blob: e42f0449f6db1fc0cabdd5fbd9b078a445975734 [file] [log] [blame]
//===--- LexicallyOrderedRecursiveASTVisitor.h - ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the LexicallyOrderedRecursiveASTVisitor interface, which
// recursively traverses the entire AST in a lexical order.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_LEXICALLY_ORDERED_RECURSIVEASTVISITOR_H
#define LLVM_CLANG_AST_LEXICALLY_ORDERED_RECURSIVEASTVISITOR_H
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/SaveAndRestore.h"
namespace clang {
/// A RecursiveASTVisitor subclass that guarantees that AST traversal is
/// performed in a lexical order (i.e. the order in which declarations are
/// written in the source).
///
/// RecursiveASTVisitor doesn't guarantee lexical ordering because there are
/// some declarations, like Objective-C @implementation declarations
/// that might be represented in the AST differently to how they were written
/// in the source.
/// In particular, Objective-C @implementation declarations may contain
/// non-Objective-C declarations, like functions:
///
/// @implementation MyClass
///
/// - (void) method { }
/// void normalFunction() { }
///
/// @end
///
/// Clang's AST stores these declarations outside of the @implementation
/// declaration, so the example above would be represented using the following
/// AST:
/// |-ObjCImplementationDecl ... MyClass
/// | `-ObjCMethodDecl ... method
/// | ...
/// `-FunctionDecl ... normalFunction
/// ...
///
/// This class ensures that these declarations are traversed before the
/// corresponding TraverseDecl for the @implementation returns. This ensures
/// that the lexical parent relationship between these declarations and the
/// @implementation is preserved while traversing the AST. Note that the
/// current implementation doesn't mix these declarations with the declarations
/// contained in the @implementation, so the traversal of all of the
/// declarations in the @implementation still doesn't follow the lexical order.
template <typename Derived>
class LexicallyOrderedRecursiveASTVisitor
: public RecursiveASTVisitor<Derived> {
using BaseType = RecursiveASTVisitor<Derived>;
public:
LexicallyOrderedRecursiveASTVisitor(const SourceManager &SM) : SM(SM) {}
bool TraverseObjCImplementationDecl(ObjCImplementationDecl *D) {
// Objective-C @implementation declarations should not trigger early exit
// until the additional decls are traversed as their children are not
// lexically ordered.
bool Result = BaseType::TraverseObjCImplementationDecl(D);
return TraverseAdditionalLexicallyNestedDeclarations() ? Result : false;
}
bool TraverseObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
bool Result = BaseType::TraverseObjCCategoryImplDecl(D);
return TraverseAdditionalLexicallyNestedDeclarations() ? Result : false;
}
bool TraverseDeclContextHelper(DeclContext *DC) {
if (!DC)
return true;
for (auto I = DC->decls_begin(), E = DC->decls_end(); I != E;) {
Decl *Child = *I;
if (BaseType::canIgnoreChildDeclWhileTraversingDeclContext(Child)) {
++I;
continue;
}
if (!isa<ObjCImplementationDecl>(Child) &&
!isa<ObjCCategoryImplDecl>(Child)) {
if (!BaseType::getDerived().TraverseDecl(Child))
return false;
++I;
continue;
}
// Gather declarations that follow the Objective-C implementation
// declarations but are lexically contained in the implementation.
LexicallyNestedDeclarations.clear();
for (++I; I != E; ++I) {
Decl *Sibling = *I;
if (!SM.isBeforeInTranslationUnit(Sibling->getBeginLoc(),
Child->getEndLoc()))
break;
if (!BaseType::canIgnoreChildDeclWhileTraversingDeclContext(Sibling))
LexicallyNestedDeclarations.push_back(Sibling);
}
if (!BaseType::getDerived().TraverseDecl(Child))
return false;
}
return true;
}
Stmt::child_range getStmtChildren(Stmt *S) { return S->children(); }
SmallVector<Stmt *, 8> getStmtChildren(CXXOperatorCallExpr *CE) {
SmallVector<Stmt *, 8> Children(CE->children());
bool Swap;
// Switch the operator and the first operand for all infix and postfix
// operations.
switch (CE->getOperator()) {
case OO_Arrow:
case OO_Call:
case OO_Subscript:
Swap = true;
break;
case OO_PlusPlus:
case OO_MinusMinus:
// These are postfix unless there is exactly one argument.
Swap = Children.size() != 2;
break;
default:
Swap = CE->isInfixBinaryOp();
break;
}
if (Swap && Children.size() > 1)
std::swap(Children[0], Children[1]);
return Children;
}
private:
bool TraverseAdditionalLexicallyNestedDeclarations() {
// FIXME: Ideally the gathered declarations and the declarations in the
// @implementation should be mixed and sorted to get a true lexical order,
// but right now we only care about getting the correct lexical parent, so
// we can traverse the gathered nested declarations after the declarations
// in the decl context.
assert(!BaseType::getDerived().shouldTraversePostOrder() &&
"post-order traversal is not supported for lexically ordered "
"recursive ast visitor");
for (Decl *D : LexicallyNestedDeclarations) {
if (!BaseType::getDerived().TraverseDecl(D))
return false;
}
return true;
}
const SourceManager &SM;
llvm::SmallVector<Decl *, 8> LexicallyNestedDeclarations;
};
} // end namespace clang
#endif // LLVM_CLANG_AST_LEXICALLY_ORDERED_RECURSIVEASTVISITOR_H