call, on the derived
// object (s.t. a user of RecursiveASTVisitor can override the method
// in CALL_EXPR).
#define TRY_TO(CALL_EXPR) \
do { \
if (!getDerived().CALL_EXPR) \
return false; \
} while (false)
/// A class that does preorder or postorder
/// depth-first traversal on the entire Clang AST and visits each node.
///
/// This class performs three distinct tasks:
/// 1. traverse the AST (i.e. go to each node);
/// 2. at a given node, walk up the class hierarchy, starting from
/// the node's dynamic type, until the top-most class (e.g. Stmt,
/// Decl, or Type) is reached.
/// 3. given a (node, class) combination, where 'class' is some base
/// class of the dynamic type of 'node', call a user-overridable
/// function to actually visit the node.
///
/// These tasks are done by three groups of methods, respectively:
/// 1. TraverseDecl(Decl *x) does task #1. It is the entry point
/// for traversing an AST rooted at x. This method simply
/// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo
/// is the dynamic type of *x, which calls WalkUpFromFoo(x) and
/// then recursively visits the child nodes of x.
/// TraverseStmt(Stmt *x) and TraverseType(QualType x) work
/// similarly.
/// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit
/// any child node of x. Instead, it first calls WalkUpFromBar(x)
/// where Bar is the direct parent class of Foo (unless Foo has
/// no parent), and then calls VisitFoo(x) (see the next list item).
/// 3. VisitFoo(Foo *x) does task #3.
///
/// These three method groups are tiered (Traverse* > WalkUpFrom* >
/// Visit*). A method (e.g. Traverse*) may call methods from the same
/// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*).
/// It may not call methods from a higher tier.
///
/// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar
/// is Foo's super class) before calling VisitFoo(), the result is
/// that the Visit*() methods for a given node are called in the
/// top-down order (e.g. for a node of type NamespaceDecl, the order will
/// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()).
///
/// This scheme guarantees that all Visit*() calls for the same AST
/// node are grouped together. In other words, Visit*() methods for
/// different nodes are never interleaved.
///
/// Clients of this visitor should subclass the visitor (providing
/// themselves as the template argument, using the curiously recurring
/// template pattern) and override any of the Traverse*, WalkUpFrom*,
/// and Visit* methods for declarations, types, statements,
/// expressions, or other AST nodes where the visitor should customize
/// behavior. Most users only need to override Visit*. Advanced
/// users may override Traverse* and WalkUpFrom* to implement custom
/// traversal strategies. Returning false from one of these overridden
/// functions will abort the entire traversal.
///
/// By default, this visitor tries to visit every part of the explicit
/// source code exactly once. The default policy towards templates
/// is to descend into the 'pattern' class or function body, not any
/// explicit or implicit instantiations. Explicit specializations
/// are still visited, and the patterns of partial specializations
/// are visited separately. This behavior can be changed by
/// overriding shouldVisitTemplateInstantiations() in the derived class
/// to return true, in which case all known implicit and explicit
/// instantiations will be visited at the same time as the pattern
/// from which they were produced.
///
/// By default, this visitor preorder traverses the AST. If postorder traversal
/// is needed, the \c shouldTraversePostOrder method needs to be overridden
/// to return \c true.
template <typename Derived> class RecursiveASTVisitor {
public:
/// A queue used for performing data recursion over statements.
/// Parameters involving this type are used to implement data
/// recursion over Stmts and Exprs within this class, and should
/// typically not be explicitly specified by derived classes.
/// The bool bit indicates whether the statement has been traversed or not.
typedef SmallVectorImpl<llvm::PointerIntPair<Stmt *, 1, bool>>
DataRecursionQueue;
/// Return a reference to the derived class.
Derived &getDerived() { return *static_cast<Derived *>(this); }
/// Return whether this visitor should recurse into
/// template instantiations.
bool shouldVisitTemplateInstantiations() const { return false; }
/// Return whether this visitor should recurse into the types of
/// TypeLocs.
bool shouldWalkTypesOfTypeLocs() const { return true; }
/// Return whether this visitor should recurse into implicit
/// code, e.g., implicit constructors and destructors.
bool shouldVisitImplicitCode() const { return false; }
/// Return whether this visitor should traverse post-order.
bool shouldTraversePostOrder() const { return false; }
/// Recursively visits an entire AST, starting from the top-level Decls
/// in the AST traversal scope (by default, the TranslationUnitDecl).
/// \returns false if visitation was terminated early.
bool TraverseAST(ASTContext &AST) {
for (Decl *D : AST.getTraversalScope())
if (!getDerived().TraverseDecl(D))
return false;
return true;
}
/// Recursively visit a statement or expression, by
/// dispatching to Traverse*() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is nullptr).
bool TraverseStmt(Stmt *S, DataRecursionQueue *Queue = nullptr);
/// Invoked before visiting a statement or expression via data recursion.
///
/// \returns false to skip visiting the node, true otherwise.
bool dataTraverseStmtPre(Stmt *S) { return true; }
/// Invoked after visiting a statement or expression via data recursion.
/// This is not invoked if the previously invoked \c dataTraverseStmtPre
/// returned false.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool dataTraverseStmtPost(Stmt *S) { return true; }
/// Recursively visit a type, by dispatching to
/// Traverse*Type() based on the argument's getTypeClass() property.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type).
bool TraverseType(QualType T);
/// Recursively visit a type with location, by dispatching to
/// Traverse*TypeLoc() based on the argument type's getTypeClass() property.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type location).
bool TraverseTypeLoc(TypeLoc TL);
/// Recursively visit an attribute, by dispatching to
/// Traverse*Attr() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type location).
bool TraverseAttr(Attr *At);
/// Recursively visit a declaration, by dispatching to
/// Traverse*Decl() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is NULL).
bool TraverseDecl(Decl *D);
/// Recursively visit a C++ nested-name-specifier.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
/// Recursively visit a C++ nested-name-specifier with location
/// information.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
/// Recursively visit a name with its location information.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo);
/// Recursively visit a template name and dispatch to the
/// appropriate method.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseTemplateName(TemplateName Template);
/// Recursively visit a template argument and dispatch to the
/// appropriate method for the argument type.
///
/// \returns false if the visitation was terminated early, true otherwise.
// FIXME: migrate callers to TemplateArgumentLoc instead.
bool TraverseTemplateArgument(const TemplateArgument &Arg);
/// Recursively visit a template argument location and dispatch to the
/// appropriate method for the argument type.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc);
/// Recursively visit a set of template arguments.
/// This can be overridden by a subclass, but it's not expected that
/// will be needed -- this visitor always dispatches to another.
///
/// \returns false if the visitation was terminated early, true otherwise.
// FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead.
bool TraverseTemplateArguments(const TemplateArgument *Args,
unsigned NumArgs);
/// Recursively visit a base specifier. This can be overridden by a
/// subclass.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base);
/// Recursively visit a constructor initializer. This
/// automatically dispatches to another visitor for the initializer
/// expression, but not for the name of the initializer, so may
/// be overridden for clients that need access to the name.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseConstructorInitializer(CXXCtorInitializer *Init);
/// Recursively visit a lambda capture. \c Init is the expression that
/// will be used to initialize the capture.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseLambdaCapture(LambdaExpr *LE, const LambdaCapture *C,
Expr *Init);
/// Recursively visit the syntactic or semantic form of an
/// initialization list.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseSynOrSemInitListExpr(InitListExpr *S,
DataRecursionQueue *Queue = nullptr);
// ---- Methods on Attrs ----
// Visit an attribute.
bool VisitAttr(Attr *A) { return true; }
// Declare Traverse* and empty Visit* for all Attr classes.
#define ATTR_VISITOR_DECLS_ONLY
#include "clang/AST/AttrVisitor.inc"
#undef ATTR_VISITOR_DECLS_ONLY
// ---- Methods on Stmts ----
Stmt::child_range getStmtChildren(Stmt *S) { return S->children(); }
private:
template<typename T, typename U>
struct has_same_member_pointer_type : std::false_type {};
template<typename T, typename U, typename R, typename... P>
struct has_same_member_pointer_type<R (T::*)(P...), R (U::*)(P...)>
: std::true_type {};
// Traverse the given statement. If the most-derived traverse function takes a
// data recursion queue, pass it on; otherwise, discard it. Note that the
// first branch of this conditional must compile whether or not the derived
// class can take a queue, so if we're taking the second arm, make the first
// arm call our function rather than the derived class version.
#define TRAVERSE_STMT_BASE(NAME, CLASS, VAR, QUEUE) \
(has_same_member_pointer_type<decltype( \
&RecursiveASTVisitor::Traverse##NAME), \
decltype(&Derived::Traverse##NAME)>::value \
? static_cast<typename std::conditional< \
has_same_member_pointer_type< \
decltype(&RecursiveASTVisitor::Traverse##NAME), \
decltype(&Derived::Traverse##NAME)>::value, \
Derived &, RecursiveASTVisitor &>::type>(*this) \
.Traverse##NAME(static_cast<CLASS *>(VAR), QUEUE) \
: getDerived().Traverse##NAME(static_cast<CLASS *>(VAR)))
// Try to traverse the given statement, or enqueue it if we're performing data
// recursion in the middle of traversing another statement. Can only be called
// from within a DEF_TRAVERSE_STMT body or similar context.
#define TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S) \
do { \
if (!TRAVERSE_STMT_BASE(Stmt, Stmt, S, Queue)) \
return false; \
} while (false)
public:
// Declare Traverse*() for all concrete Stmt classes.
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
bool Traverse##CLASS(CLASS *S, DataRecursionQueue *Queue = nullptr);
#include "clang/AST/StmtNodes.inc"
// The above header #undefs ABSTRACT_STMT and STMT upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Stmt classes.
bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); }
bool VisitStmt(Stmt *S) { return true; }
#define STMT(CLASS, PARENT) \
bool WalkUpFrom##CLASS(CLASS *S) { \
TRY_TO(WalkUpFrom##PARENT(S)); \
TRY_TO(Visit##CLASS(S)); \
return true; \
} \
bool Visit##CLASS(CLASS *S) { return true; }
#include "clang/AST/StmtNodes.inc"
// Define Traverse*(), WalkUpFrom*(), and Visit*() for unary
// operator methods. Unary operators are not classes in themselves
// (they're all opcodes in UnaryOperator) but do have visitors.
#define OPERATOR(NAME) \
bool TraverseUnary##NAME(UnaryOperator *S, \
DataRecursionQueue *Queue = nullptr) { \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFromUnary##NAME(S)); \
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getSubExpr()); \
return true; \
} \
bool WalkUpFromUnary##NAME(UnaryOperator *S) { \
TRY_TO(WalkUpFromUnaryOperator(S)); \
TRY_TO(VisitUnary##NAME(S)); \
return true; \
} \
bool VisitUnary##NAME(UnaryOperator *S) { return true; }
UNARYOP_LIST()
#undef OPERATOR
// Define Traverse*(), WalkUpFrom*(), and Visit*() for binary
// operator methods. Binary operators are not classes in themselves
// (they're all opcodes in BinaryOperator) but do have visitors.
#define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \
bool TraverseBin##NAME(BINOP_TYPE *S, DataRecursionQueue *Queue = nullptr) { \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFromBin##NAME(S)); \
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getLHS()); \
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getRHS()); \
return true; \
} \
bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \
TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \
TRY_TO(VisitBin##NAME(S)); \
return true; \
} \
bool VisitBin##NAME(BINOP_TYPE *S) { return true; }
#define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator)
BINOP_LIST()
#undef OPERATOR
// Define Traverse*(), WalkUpFrom*(), and Visit*() for compound
// assignment methods. Compound assignment operators are not
// classes in themselves (they're all opcodes in
// CompoundAssignOperator) but do have visitors.
#define OPERATOR(NAME) \
GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator)
CAO_LIST()
#undef OPERATOR
#undef GENERAL_BINOP_FALLBACK
// ---- Methods on Types ----
// FIXME: revamp to take TypeLoc's rather than Types.
// Declare Traverse*() for all concrete Type classes.
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) bool Traverse##CLASS##Type(CLASS##Type *T);
#include "clang/AST/TypeNodes.inc"
// The above header #undefs ABSTRACT_TYPE and TYPE upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Type classes.
bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); }
bool VisitType(Type *T) { return true; }
#define TYPE(CLASS, BASE) \
bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \
TRY_TO(WalkUpFrom##BASE(T)); \
TRY_TO(Visit##CLASS##Type(T)); \
return true; \
} \
bool Visit##CLASS##Type(CLASS##Type *T) { return true; }
#include "clang/AST/TypeNodes.inc"
// ---- Methods on TypeLocs ----
// FIXME: this currently just calls the matching Type methods
// Declare Traverse*() for all concrete TypeLoc classes.
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL);
#include "clang/AST/TypeLocNodes.def"
// The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit.
// Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes.
bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); }
bool VisitTypeLoc(TypeLoc TL) { return true; }
// QualifiedTypeLoc and UnqualTypeLoc are not declared in
// TypeNodes.inc and thus need to be handled specially.
bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) {
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
}
bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; }
bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) {
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
}
bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; }
// Note that BASE includes trailing 'Type' which CLASS doesn't.
#define TYPE(CLASS, BASE) \
bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
TRY_TO(WalkUpFrom##BASE##Loc(TL)); \
TRY_TO(Visit##CLASS##TypeLoc(TL)); \
return true; \
} \
bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; }
#include "clang/AST/TypeNodes.inc"
// ---- Methods on Decls ----
// Declare Traverse*() for all concrete Decl classes.
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) bool Traverse##CLASS##Decl(CLASS##Decl *D);
#include "clang/AST/DeclNodes.inc"
// The above header #undefs ABSTRACT_DECL and DECL upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Decl classes.
bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); }
bool VisitDecl(Decl *D) { return true; }
#define DECL(CLASS, BASE) \
bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \
TRY_TO(WalkUpFrom##BASE(D)); \
TRY_TO(Visit##CLASS##Decl(D)); \
return true; \
} \
bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; }
#include "clang/AST/DeclNodes.inc"
bool canIgnoreChildDeclWhileTraversingDeclContext(const Decl *Child);
private:
// These are helper methods used by more than one Traverse* method.
bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL);
// Traverses template parameter lists of either a DeclaratorDecl or TagDecl.
template <typename T>
bool TraverseDeclTemplateParameterLists(T *D);
#define DEF_TRAVERSE_TMPL_INST(TMPLDECLKIND) \
bool TraverseTemplateInstantiations(TMPLDECLKIND##TemplateDecl *D);
DEF_TRAVERSE_TMPL_INST(Class)
DEF_TRAVERSE_TMPL_INST(Var)
DEF_TRAVERSE_TMPL_INST(Function)
#undef DEF_TRAVERSE_TMPL_INST
bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL,
unsigned Count);
bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL);
bool TraverseRecordHelper(RecordDecl *D);
bool TraverseCXXRecordHelper(CXXRecordDecl *D);
bool TraverseDeclaratorHelper(DeclaratorDecl *D);
bool TraverseDeclContextHelper(DeclContext *DC);
bool TraverseFunctionHelper(FunctionDecl *D);
bool TraverseVarHelper(VarDecl *D);
bool TraverseOMPExecutableDirective(OMPExecutableDirective *S);
bool TraverseOMPLoopDirective(OMPLoopDirective *S);
bool TraverseOMPClause(OMPClause *C);
#define OPENMP_CLAUSE(Name, Class) bool Visit##Class(Class *C);
#include "clang/Basic/OpenMPKinds.def"
/// Process clauses with list of variables.
template <typename T> bool VisitOMPClauseList(T *Node);
/// Process clauses with pre-initis.
bool VisitOMPClauseWithPreInit(OMPClauseWithPreInit *Node);
bool VisitOMPClauseWithPostUpdate(OMPClauseWithPostUpdate *Node);
bool dataTraverseNode(Stmt *S, DataRecursionQueue *Queue);
bool PostVisitStmt(Stmt *S);
};
template <typename Derived>
bool RecursiveASTVisitor<Derived>::dataTraverseNode(Stmt *S,
DataRecursionQueue *Queue) {
#define DISPATCH_STMT(NAME, CLASS, VAR) \
return TRAVERSE_STMT_BASE(NAME, CLASS, VAR, Queue);
// If we have a binary expr, dispatch to the subcode of the binop. A smart
// optimizer (e.g. LLVM) will fold this comparison into the switch stmt
// below.
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) {
switch (BinOp->getOpcode()) {
#define OPERATOR(NAME) \
case BO_##NAME: \
DISPATCH_STMT(Bin##NAME, BinaryOperator, S);
BINOP_LIST()
#undef OPERATOR
#undef BINOP_LIST
#define OPERATOR(NAME) \
case BO_##NAME##Assign: \
DISPATCH_STMT(Bin##NAME##Assign, CompoundAssignOperator, S);
CAO_LIST()
#undef OPERATOR
#undef CAO_LIST
}
} else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) {
switch (UnOp->getOpcode()) {
#define OPERATOR(NAME) \
case UO_##NAME: \
DISPATCH_STMT(Unary##NAME, UnaryOperator, S);
UNARYOP_LIST()
#undef OPERATOR
#undef UNARYOP_LIST
}
}
// Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt.
switch (S->getStmtClass()) {
case Stmt::NoStmtClass:
break;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
case Stmt::CLASS##Class: \
DISPATCH_STMT(CLASS, CLASS, S);
#include "clang/AST/StmtNodes.inc"
}
return true;
}
#undef DISPATCH_STMT
template <typename Derived>
bool RecursiveASTVisitor<Derived>::PostVisitStmt(Stmt *S) {
switch (S->getStmtClass()) {
case Stmt::NoStmtClass:
break;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
case Stmt::CLASS##Class: \
TRY_TO(WalkUpFrom##CLASS(static_cast<CLASS *>(S))); break;
#define INITLISTEXPR(CLASS, PARENT) \
case Stmt::CLASS##Class: \
{ \
auto ILE = static_cast<CLASS *>(S); \
if (auto Syn = ILE->isSemanticForm() ? ILE->getSyntacticForm() : ILE) \
TRY_TO(WalkUpFrom##CLASS(Syn)); \
if (auto Sem = ILE->isSemanticForm() ? ILE : ILE->getSemanticForm()) \
TRY_TO(WalkUpFrom##CLASS(Sem)); \
break; \
}
#include "clang/AST/StmtNodes.inc"
}
return true;
}
#undef DISPATCH_STMT
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S,
DataRecursionQueue *Queue) {
if (!S)
return true;
if (Queue) {
Queue->push_back({S, false});
return true;
}
SmallVector<llvm::PointerIntPair<Stmt *, 1, bool>, 8> LocalQueue;
LocalQueue.push_back({S, false});
while (!LocalQueue.empty()) {
auto &CurrSAndVisited = LocalQueue.back();
Stmt *CurrS = CurrSAndVisited.getPointer();
bool Visited = CurrSAndVisited.getInt();
if (Visited) {
LocalQueue.pop_back();
TRY_TO(dataTraverseStmtPost(CurrS));
if (getDerived().shouldTraversePostOrder()) {
TRY_TO(PostVisitStmt(CurrS));
}
continue;
}
if (getDerived().dataTraverseStmtPre(CurrS)) {
CurrSAndVisited.setInt(true);
size_t N = LocalQueue.size();
TRY_TO(dataTraverseNode(CurrS, &LocalQueue));
// Process new children in the order they were added.
std::reverse(LocalQueue.begin() + N, LocalQueue.end());
} else {
LocalQueue.pop_back();
}
}
return true;
}
#define DISPATCH(NAME, CLASS, VAR) \
return getDerived().Traverse##NAME(static_cast<CLASS *>(VAR))
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) {
if (T.isNull())
return true;
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) \
case Type::CLASS: \
DISPATCH(CLASS##Type, CLASS##Type, const_cast<Type *>(T.getTypePtr()));
#include "clang/AST/TypeNodes.inc"
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) {
if (TL.isNull())
return true;
switch (TL.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) \
case TypeLoc::CLASS: \
return getDerived().Traverse##CLASS##TypeLoc(TL.castAs<CLASS##TypeLoc>());
#include "clang/AST/TypeLocNodes.def"
}
return true;
}
// Define the Traverse*Attr(Attr* A) methods
#define VISITORCLASS RecursiveASTVisitor
#include "clang/AST/AttrVisitor.inc"
#undef VISITORCLASS
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) {
if (!D)
return true;
// As a syntax visitor, by default we want to ignore declarations for
// implicit declarations (ones not typed explicitly by the user).
if (!getDerived().shouldVisitImplicitCode() && D->isImplicit())
return true;
switch (D->getKind()) {
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) \
case Decl::CLASS: \
if (!getDerived().Traverse##CLASS##Decl(static_cast<CLASS##Decl *>(D))) \
return false; \
break;
#include "clang/AST/DeclNodes.inc"
}
return true;
}
#undef DISPATCH
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier(
NestedNameSpecifier *NNS) {
if (!NNS)
return true;
if (NNS->getPrefix())
TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix()));
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
return true;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
TRY_TO(TraverseType(QualType(NNS->getAsType(), 0)));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc(
NestedNameSpecifierLoc NNS) {
if (!NNS)
return true;
if (NestedNameSpecifierLoc Prefix = NNS.getPrefix())
TRY_TO(TraverseNestedNameSpecifierLoc(Prefix));
switch (NNS.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
return true;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
TRY_TO(TraverseTypeLoc(NNS.getTypeLoc()));
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo(
DeclarationNameInfo NameInfo) {
switch (NameInfo.getName().getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc()));
break;
case DeclarationName::CXXDeductionGuideName:
TRY_TO(TraverseTemplateName(
TemplateName(NameInfo.getName().getCXXDeductionGuideTemplate())));
break;
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) {
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier()));
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument(
const TemplateArgument &Arg) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
return true;
case TemplateArgument::Type:
return getDerived().TraverseType(Arg.getAsType());
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
return getDerived().TraverseTemplateName(
Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return getDerived().TraverseStmt(Arg.getAsExpr());
case TemplateArgument::Pack:
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
Arg.pack_size());
}
return true;
}
// FIXME: no template name location?
// FIXME: no source locations for a template argument pack?
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc(
const TemplateArgumentLoc &ArgLoc) {
const TemplateArgument &Arg = ArgLoc.getArgument();
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
return true;
case TemplateArgument::Type: {
// FIXME: how can TSI ever be NULL?
if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo())
return getDerived().TraverseTypeLoc(TSI->getTypeLoc());
else
return getDerived().TraverseType(Arg.getAsType());
}
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
if (ArgLoc.getTemplateQualifierLoc())
TRY_TO(getDerived().TraverseNestedNameSpecifierLoc(
ArgLoc.getTemplateQualifierLoc()));
return getDerived().TraverseTemplateName(
Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return getDerived().TraverseStmt(ArgLoc.getSourceExpression());
case TemplateArgument::Pack:
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
Arg.pack_size());
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments(
const TemplateArgument *Args, unsigned NumArgs) {
for (unsigned I = 0; I != NumArgs; ++I) {
TRY_TO(TraverseTemplateArgument(Args[I]));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer(
CXXCtorInitializer *Init) {
if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
if (Init->isWritten() || getDerived().shouldVisitImplicitCode())
TRY_TO(TraverseStmt(Init->getInit()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr *LE,
const LambdaCapture *C,
Expr *Init) {
if (LE->isInitCapture(C))
TRY_TO(TraverseDecl(C->getCapturedVar()));
else
TRY_TO(TraverseStmt(Init));
return true;
}
// ----------------- Type traversal -----------------
// This macro makes available a variable T, the passed-in type.
#define DEF_TRAVERSE_TYPE(TYPE, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##TYPE(TYPE *T) { \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##TYPE(T)); \
{ CODE; } \
if (getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##TYPE(T)); \
return true; \
}
DEF_TRAVERSE_TYPE(BuiltinType, {})
DEF_TRAVERSE_TYPE(ComplexType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(PointerType, { TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(BlockPointerType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(LValueReferenceType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(RValueReferenceType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(MemberPointerType, {
TRY_TO(TraverseType(QualType(T->getClass(), 0)));
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(AdjustedType, { TRY_TO(TraverseType(T->getOriginalType())); })
DEF_TRAVERSE_TYPE(DecayedType, { TRY_TO(TraverseType(T->getOriginalType())); })
DEF_TRAVERSE_TYPE(ConstantArrayType, {
TRY_TO(TraverseType(T->getElementType()));
if (T->getSizeExpr())
TRY_TO(TraverseStmt(const_cast<Expr*>(T->getSizeExpr())));
})
DEF_TRAVERSE_TYPE(IncompleteArrayType,
{ TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(VariableArrayType, {
TRY_TO(TraverseType(T->getElementType()));
TRY_TO(TraverseStmt(T->getSizeExpr()));
})
DEF_TRAVERSE_TYPE(DependentSizedArrayType, {
TRY_TO(TraverseType(T->getElementType()));
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
})
DEF_TRAVERSE_TYPE(DependentAddressSpaceType, {
TRY_TO(TraverseStmt(T->getAddrSpaceExpr()));
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(DependentVectorType, {
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, {
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(VectorType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(ExtVectorType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(FunctionNoProtoType,
{ TRY_TO(TraverseType(T->getReturnType())); })
DEF_TRAVERSE_TYPE(FunctionProtoType, {
TRY_TO(TraverseType(T->getReturnType()));
for (const auto &A : T->param_types()) {
TRY_TO(TraverseType(A));
}
for (const auto &E : T->exceptions()) {
TRY_TO(TraverseType(E));
}
if (Expr *NE = T->getNoexceptExpr())
TRY_TO(TraverseStmt(NE));
})
DEF_TRAVERSE_TYPE(UnresolvedUsingType, {})
DEF_TRAVERSE_TYPE(TypedefType, {})
DEF_TRAVERSE_TYPE(TypeOfExprType,
{ TRY_TO(TraverseStmt(T->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPE(TypeOfType, { TRY_TO(TraverseType(T->getUnderlyingType())); })
DEF_TRAVERSE_TYPE(DecltypeType,
{ TRY_TO(TraverseStmt(T->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPE(UnaryTransformType, {
TRY_TO(TraverseType(T->getBaseType()));
TRY_TO(TraverseType(T->getUnderlyingType()));
})
DEF_TRAVERSE_TYPE(AutoType, { TRY_TO(TraverseType(T->getDeducedType())); })
DEF_TRAVERSE_TYPE(DeducedTemplateSpecializationType, {
TRY_TO(TraverseTemplateName(T->getTemplateName()));
TRY_TO(TraverseType(T->getDeducedType()));
})
DEF_TRAVERSE_TYPE(RecordType, {})
DEF_TRAVERSE_TYPE(EnumType, {})
DEF_TRAVERSE_TYPE(TemplateTypeParmType, {})
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, {
TRY_TO(TraverseType(T->getReplacementType()));
})
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, {
TRY_TO(TraverseTemplateArgument(T->getArgumentPack()));
})
DEF_TRAVERSE_TYPE(TemplateSpecializationType, {
TRY_TO(TraverseTemplateName(T->getTemplateName()));
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
})
DEF_TRAVERSE_TYPE(InjectedClassNameType, {})
DEF_TRAVERSE_TYPE(AttributedType,
{ TRY_TO(TraverseType(T->getModifiedType())); })
DEF_TRAVERSE_TYPE(ParenType, { TRY_TO(TraverseType(T->getInnerType())); })
DEF_TRAVERSE_TYPE(MacroQualifiedType,
{ TRY_TO(TraverseType(T->getUnderlyingType())); })
DEF_TRAVERSE_TYPE(ElaboratedType, {
if (T->getQualifier()) {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
}
TRY_TO(TraverseType(T->getNamedType()));
})
DEF_TRAVERSE_TYPE(DependentNameType,
{ TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); })
DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
})
DEF_TRAVERSE_TYPE(PackExpansionType, { TRY_TO(TraverseType(T->getPattern())); })
DEF_TRAVERSE_TYPE(ObjCTypeParamType, {})
DEF_TRAVERSE_TYPE(ObjCInterfaceType, {})
DEF_TRAVERSE_TYPE(ObjCObjectType, {
// We have to watch out here because an ObjCInterfaceType's base
// type is itself.
if (T->getBaseType().getTypePtr() != T)
TRY_TO(TraverseType(T->getBaseType()));
for (auto typeArg : T->getTypeArgsAsWritten()) {
TRY_TO(TraverseType(typeArg));
}
})
DEF_TRAVERSE_TYPE(ObjCObjectPointerType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(AtomicType, { TRY_TO(TraverseType(T->getValueType())); })
DEF_TRAVERSE_TYPE(PipeType, { TRY_TO(TraverseType(T->getElementType())); })
#undef DEF_TRAVERSE_TYPE
// ----------------- TypeLoc traversal -----------------
// This macro makes available a variable TL, the passed-in TypeLoc.
// If requested, it calls WalkUpFrom* for the Type in the given TypeLoc,
// in addition to WalkUpFrom* for the TypeLoc itself, such that existing
// clients that override the WalkUpFrom*Type() and/or Visit*Type() methods
// continue to work.
#define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \
if (getDerived().shouldWalkTypesOfTypeLocs()) \
TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE *>(TL.getTypePtr()))); \
TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \
{ CODE; } \
return true; \
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc(QualifiedTypeLoc TL) {
// Move this over to the 'main' typeloc tree. Note that this is a
// move -- we pretend that we were really looking at the unqualified
// typeloc all along -- rather than a recursion, so we don't follow
// the normal CRTP plan of going through
// getDerived().TraverseTypeLoc. If we did, we'd be traversing
// twice for the same type (once as a QualifiedTypeLoc version of
// the type, once as an UnqualifiedTypeLoc version of the type),
// which in effect means we'd call VisitTypeLoc twice with the
// 'same' type. This solves that problem, at the cost of never
// seeing the qualified version of the type (unless the client
// subclasses TraverseQualifiedTypeLoc themselves). It's not a
// perfect solution. A perfect solution probably requires making
// QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a
// wrapper around Type* -- rather than being its own class in the
// type hierarchy.
return TraverseTypeLoc(TL.getUnqualifiedLoc());
}
DEF_TRAVERSE_TYPELOC(BuiltinType, {})
// FIXME: ComplexTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(ComplexType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(PointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(BlockPointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(LValueReferenceType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(RValueReferenceType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
// FIXME: location of base class?
// We traverse this in the type case as well, but how is it not reached through
// the pointee type?
DEF_TRAVERSE_TYPELOC(MemberPointerType, {
TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0)));
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
DEF_TRAVERSE_TYPELOC(AdjustedType,
{ TRY_TO(TraverseTypeLoc(TL.getOriginalLoc())); })
DEF_TRAVERSE_TYPELOC(DecayedType,
{ TRY_TO(TraverseTypeLoc(TL.getOriginalLoc())); })
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) {
// This isn't available for ArrayType, but is for the ArrayTypeLoc.
TRY_TO(TraverseStmt(TL.getSizeExpr()));
return true;
}
DEF_TRAVERSE_TYPELOC(ConstantArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(IncompleteArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(VariableArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(DependentAddressSpaceType, {
TRY_TO(TraverseStmt(TL.getTypePtr()->getAddrSpaceExpr()));
TRY_TO(TraverseType(TL.getTypePtr()->getPointeeType()));
})
// FIXME: order? why not size expr first?
// FIXME: base VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, {
if (TL.getTypePtr()->getSizeExpr())
TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr()));
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
// FIXME: VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(VectorType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(DependentVectorType, {
if (TL.getTypePtr()->getSizeExpr())
TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr()));
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
// FIXME: size and attributes
// FIXME: base VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(ExtVectorType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(FunctionNoProtoType,
{ TRY_TO(TraverseTypeLoc(TL.getReturnLoc())); })
// FIXME: location of exception specifications (attributes?)
DEF_TRAVERSE_TYPELOC(FunctionProtoType, {
TRY_TO(TraverseTypeLoc(TL.getReturnLoc()));
const FunctionProtoType *T = TL.getTypePtr();
for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
if (TL.getParam(I)) {
TRY_TO(TraverseDecl(TL.getParam(I)));
} else if (I < T->getNumParams()) {
TRY_TO(TraverseType(T->getParamType(I)));
}
}
for (const auto &E : T->exceptions()) {
TRY_TO(TraverseType(E));
}
if (Expr *NE = T->getNoexceptExpr())
TRY_TO(TraverseStmt(NE));
})
DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, {})
DEF_TRAVERSE_TYPELOC(TypedefType, {})
DEF_TRAVERSE_TYPELOC(TypeOfExprType,
{ TRY_TO(TraverseStmt(TL.getUnderlyingExpr())); })
DEF_TRAVERSE_TYPELOC(TypeOfType, {
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
})
// FIXME: location of underlying expr
DEF_TRAVERSE_TYPELOC(DecltypeType, {
TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr()));
})
DEF_TRAVERSE_TYPELOC(UnaryTransformType, {
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(AutoType, {
TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType()));
})
DEF_TRAVERSE_TYPELOC(DeducedTemplateSpecializationType, {
TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName()));
TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType()));
})
DEF_TRAVERSE_TYPELOC(RecordType, {})
DEF_TRAVERSE_TYPELOC(EnumType, {})
DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, {})
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, {
TRY_TO(TraverseType(TL.getTypePtr()->getReplacementType()));
})
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, {
TRY_TO(TraverseTemplateArgument(TL.getTypePtr()->getArgumentPack()));
})
// FIXME: use the loc for the template name?
DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, {
TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName()));
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
}
})
DEF_TRAVERSE_TYPELOC(InjectedClassNameType, {})
DEF_TRAVERSE_TYPELOC(ParenType, { TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); })
DEF_TRAVERSE_TYPELOC(MacroQualifiedType,
{ TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); })
DEF_TRAVERSE_TYPELOC(AttributedType,
{ TRY_TO(TraverseTypeLoc(TL.getModifiedLoc())); })
DEF_TRAVERSE_TYPELOC(ElaboratedType, {
if (TL.getQualifierLoc()) {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
}
TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(DependentNameType, {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
})
DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, {
if (TL.getQualifierLoc()) {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
}
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
}
})
DEF_TRAVERSE_TYPELOC(PackExpansionType,
{ TRY_TO(TraverseTypeLoc(TL.getPatternLoc())); })
DEF_TRAVERSE_TYPELOC(ObjCTypeParamType, {})
DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, {})
DEF_TRAVERSE_TYPELOC(ObjCObjectType, {
// We have to watch out here because an ObjCInterfaceType's base
// type is itself.
if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr())
TRY_TO(TraverseTypeLoc(TL.getBaseLoc()));
for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i)
TRY_TO(TraverseTypeLoc(TL.getTypeArgTInfo(i)->getTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(AtomicType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); })
DEF_TRAVERSE_TYPELOC(PipeType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); })
#undef DEF_TRAVERSE_TYPELOC
// ----------------- Decl traversal -----------------
//
// For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing
// the children that come from the DeclContext associated with it.
// Therefore each Traverse* only needs to worry about children other
// than those.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::canIgnoreChildDeclWhileTraversingDeclContext(
const Decl *Child) {
// BlockDecls are traversed through BlockExprs,
// CapturedDecls are traversed through CapturedStmts.
if (isa<BlockDecl>(Child) || isa<CapturedDecl>(Child))
return true;
// Lambda classes are traversed through LambdaExprs.
if (const CXXRecordDecl* Cls = dyn_cast<CXXRecordDecl>(Child))
return Cls->isLambda();
return false;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) {
if (!DC)
return true;
for (auto *Child : DC->decls()) {
if (!canIgnoreChildDeclWhileTraversingDeclContext(Child))
TRY_TO(TraverseDecl(Child));
}
return true;
}
// This macro makes available a variable D, the passed-in decl.
#define DEF_TRAVERSE_DECL(DECL, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##DECL(DECL *D) { \
bool ShouldVisitChildren = true; \
bool ReturnValue = true; \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##DECL(D)); \
{ CODE; } \
if (ReturnValue && ShouldVisitChildren) \
TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \
if (ReturnValue) { \
/* Visit any attributes attached to this declaration. */ \
for (auto *I : D->attrs()) \
TRY_TO(getDerived().TraverseAttr(I)); \
} \
if (ReturnValue && getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##DECL(D)); \
return ReturnValue; \
}
DEF_TRAVERSE_DECL(AccessSpecDecl, {})
DEF_TRAVERSE_DECL(BlockDecl, {
if (TypeSourceInfo *TInfo = D->getSignatureAsWritten())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
TRY_TO(TraverseStmt(D->getBody()));
for (const auto &I : D->captures()) {
if (I.hasCopyExpr()) {
TRY_TO(TraverseStmt(I.getCopyExpr()));
}
}
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(CapturedDecl, {
TRY_TO(TraverseStmt(D->getBody()));
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(EmptyDecl, {})
DEF_TRAVERSE_DECL(FileScopeAsmDecl,
{ TRY_TO(TraverseStmt(D->getAsmString())); })
DEF_TRAVERSE_DECL(ImportDecl, {})
DEF_TRAVERSE_DECL(FriendDecl, {
// Friend is either decl or a type.
if (D->getFriendType())
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
else
TRY_TO(TraverseDecl(D->getFriendDecl()));
})
DEF_TRAVERSE_DECL(FriendTemplateDecl, {
if (D->getFriendType())
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
else
TRY_TO(TraverseDecl(D->getFriendDecl()));
for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) {
TemplateParameterList *TPL = D->getTemplateParameterList(I);
for (TemplateParameterList::iterator ITPL = TPL->begin(), ETPL = TPL->end();
ITPL != ETPL; ++ITPL) {
TRY_TO(TraverseDecl(*ITPL));
}
}
})
DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, {
TRY_TO(TraverseDecl(D->getSpecialization()));
if (D->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(
D->getTemplateArgsAsWritten()->getTemplateArgs(),
D->getTemplateArgsAsWritten()->NumTemplateArgs));
}
})
DEF_TRAVERSE_DECL(LinkageSpecDecl, {})
DEF_TRAVERSE_DECL(ExportDecl, {})
DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, {// FIXME: implement this
})
DEF_TRAVERSE_DECL(StaticAssertDecl, {
TRY_TO(TraverseStmt(D->getAssertExpr()));
TRY_TO(TraverseStmt(D->getMessage()));
})
DEF_TRAVERSE_DECL(
TranslationUnitDecl,
{// Code in an unnamed namespace shows up automatically in
// decls_begin()/decls_end(). Thus we don't need to recurse on
// D->getAnonymousNamespace().
})
DEF_TRAVERSE_DECL(PragmaCommentDecl, {})
DEF_TRAVERSE_DECL(PragmaDetectMismatchDecl, {})
DEF_TRAVERSE_DECL(ExternCContextDecl, {})
DEF_TRAVERSE_DECL(NamespaceAliasDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// We shouldn't traverse an aliased namespace, since it will be
// defined (and, therefore, traversed) somewhere else.
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(LabelDecl, {// There is no code in a LabelDecl.
})
DEF_TRAVERSE_DECL(
NamespaceDecl,
{// Code in an unnamed namespace shows up automatically in
// decls_begin()/decls_end(). Thus we don't need to recurse on
// D->getAnonymousNamespace().
})
DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCCategoryDecl, {// FIXME: implement
if (ObjCTypeParamList *typeParamList = D->getTypeParamList()) {
for (auto typeParam : *typeParamList) {
TRY_TO(TraverseObjCTypeParamDecl(typeParam));
}
}
})
DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCImplementationDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCInterfaceDecl, {// FIXME: implement
if (ObjCTypeParamList *typeParamList = D->getTypeParamListAsWritten()) {
for (auto typeParam : *typeParamList) {
TRY_TO(TraverseObjCTypeParamDecl(typeParam));
}
}
if (TypeSourceInfo *superTInfo = D->getSuperClassTInfo()) {
TRY_TO(TraverseTypeLoc(superTInfo->getTypeLoc()));
}
})
DEF_TRAVERSE_DECL(ObjCProtocolDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCMethodDecl, {
if (D->getReturnTypeSourceInfo()) {
TRY_TO(TraverseTypeLoc(D->getReturnTypeSourceInfo()->getTypeLoc()));
}
for (ParmVarDecl *Parameter : D->parameters()) {
TRY_TO(TraverseDecl(Parameter));
}
if (D->isThisDeclarationADefinition()) {
TRY_TO(TraverseStmt(D->getBody()));
}
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(ObjCTypeParamDecl, {
if (D->hasExplicitBound()) {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type alias, not something that was written in the
// source.
}
})
DEF_TRAVERSE_DECL(ObjCPropertyDecl, {
if (D->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
else
TRY_TO(TraverseType(D->getType()));
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(UsingDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
})
DEF_TRAVERSE_DECL(UsingPackDecl, {})
DEF_TRAVERSE_DECL(UsingDirectiveDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
})
DEF_TRAVERSE_DECL(UsingShadowDecl, {})
DEF_TRAVERSE_DECL(ConstructorUsingShadowDecl, {})
DEF_TRAVERSE_DECL(OMPThreadPrivateDecl, {
for (auto *I : D->varlists()) {
TRY_TO(TraverseStmt(I));
}
})
DEF_TRAVERSE_DECL(OMPRequiresDecl, {
for (auto *C : D->clauselists()) {
TRY_TO(TraverseOMPClause(C));
}
})
DEF_TRAVERSE_DECL(OMPDeclareReductionDecl, {
TRY_TO(TraverseStmt(D->getCombiner()));
if (auto *Initializer = D->getInitializer())
TRY_TO(TraverseStmt(Initializer));
TRY_TO(TraverseType(D->getType()));
return true;
})
DEF_TRAVERSE_DECL(OMPDeclareMapperDecl, {
for (auto *C : D->clauselists())
TRY_TO(TraverseOMPClause(C));
TRY_TO(TraverseType(D->getType()));
return true;
})
DEF_TRAVERSE_DECL(OMPCapturedExprDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(OMPAllocateDecl, {
for (auto *I : D->varlists())
TRY_TO(TraverseStmt(I));
for (auto *C : D->clauselists())
TRY_TO(TraverseOMPClause(C));
})
// A helper method for TemplateDecl's children.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper(
TemplateParameterList *TPL) {
if (TPL) {
for (NamedDecl *D : *TPL) {
TRY_TO(TraverseDecl(D));
}
if (Expr *RequiresClause = TPL->getRequiresClause()) {
TRY_TO(TraverseStmt(RequiresClause));
}
}
return true;
}
template <typename Derived>
template <typename T>
bool RecursiveASTVisitor<Derived>::TraverseDeclTemplateParameterLists(T *D) {
for (unsigned i = 0; i < D->getNumTemplateParameterLists(); i++) {
TemplateParameterList *TPL = D->getTemplateParameterList(i);
TraverseTemplateParameterListHelper(TPL);
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations(
ClassTemplateDecl *D) {
for (auto *SD : D->specializations()) {
for (auto *RD : SD->redecls()) {
// We don't want to visit injected-class-names in this traversal.
if (cast<CXXRecordDecl>(RD)->isInjectedClassName())
continue;
switch (
cast<ClassTemplateSpecializationDecl>(RD)->getSpecializationKind()) {
// Visit the implicit instantiations with the requested pattern.
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
TRY_TO(TraverseDecl(RD));
break;
// We don't need to do anything on an explicit instantiation
// or explicit specialization because there will be an explicit
// node for it elsewhere.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations(
VarTemplateDecl *D) {
for (auto *SD : D->specializations()) {
for (auto *RD : SD->redecls()) {
switch (
cast<VarTemplateSpecializationDecl>(RD)->getSpecializationKind()) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
TRY_TO(TraverseDecl(RD));
break;
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
// A helper method for traversing the instantiations of a
// function while skipping its specializations.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations(
FunctionTemplateDecl *D) {
for (auto *FD : D->specializations()) {
for (auto *RD : FD->redecls()) {
switch (RD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
// We don't know what kind of FunctionDecl this is.
TRY_TO(TraverseDecl(RD));
break;
// FIXME: For now traverse explicit instantiations here. Change that
// once they are represented as dedicated nodes in the AST.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
TRY_TO(TraverseDecl(RD));
break;
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
// This macro unifies the traversal of class, variable and function
// template declarations.
#define DEF_TRAVERSE_TMPL_DECL(TMPLDECLKIND) \
DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplateDecl, { \
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); \
TRY_TO(TraverseDecl(D->getTemplatedDecl())); \
\
/* By default, we do not traverse the instantiations of \
class templates since they do not appear in the user code. The \
following code optionally traverses them. \
\
We only traverse the class instantiations when we see the canonical \
declaration of the template, to ensure we only visit them once. */ \
if (getDerived().shouldVisitTemplateInstantiations() && \
D == D->getCanonicalDecl()) \
TRY_TO(TraverseTemplateInstantiations(D)); \
\
/* Note that getInstantiatedFromMemberTemplate() is just a link \
from a template instantiation back to the template from which \
it was instantiated, and thus should not be traversed. */ \
})
DEF_TRAVERSE_TMPL_DECL(Class)
DEF_TRAVERSE_TMPL_DECL(Var)
DEF_TRAVERSE_TMPL_DECL(Function)
DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, {
// D is the "T" in something like
// template <template <typename> class T> class container { };
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument()));
}
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(BuiltinTemplateDecl, {
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(TemplateTypeParmDecl, {
// D is the "T" in something like "template<typename T> class vector;"
if (D->getTypeForDecl())
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited())
TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc()));
})
DEF_TRAVERSE_DECL(TypedefDecl, {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the typedef, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(TypeAliasDecl, {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type alias, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, {
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(ConceptDecl, {
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
TRY_TO(TraverseStmt(D->getConstraintExpr()));
})
DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, {
// A dependent using declaration which was marked with 'typename'.
// template<class T> class A : public B<T> { using typename B<T>::foo; };
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(EnumDecl, {
TRY_TO(TraverseDeclTemplateParameterLists(D));
if (D->getTypeForDecl())
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// The enumerators are already traversed by
// decls_begin()/decls_end().
})
// Helper methods for RecordDecl and its children.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseRecordHelper(RecordDecl *D) {
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type, not something that was written in the source.
TRY_TO(TraverseDeclTemplateParameterLists(D));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseCXXBaseSpecifier(
const CXXBaseSpecifier &Base) {
TRY_TO(TraverseTypeLoc(Base.getTypeSourceInfo()->getTypeLoc()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper(CXXRecordDecl *D) {
if (!TraverseRecordHelper(D))
return false;
if (D->isCompleteDefinition()) {
for (const auto &I : D->bases()) {
TRY_TO(TraverseCXXBaseSpecifier(I));
}
// We don't traverse the friends or the conversions, as they are
// already in decls_begin()/decls_end().
}
return true;
}
DEF_TRAVERSE_DECL(RecordDecl, { TRY_TO(TraverseRecordHelper(D)); })
DEF_TRAVERSE_DECL(CXXRecordDecl, { TRY_TO(TraverseCXXRecordHelper(D)); })
#define DEF_TRAVERSE_TMPL_SPEC_DECL(TMPLDECLKIND) \
DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplateSpecializationDecl, { \
/* For implicit instantiations ("set<int> x;"), we don't want to \
recurse at all, since the instatiated template isn't written in \
the source code anywhere. (Note the instatiated *type* -- \
set<int> -- is written, and will still get a callback of \
TemplateSpecializationType). For explicit instantiations \
("template set<int>;"), we do need a callback, since this \
is the only callback that's made for this instantiation. \
We use getTypeAsWritten() to distinguish. */ \
if (TypeSourceInfo *TSI = D->getTypeAsWritten()) \
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); \
\
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); \
if (!getDerived().shouldVisitTemplateInstantiations() && \
D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) \
/* Returning from here skips traversing the \
declaration context of the *TemplateSpecializationDecl \
(embedded in the DEF_TRAVERSE_DECL() macro) \
which contains the instantiated members of the template. */ \
return true; \
})
DEF_TRAVERSE_TMPL_SPEC_DECL(Class)
DEF_TRAVERSE_TMPL_SPEC_DECL(Var)
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper(
const TemplateArgumentLoc *TAL, unsigned Count) {
for (unsigned I = 0; I < Count; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TAL[I]));
}
return true;
}
#define DEF_TRAVERSE_TMPL_PART_SPEC_DECL(TMPLDECLKIND, DECLKIND) \
DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplatePartialSpecializationDecl, { \
/* The partial specialization. */ \
if (TemplateParameterList *TPL = D->getTemplateParameters()) { \
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); \
I != E; ++I) { \
TRY_TO(TraverseDecl(*I)); \
} \
} \
/* The args that remains unspecialized. */ \
TRY_TO(TraverseTemplateArgumentLocsHelper( \
D->getTemplateArgsAsWritten()->getTemplateArgs(), \
D->getTemplateArgsAsWritten()->NumTemplateArgs)); \
\
/* Don't need the *TemplatePartialSpecializationHelper, even \
though that's our parent class -- we already visit all the \
template args here. */ \
TRY_TO(Traverse##DECLKIND##Helper(D)); \
\
/* Instantiations will have been visited with the primary template. */ \
})
DEF_TRAVERSE_TMPL_PART_SPEC_DECL(Class, CXXRecord)
DEF_TRAVERSE_TMPL_PART_SPEC_DECL(Var, Var)
DEF_TRAVERSE_DECL(EnumConstantDecl, { TRY_TO(TraverseStmt(D->getInitExpr())); })
DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, {
// Like UnresolvedUsingTypenameDecl, but without the 'typename':
// template <class T> Class A : public Base<T> { using Base<T>::foo; };
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
})
DEF_TRAVERSE_DECL(IndirectFieldDecl, {})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) {
TRY_TO(TraverseDeclTemplateParameterLists(D));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
if (D->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
else
TRY_TO(TraverseType(D->getType()));
return true;
}
DEF_TRAVERSE_DECL(DecompositionDecl, {
TRY_TO(TraverseVarHelper(D));
for (auto *Binding : D->bindings()) {
TRY_TO(TraverseDecl(Binding));
}
})
DEF_TRAVERSE_DECL(BindingDecl, {
if (getDerived().shouldVisitImplicitCode())
TRY_TO(TraverseStmt(D->getBinding()));
})
DEF_TRAVERSE_DECL(MSPropertyDecl, { TRY_TO(TraverseDeclaratorHelper(D)); })
DEF_TRAVERSE_DECL(FieldDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
else if (D->hasInClassInitializer())
TRY_TO(TraverseStmt(D->getInClassInitializer()));
})
DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
// FIXME: implement the rest.
})
DEF_TRAVERSE_DECL(ObjCIvarDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
// FIXME: implement the rest.
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) {
TRY_TO(TraverseDeclTemplateParameterLists(D));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
// If we're an explicit template specialization, iterate over the
// template args that were explicitly specified. If we were doing
// this in typing order, we'd do it between the return type and
// the function args, but both are handled by the FunctionTypeLoc
// above, so we have to choose one side. I've decided to do before.
if (const FunctionTemplateSpecializationInfo *FTSI =
D->getTemplateSpecializationInfo()) {
if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared &&
FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
// A specialization might not have explicit template arguments if it has
// a templated return type and concrete arguments.
if (const ASTTemplateArgumentListInfo *TALI =
FTSI->TemplateArgumentsAsWritten) {
TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(),
TALI->NumTemplateArgs));
}
}
}
// Visit the function type itself, which can be either
// FunctionNoProtoType or FunctionProtoType, or a typedef. This
// also covers the return type and the function parameters,
// including exception specifications.
if (TypeSourceInfo *TSI = D->getTypeSourceInfo()) {
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
} else if (getDerived().shouldVisitImplicitCode()) {
// Visit parameter variable declarations of the implicit function
// if the traverser is visiting implicit code. Parameter variable
// declarations do not have valid TypeSourceInfo, so to visit them
// we need to traverse the declarations explicitly.
for (ParmVarDecl *Parameter : D->parameters()) {
TRY_TO(TraverseDecl(Parameter));
}
}
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
// Constructor initializers.
for (auto *I : Ctor->inits()) {
if (I->isWritten() || getDerived().shouldVisitImplicitCode())
TRY_TO(TraverseConstructorInitializer(I));
}
}
bool VisitBody = D->isThisDeclarationADefinition();
// If a method is set to default outside the class definition the compiler
// generates the method body and adds it to the AST.
if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
VisitBody &= !MD->isDefaulted() || getDerived().shouldVisitImplicitCode();
if (VisitBody) {
TRY_TO(TraverseStmt(D->getBody())); // Function body.
}
return true;
}
DEF_TRAVERSE_DECL(FunctionDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXDeductionGuideDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXMethodDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXConstructorDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
// CXXConversionDecl is the declaration of a type conversion operator.
// It's not a cast expression.
DEF_TRAVERSE_DECL(CXXConversionDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXDestructorDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) {
TRY_TO(TraverseDeclaratorHelper(D));
// Default params are taken care of when we traverse the ParmVarDecl.
if (!isa<ParmVarDecl>(D) &&
(!D->isCXXForRangeDecl() || getDerived().shouldVisitImplicitCode()))
TRY_TO(TraverseStmt(D->getInit()));
return true;
}
DEF_TRAVERSE_DECL(VarDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(ImplicitParamDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, {
// A non-type template parameter, e.g. "S" in template<int S> class Foo ...
TRY_TO(TraverseDeclaratorHelper(D));
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited())
TRY_TO(TraverseStmt(D->getDefaultArgument()));
})
DEF_TRAVERSE_DECL(ParmVarDecl, {
TRY_TO(TraverseVarHelper(D));
if (D->hasDefaultArg() && D->hasUninstantiatedDefaultArg() &&
!D->hasUnparsedDefaultArg())
TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg()));
if (D->hasDefaultArg() && !D->hasUninstantiatedDefaultArg() &&
!D->hasUnparsedDefaultArg())
TRY_TO(TraverseStmt(D->getDefaultArg()));
})
#undef DEF_TRAVERSE_DECL
// ----------------- Stmt traversal -----------------
//
// For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating
// over the children defined in children() (every stmt defines these,
// though sometimes the range is empty). Each individual Traverse*
// method only needs to worry about children other than those. To see
// what children() does for a given class, see, e.g.,
// http://clang.llvm.org/doxygen/Stmt_8cpp_source.html
// This macro makes available a variable S, the passed-in stmt.
#define DEF_TRAVERSE_STMT(STMT, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##STMT( \
STMT *S, DataRecursionQueue *Queue) { \
bool ShouldVisitChildren = true; \
bool ReturnValue = true; \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##STMT(S)); \
{ CODE; } \
if (ShouldVisitChildren) { \
for (Stmt * SubStmt : getDerived().getStmtChildren(S)) { \
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(SubStmt); \
} \
} \
if (!Queue && ReturnValue && getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##STMT(S)); \
return ReturnValue; \
}
DEF_TRAVERSE_STMT(GCCAsmStmt, {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getAsmString());
for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getInputConstraintLiteral(I));
}
for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOutputConstraintLiteral(I));
}
for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getClobberStringLiteral(I));
}
// children() iterates over inputExpr and outputExpr.
})
DEF_TRAVERSE_STMT(
MSAsmStmt,
{// FIXME: MS Asm doesn't currently parse Constraints, Clobbers, etc. Once
// added this needs to be implemented.
})
DEF_TRAVERSE_STMT(CXXCatchStmt, {
TRY_TO(TraverseDecl(S->getExceptionDecl()));
// children() iterates over the handler block.
})
DEF_TRAVERSE_STMT(DeclStmt, {
for (auto *I : S->decls()) {
TRY_TO(TraverseDecl(I));
}
// Suppress the default iteration over children() by
// returning. Here's why: A DeclStmt looks like 'type var [=
// initializer]'. The decls above already traverse over the
// initializers, so we don't have to do it again (which
// children() would do).
ShouldVisitChildren = false;
})
// These non-expr stmts (most of them), do not need any action except
// iterating over the children.
DEF_TRAVERSE_STMT(BreakStmt, {})
DEF_TRAVERSE_STMT(CXXTryStmt, {})
DEF_TRAVERSE_STMT(CaseStmt, {})
DEF_TRAVERSE_STMT(CompoundStmt, {})
DEF_TRAVERSE_STMT(ContinueStmt, {})
DEF_TRAVERSE_STMT(DefaultStmt, {})
DEF_TRAVERSE_STMT(DoStmt, {})
DEF_TRAVERSE_STMT(ForStmt, {})
DEF_TRAVERSE_STMT(GotoStmt, {})
DEF_TRAVERSE_STMT(IfStmt, {})
DEF_TRAVERSE_STMT(IndirectGotoStmt, {})
DEF_TRAVERSE_STMT(LabelStmt, {})
DEF_TRAVERSE_STMT(AttributedStmt, {})
DEF_TRAVERSE_STMT(NullStmt, {})
DEF_TRAVERSE_STMT(ObjCAtCatchStmt, {})
DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, {})
DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, {})
DEF_TRAVERSE_STMT(ObjCAtThrowStmt, {})
DEF_TRAVERSE_STMT(ObjCAtTryStmt, {})
DEF_TRAVERSE_STMT(ObjCForCollectionStmt, {})
DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, {})
DEF_TRAVERSE_STMT(CXXForRangeStmt, {
if (!getDerived().shouldVisitImplicitCode()) {
if (S->getInit())
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getInit());
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getLoopVarStmt());
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getRangeInit());
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody());
// Visit everything else only if shouldVisitImplicitCode().
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(MSDependentExistsStmt, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
})
DEF_TRAVERSE_STMT(ReturnStmt, {})
DEF_TRAVERSE_STMT(SwitchStmt, {})
DEF_TRAVERSE_STMT(WhileStmt, {})
DEF_TRAVERSE_STMT(ConstantExpr, {})
DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(DeclRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
})
DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(MemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
})
DEF_TRAVERSE_STMT(
ImplicitCastExpr,
{// We don't traverse the cast type, as it's not written in the
// source code.
})
DEF_TRAVERSE_STMT(CStyleCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXConstCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXDynamicCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXStaticCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(BuiltinBitCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseSynOrSemInitListExpr(
InitListExpr *S, DataRecursionQueue *Queue) {
if (S) {
// Skip this if we traverse postorder. We will visit it later
// in PostVisitStmt.
if (!getDerived().shouldTraversePostOrder())
TRY_TO(WalkUpFromInitListExpr(S));
// All we need are the default actions. FIXME: use a helper function.
for (Stmt *SubStmt : S->children()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(SubStmt);
}
}
return true;
}
// If shouldVisitImplicitCode() returns false, this method traverses only the
// syntactic form of InitListExpr.
// If shouldVisitImplicitCode() return true, this method is called once for
// each pair of syntactic and semantic InitListExpr, and it traverses the
// subtrees defined by the two forms. This may cause some of the children to be
// visited twice, if they appear both in the syntactic and the semantic form.
//
// There is no guarantee about which form \p S takes when this method is called.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(
InitListExpr *S, DataRecursionQueue *Queue) {
if (S->isSemanticForm() && S->isSyntacticForm()) {
// `S` does not have alternative forms, traverse only once.
TRY_TO(TraverseSynOrSemInitListExpr(S, Queue));
return true;
}
TRY_TO(TraverseSynOrSemInitListExpr(
S->isSemanticForm() ? S->getSyntacticForm() : S, Queue));
if (getDerived().shouldVisitImplicitCode()) {
// Only visit the semantic form if the clients are interested in implicit
// compiler-generated.
TRY_TO(TraverseSynOrSemInitListExpr(
S->isSemanticForm() ? S : S->getSemanticForm(), Queue));
}
return true;
}
// GenericSelectionExpr is a special case because the types and expressions
// are interleaved. We also need to watch out for null types (default
// generic associations).
DEF_TRAVERSE_STMT(GenericSelectionExpr, {
TRY_TO(TraverseStmt(S->getControllingExpr()));
for (const GenericSelectionExpr::Association &Assoc : S->associations()) {
if (TypeSourceInfo *TSI = Assoc.getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(Assoc.getAssociationExpr());
}
ShouldVisitChildren = false;
})
// PseudoObjectExpr is a special case because of the weirdness with
// syntactic expressions and opaque values.
DEF_TRAVERSE_STMT(PseudoObjectExpr, {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getSyntacticForm());
for (PseudoObjectExpr::semantics_iterator i = S->semantics_begin(),
e = S->semantics_end();
i != e; ++i) {
Expr *sub = *i;
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub))
sub = OVE->getSourceExpr();
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(sub);
}
ShouldVisitChildren = false;
})
DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, {
// This is called for code like 'return T()' where T is a built-in
// (i.e. non-class) type.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXNewExpr, {
// The child-iterator will pick up the other arguments.
TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(OffsetOfExpr, {
// The child-iterator will pick up the expression representing
// the field.
// FIMXE: for code like offsetof(Foo, a.b.c), should we get
// making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c?
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isArgumentType())
TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXTypeidExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isTypeOperand())
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(MSPropertyRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
})
DEF_TRAVERSE_STMT(MSPropertySubscriptExpr, {})
DEF_TRAVERSE_STMT(CXXUuidofExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isTypeOperand())
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(TypeTraitExpr, {
for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, {
TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ExpressionTraitExpr,
{ TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getQueriedExpression()); })
DEF_TRAVERSE_STMT(VAArgExpr, {
// The child-iterator will pick up the expression argument.
TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, {
// This is called for code like 'return T()' where T is a class type.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
// Walk only the visible parts of lambda expressions.
DEF_TRAVERSE_STMT(LambdaExpr, {
// Visit the capture list.
for (unsigned I = 0, N = S->capture_size(); I != N; ++I) {
const LambdaCapture *C = S->capture_begin() + I;
if (C->isExplicit() || getDerived().shouldVisitImplicitCode()) {
TRY_TO(TraverseLambdaCapture(S, C, S->capture_init_begin()[I]));
}
}
if (getDerived().shouldVisitImplicitCode()) {
// The implicit model is simple: everything else is in the lambda class.
TRY_TO(TraverseDecl(S->getLambdaClass()));
} else {
// We need to poke around to find the bits that might be explicitly written.
TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
FunctionProtoTypeLoc Proto = TL.getAsAdjusted<FunctionProtoTypeLoc>();
for (Decl *D : S->getExplicitTemplateParameters()) {
// Visit explicit template parameters.
TRY_TO(TraverseDecl(D));
}
if (S->hasExplicitParameters()) {
// Visit parameters.
for (unsigned I = 0, N = Proto.getNumParams(); I != N; ++I)
TRY_TO(TraverseDecl(Proto.getParam(I)));
}
if (S->hasExplicitResultType())
TRY_TO(TraverseTypeLoc(Proto.getReturnLoc()));
auto *T = Proto.getTypePtr();
for (const auto &E : T->exceptions())
TRY_TO(TraverseType(E));
if (Expr *NE = T->getNoexceptExpr())
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(NE);
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody());
}
ShouldVisitChildren = false;
})
DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, {
// This is called for code like 'T()', where T is a template argument.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
// These expressions all might take explicit template arguments.
// We traverse those if so. FIXME: implement these.
DEF_TRAVERSE_STMT(CXXConstructExpr, {})
DEF_TRAVERSE_STMT(CallExpr, {})
DEF_TRAVERSE_STMT(CXXMemberCallExpr, {})
// These exprs (most of them), do not need any action except iterating
// over the children.
DEF_TRAVERSE_STMT(AddrLabelExpr, {})
DEF_TRAVERSE_STMT(ArraySubscriptExpr, {})
DEF_TRAVERSE_STMT(OMPArraySectionExpr, {})
DEF_TRAVERSE_STMT(BlockExpr, {
TRY_TO(TraverseDecl(S->getBlockDecl()));
return true; // no child statements to loop through.
})
DEF_TRAVERSE_STMT(ChooseExpr, {})
DEF_TRAVERSE_STMT(CompoundLiteralExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, {})
DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, {})
DEF_TRAVERSE_STMT(CXXDefaultArgExpr, {
if (getDerived().shouldVisitImplicitCode())
TRY_TO(TraverseStmt(S->getExpr()));
})
DEF_TRAVERSE_STMT(CXXDefaultInitExpr, {})
DEF_TRAVERSE_STMT(CXXDeleteExpr, {})
DEF_TRAVERSE_STMT(ExprWithCleanups, {})
DEF_TRAVERSE_STMT(CXXInheritedCtorInitExpr, {})
DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, {})
DEF_TRAVERSE_STMT(CXXStdInitializerListExpr, {})
DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo())
TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc()));
if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo())
TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXThisExpr, {})
DEF_TRAVERSE_STMT(CXXThrowExpr, {})
DEF_TRAVERSE_STMT(UserDefinedLiteral, {})
DEF_TRAVERSE_STMT(DesignatedInitExpr, {})
DEF_TRAVERSE_STMT(DesignatedInitUpdateExpr, {})
DEF_TRAVERSE_STMT(ExtVectorElementExpr, {})
DEF_TRAVERSE_STMT(GNUNullExpr, {})
DEF_TRAVERSE_STMT(ImplicitValueInitExpr, {})
DEF_TRAVERSE_STMT(NoInitExpr, {})
DEF_TRAVERSE_STMT(ArrayInitLoopExpr, {
// FIXME: The source expression of the OVE should be listed as
// a child of the ArrayInitLoopExpr.
if (OpaqueValueExpr *OVE = S->getCommonExpr())
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(OVE->getSourceExpr());
})
DEF_TRAVERSE_STMT(ArrayInitIndexExpr, {})
DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, {})
DEF_TRAVERSE_STMT(ObjCEncodeExpr, {
if (TypeSourceInfo *TInfo = S->getEncodedTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCIsaExpr, {})
DEF_TRAVERSE_STMT(ObjCIvarRefExpr, {})
DEF_TRAVERSE_STMT(ObjCMessageExpr, {
if (TypeSourceInfo *TInfo = S->getClassReceiverTypeInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, {})
DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, {})
DEF_TRAVERSE_STMT(ObjCProtocolExpr, {})
DEF_TRAVERSE_STMT(ObjCSelectorExpr, {})
DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, {})
DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCAvailabilityCheckExpr, {})
DEF_TRAVERSE_STMT(ParenExpr, {})
DEF_TRAVERSE_STMT(ParenListExpr, {})
DEF_TRAVERSE_STMT(PredefinedExpr, {})
DEF_TRAVERSE_STMT(ShuffleVectorExpr, {})
DEF_TRAVERSE_STMT(ConvertVectorExpr, {})
DEF_TRAVERSE_STMT(StmtExpr, {})
DEF_TRAVERSE_STMT(SourceLocExpr, {})
DEF_TRAVERSE_STMT(UnresolvedLookupExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(UnresolvedMemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(SEHTryStmt, {})
DEF_TRAVERSE_STMT(SEHExceptStmt, {})
DEF_TRAVERSE_STMT(SEHFinallyStmt, {})
DEF_TRAVERSE_STMT(SEHLeaveStmt, {})
DEF_TRAVERSE_STMT(CapturedStmt, { TRY_TO(TraverseDecl(S->getCapturedDecl())); })
DEF_TRAVERSE_STMT(CXXOperatorCallExpr, {})
DEF_TRAVERSE_STMT(CXXRewrittenBinaryOperator, {
if (!getDerived().shouldVisitImplicitCode()) {
CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
S->getDecomposedForm();
TRY_TO(TraverseStmt(const_cast<Expr*>(Decomposed.LHS)));
TRY_TO(TraverseStmt(const_cast<Expr*>(Decomposed.RHS)));
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(OpaqueValueExpr, {})
DEF_TRAVERSE_STMT(TypoExpr, {})
DEF_TRAVERSE_STMT(CUDAKernelCallExpr, {})
// These operators (all of them) do not need any action except
// iterating over the children.
DEF_TRAVERSE_STMT(BinaryConditionalOperator, {})
DEF_TRAVERSE_STMT(ConditionalOperator, {})
DEF_TRAVERSE_STMT(UnaryOperator, {})
DEF_TRAVERSE_STMT(BinaryOperator, {})
DEF_TRAVERSE_STMT(CompoundAssignOperator, {})
DEF_TRAVERSE_STMT(CXXNoexceptExpr, {})
DEF_TRAVERSE_STMT(PackExpansionExpr, {})
DEF_TRAVERSE_STMT(SizeOfPackExpr, {})
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, {})
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, {})
DEF_TRAVERSE_STMT(FunctionParmPackExpr, {})
DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, {})
DEF_TRAVERSE_STMT(CXXFoldExpr, {})
DEF_TRAVERSE_STMT(AtomicExpr, {})
// For coroutines expressions, traverse either the operand
// as written or the implied calls, depending on what the
// derived class requests.
DEF_TRAVERSE_STMT(CoroutineBodyStmt, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(CoreturnStmt, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(CoawaitExpr, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(DependentCoawaitExpr, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(CoyieldExpr, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(ConceptSpecializationExpr, {
TRY_TO(TraverseTemplateArgumentLocsHelper(
S->getTemplateArgsAsWritten()->getTemplateArgs(),
S->getTemplateArgsAsWritten()->NumTemplateArgs));
})
// These literals (all of them) do not need any action.
DEF_TRAVERSE_STMT(IntegerLiteral, {})
DEF_TRAVERSE_STMT(FixedPointLiteral, {})
DEF_TRAVERSE_STMT(CharacterLiteral, {})
DEF_TRAVERSE_STMT(FloatingLiteral, {})
DEF_TRAVERSE_STMT(ImaginaryLiteral, {})
DEF_TRAVERSE_STMT(StringLiteral, {})
DEF_TRAVERSE_STMT(ObjCStringLiteral, {})
DEF_TRAVERSE_STMT(ObjCBoxedExpr, {})
DEF_TRAVERSE_STMT(ObjCArrayLiteral, {})
DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, {})
// Traverse OpenCL: AsType, Convert.
DEF_TRAVERSE_STMT(AsTypeExpr, {})
// OpenMP directives.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseOMPExecutableDirective(
OMPExecutableDirective *S) {
for (auto *C : S->clauses()) {
TRY_TO(TraverseOMPClause(C));
}
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseOMPLoopDirective(OMPLoopDirective *S) {
return TraverseOMPExecutableDirective(S);
}
DEF_TRAVERSE_STMT(OMPParallelDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSectionsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSectionDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSingleDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMasterDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCriticalDirective, {
TRY_TO(TraverseDeclarationNameInfo(S->getDirectiveName()));
TRY_TO(TraverseOMPExecutableDirective(S));
})
DEF_TRAVERSE_STMT(OMPParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelSectionsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskyieldDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPBarrierDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskwaitDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskgroupDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCancellationPointDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCancelDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPFlushDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPOrderedDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPAtomicDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetDataDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetEnterDataDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetExitDataDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetUpdateDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskLoopDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskLoopSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMasterTaskLoopDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMasterTaskLoopSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelMasterTaskLoopDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
// OpenMP clauses.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseOMPClause(OMPClause *C) {
if (!C)
return true;
switch (C->getClauseKind()) {
#define OPENMP_CLAUSE(Name, Class) \
case OMPC_##Name: \
TRY_TO(Visit##Class(static_cast<Class *>(C))); \
break;
#include "clang/Basic/OpenMPKinds.def"
case OMPC_threadprivate:
case OMPC_uniform:
case OMPC_device_type:
case OMPC_match:
case OMPC_unknown:
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPClauseWithPreInit(
OMPClauseWithPreInit *Node) {
TRY_TO(TraverseStmt(Node->getPreInitStmt()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPClauseWithPostUpdate(
OMPClauseWithPostUpdate *Node) {
TRY_TO(VisitOMPClauseWithPreInit(Node));
TRY_TO(TraverseStmt(Node->getPostUpdateExpr()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPAllocatorClause(
OMPAllocatorClause *C) {
TRY_TO(TraverseStmt(C->getAllocator()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPAllocateClause(OMPAllocateClause *C) {
TRY_TO(TraverseStmt(C->getAllocator()));
TRY_TO(VisitOMPClauseList(C));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPIfClause(OMPIfClause *C) {
TRY_TO(VisitOMPClauseWithPreInit(C));
TRY_TO(TraverseStmt(C->getCondition()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPFinalClause(OMPFinalClause *C) {
TRY_TO(VisitOMPClauseWithPreInit(C));
TRY_TO(TraverseStmt(C->getCondition()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPNumThreadsClause(OMPNumThreadsClause *C) {
TRY_TO(VisitOMPClauseWithPreInit(C));
TRY_TO(TraverseStmt(C->getNumThreads()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSafelenClause(OMPSafelenClause *C) {
TRY_TO(TraverseStmt(C->getSafelen()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSimdlenClause(OMPSimdlenClause *C) {
TRY_TO(TraverseStmt(C->getSimdlen()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPCollapseClause(OMPCollapseClause *C) {
TRY_TO(TraverseStmt(C->getNumForLoops()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPDefaultClause(OMPDefaultClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPProcBindClause(OMPProcBindClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPUnifiedAddressClause(
OMPUnifiedAddressClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPUnifiedSharedMemoryClause(
OMPUnifiedSharedMemoryClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPReverseOffloadClause(
OMPReverseOffloadClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPDynamicAllocatorsClause(
OMPDynamicAllocatorsClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPAtomicDefaultMemOrderClause(
OMPAtomicDefaultMemOrderClause *) {
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPScheduleClause(OMPScheduleClause *C) {
TRY_TO(VisitOMPClauseWithPreInit(C));
TRY_TO(TraverseStmt(C->getChunkSize()));
return true;
}
template <typename Derived