| //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // A intra-procedural analysis for thread safety (e.g. deadlocks and race |
| // conditions), based off of an annotation system. |
| // |
| // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html |
| // for more information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/Analyses/ThreadSafety.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Analysis/Analyses/PostOrderCFGView.h" |
| #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" |
| #include "clang/Analysis/Analyses/ThreadSafetyLogical.h" |
| #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" |
| #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" |
| #include "clang/Analysis/AnalysisDeclContext.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Analysis/CFGStmtMap.h" |
| #include "clang/Basic/OperatorKinds.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "llvm/ADT/ImmutableMap.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <ostream> |
| #include <sstream> |
| #include <utility> |
| #include <vector> |
| using namespace clang; |
| using namespace threadSafety; |
| |
| // Key method definition |
| ThreadSafetyHandler::~ThreadSafetyHandler() {} |
| |
| namespace { |
| class TILPrinter : |
| public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; |
| |
| |
| /// Issue a warning about an invalid lock expression |
| static void warnInvalidLock(ThreadSafetyHandler &Handler, |
| const Expr *MutexExp, const NamedDecl *D, |
| const Expr *DeclExp, StringRef Kind) { |
| SourceLocation Loc; |
| if (DeclExp) |
| Loc = DeclExp->getExprLoc(); |
| |
| // FIXME: add a note about the attribute location in MutexExp or D |
| if (Loc.isValid()) |
| Handler.handleInvalidLockExp(Kind, Loc); |
| } |
| |
| /// \brief A set of CapabilityInfo objects, which are compiled from the |
| /// requires attributes on a function. |
| class CapExprSet : public SmallVector<CapabilityExpr, 4> { |
| public: |
| /// \brief Push M onto list, but discard duplicates. |
| void push_back_nodup(const CapabilityExpr &CapE) { |
| iterator It = std::find_if(begin(), end(), |
| [=](const CapabilityExpr &CapE2) { |
| return CapE.equals(CapE2); |
| }); |
| if (It == end()) |
| push_back(CapE); |
| } |
| }; |
| |
| class FactManager; |
| class FactSet; |
| |
| /// \brief This is a helper class that stores a fact that is known at a |
| /// particular point in program execution. Currently, a fact is a capability, |
| /// along with additional information, such as where it was acquired, whether |
| /// it is exclusive or shared, etc. |
| /// |
| /// FIXME: this analysis does not currently support either re-entrant |
| /// locking or lock "upgrading" and "downgrading" between exclusive and |
| /// shared. |
| class FactEntry : public CapabilityExpr { |
| private: |
| LockKind LKind; ///< exclusive or shared |
| SourceLocation AcquireLoc; ///< where it was acquired. |
| bool Asserted; ///< true if the lock was asserted |
| bool Declared; ///< true if the lock was declared |
| |
| public: |
| FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, |
| bool Asrt, bool Declrd = false) |
| : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt), |
| Declared(Declrd) {} |
| |
| virtual ~FactEntry() {} |
| |
| LockKind kind() const { return LKind; } |
| SourceLocation loc() const { return AcquireLoc; } |
| bool asserted() const { return Asserted; } |
| bool declared() const { return Declared; } |
| |
| void setDeclared(bool D) { Declared = D; } |
| |
| virtual void |
| handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, |
| SourceLocation JoinLoc, LockErrorKind LEK, |
| ThreadSafetyHandler &Handler) const = 0; |
| virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, |
| const CapabilityExpr &Cp, SourceLocation UnlockLoc, |
| bool FullyRemove, ThreadSafetyHandler &Handler, |
| StringRef DiagKind) const = 0; |
| |
| // Return true if LKind >= LK, where exclusive > shared |
| bool isAtLeast(LockKind LK) { |
| return (LKind == LK_Exclusive) || (LK == LK_Shared); |
| } |
| }; |
| |
| |
| typedef unsigned short FactID; |
| |
| /// \brief FactManager manages the memory for all facts that are created during |
| /// the analysis of a single routine. |
| class FactManager { |
| private: |
| std::vector<std::unique_ptr<FactEntry>> Facts; |
| |
| public: |
| FactID newFact(std::unique_ptr<FactEntry> Entry) { |
| Facts.push_back(std::move(Entry)); |
| return static_cast<unsigned short>(Facts.size() - 1); |
| } |
| |
| const FactEntry &operator[](FactID F) const { return *Facts[F]; } |
| FactEntry &operator[](FactID F) { return *Facts[F]; } |
| }; |
| |
| |
| /// \brief A FactSet is the set of facts that are known to be true at a |
| /// particular program point. FactSets must be small, because they are |
| /// frequently copied, and are thus implemented as a set of indices into a |
| /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 |
| /// locks, so we can get away with doing a linear search for lookup. Note |
| /// that a hashtable or map is inappropriate in this case, because lookups |
| /// may involve partial pattern matches, rather than exact matches. |
| class FactSet { |
| private: |
| typedef SmallVector<FactID, 4> FactVec; |
| |
| FactVec FactIDs; |
| |
| public: |
| typedef FactVec::iterator iterator; |
| typedef FactVec::const_iterator const_iterator; |
| |
| iterator begin() { return FactIDs.begin(); } |
| const_iterator begin() const { return FactIDs.begin(); } |
| |
| iterator end() { return FactIDs.end(); } |
| const_iterator end() const { return FactIDs.end(); } |
| |
| bool isEmpty() const { return FactIDs.size() == 0; } |
| |
| // Return true if the set contains only negative facts |
| bool isEmpty(FactManager &FactMan) const { |
| for (FactID FID : *this) { |
| if (!FactMan[FID].negative()) |
| return false; |
| } |
| return true; |
| } |
| |
| void addLockByID(FactID ID) { FactIDs.push_back(ID); } |
| |
| FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { |
| FactID F = FM.newFact(std::move(Entry)); |
| FactIDs.push_back(F); |
| return F; |
| } |
| |
| bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { |
| unsigned n = FactIDs.size(); |
| if (n == 0) |
| return false; |
| |
| for (unsigned i = 0; i < n-1; ++i) { |
| if (FM[FactIDs[i]].matches(CapE)) { |
| FactIDs[i] = FactIDs[n-1]; |
| FactIDs.pop_back(); |
| return true; |
| } |
| } |
| if (FM[FactIDs[n-1]].matches(CapE)) { |
| FactIDs.pop_back(); |
| return true; |
| } |
| return false; |
| } |
| |
| iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { |
| return std::find_if(begin(), end(), [&](FactID ID) { |
| return FM[ID].matches(CapE); |
| }); |
| } |
| |
| FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { |
| auto I = std::find_if(begin(), end(), [&](FactID ID) { |
| return FM[ID].matches(CapE); |
| }); |
| return I != end() ? &FM[*I] : nullptr; |
| } |
| |
| FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const { |
| auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { |
| return FM[ID].matchesUniv(CapE); |
| }); |
| return I != end() ? &FM[*I] : nullptr; |
| } |
| |
| FactEntry *findPartialMatch(FactManager &FM, |
| const CapabilityExpr &CapE) const { |
| auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { |
| return FM[ID].partiallyMatches(CapE); |
| }); |
| return I != end() ? &FM[*I] : nullptr; |
| } |
| |
| bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { |
| auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { |
| return FM[ID].valueDecl() == Vd; |
| }); |
| return I != end(); |
| } |
| }; |
| |
| class ThreadSafetyAnalyzer; |
| } // namespace |
| |
| namespace clang { |
| namespace threadSafety { |
| class BeforeSet { |
| private: |
| typedef SmallVector<const ValueDecl*, 4> BeforeVect; |
| |
| struct BeforeInfo { |
| BeforeInfo() : Visited(0) {} |
| BeforeInfo(BeforeInfo &&) = default; |
| |
| BeforeVect Vect; |
| int Visited; |
| }; |
| |
| typedef llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>> |
| BeforeMap; |
| typedef llvm::DenseMap<const ValueDecl*, bool> CycleMap; |
| |
| public: |
| BeforeSet() { } |
| |
| BeforeInfo* insertAttrExprs(const ValueDecl* Vd, |
| ThreadSafetyAnalyzer& Analyzer); |
| |
| BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, |
| ThreadSafetyAnalyzer &Analyzer); |
| |
| void checkBeforeAfter(const ValueDecl* Vd, |
| const FactSet& FSet, |
| ThreadSafetyAnalyzer& Analyzer, |
| SourceLocation Loc, StringRef CapKind); |
| |
| private: |
| BeforeMap BMap; |
| CycleMap CycMap; |
| }; |
| } // end namespace threadSafety |
| } // end namespace clang |
| |
| namespace { |
| typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; |
| class LocalVariableMap; |
| |
| /// A side (entry or exit) of a CFG node. |
| enum CFGBlockSide { CBS_Entry, CBS_Exit }; |
| |
| /// CFGBlockInfo is a struct which contains all the information that is |
| /// maintained for each block in the CFG. See LocalVariableMap for more |
| /// information about the contexts. |
| struct CFGBlockInfo { |
| FactSet EntrySet; // Lockset held at entry to block |
| FactSet ExitSet; // Lockset held at exit from block |
| LocalVarContext EntryContext; // Context held at entry to block |
| LocalVarContext ExitContext; // Context held at exit from block |
| SourceLocation EntryLoc; // Location of first statement in block |
| SourceLocation ExitLoc; // Location of last statement in block. |
| unsigned EntryIndex; // Used to replay contexts later |
| bool Reachable; // Is this block reachable? |
| |
| const FactSet &getSet(CFGBlockSide Side) const { |
| return Side == CBS_Entry ? EntrySet : ExitSet; |
| } |
| SourceLocation getLocation(CFGBlockSide Side) const { |
| return Side == CBS_Entry ? EntryLoc : ExitLoc; |
| } |
| |
| private: |
| CFGBlockInfo(LocalVarContext EmptyCtx) |
| : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) |
| { } |
| |
| public: |
| static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); |
| }; |
| |
| |
| |
| // A LocalVariableMap maintains a map from local variables to their currently |
| // valid definitions. It provides SSA-like functionality when traversing the |
| // CFG. Like SSA, each definition or assignment to a variable is assigned a |
| // unique name (an integer), which acts as the SSA name for that definition. |
| // The total set of names is shared among all CFG basic blocks. |
| // Unlike SSA, we do not rewrite expressions to replace local variables declrefs |
| // with their SSA-names. Instead, we compute a Context for each point in the |
| // code, which maps local variables to the appropriate SSA-name. This map |
| // changes with each assignment. |
| // |
| // The map is computed in a single pass over the CFG. Subsequent analyses can |
| // then query the map to find the appropriate Context for a statement, and use |
| // that Context to look up the definitions of variables. |
| class LocalVariableMap { |
| public: |
| typedef LocalVarContext Context; |
| |
| /// A VarDefinition consists of an expression, representing the value of the |
| /// variable, along with the context in which that expression should be |
| /// interpreted. A reference VarDefinition does not itself contain this |
| /// information, but instead contains a pointer to a previous VarDefinition. |
| struct VarDefinition { |
| public: |
| friend class LocalVariableMap; |
| |
| const NamedDecl *Dec; // The original declaration for this variable. |
| const Expr *Exp; // The expression for this variable, OR |
| unsigned Ref; // Reference to another VarDefinition |
| Context Ctx; // The map with which Exp should be interpreted. |
| |
| bool isReference() { return !Exp; } |
| |
| private: |
| // Create ordinary variable definition |
| VarDefinition(const NamedDecl *D, const Expr *E, Context C) |
| : Dec(D), Exp(E), Ref(0), Ctx(C) |
| { } |
| |
| // Create reference to previous definition |
| VarDefinition(const NamedDecl *D, unsigned R, Context C) |
| : Dec(D), Exp(nullptr), Ref(R), Ctx(C) |
| { } |
| }; |
| |
| private: |
| Context::Factory ContextFactory; |
| std::vector<VarDefinition> VarDefinitions; |
| std::vector<unsigned> CtxIndices; |
| std::vector<std::pair<Stmt*, Context> > SavedContexts; |
| |
| public: |
| LocalVariableMap() { |
| // index 0 is a placeholder for undefined variables (aka phi-nodes). |
| VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); |
| } |
| |
| /// Look up a definition, within the given context. |
| const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { |
| const unsigned *i = Ctx.lookup(D); |
| if (!i) |
| return nullptr; |
| assert(*i < VarDefinitions.size()); |
| return &VarDefinitions[*i]; |
| } |
| |
| /// Look up the definition for D within the given context. Returns |
| /// NULL if the expression is not statically known. If successful, also |
| /// modifies Ctx to hold the context of the return Expr. |
| const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { |
| const unsigned *P = Ctx.lookup(D); |
| if (!P) |
| return nullptr; |
| |
| unsigned i = *P; |
| while (i > 0) { |
| if (VarDefinitions[i].Exp) { |
| Ctx = VarDefinitions[i].Ctx; |
| return VarDefinitions[i].Exp; |
| } |
| i = VarDefinitions[i].Ref; |
| } |
| return nullptr; |
| } |
| |
| Context getEmptyContext() { return ContextFactory.getEmptyMap(); } |
| |
| /// Return the next context after processing S. This function is used by |
| /// clients of the class to get the appropriate context when traversing the |
| /// CFG. It must be called for every assignment or DeclStmt. |
| Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { |
| if (SavedContexts[CtxIndex+1].first == S) { |
| CtxIndex++; |
| Context Result = SavedContexts[CtxIndex].second; |
| return Result; |
| } |
| return C; |
| } |
| |
| void dumpVarDefinitionName(unsigned i) { |
| if (i == 0) { |
| llvm::errs() << "Undefined"; |
| return; |
| } |
| const NamedDecl *Dec = VarDefinitions[i].Dec; |
| if (!Dec) { |
| llvm::errs() << "<<NULL>>"; |
| return; |
| } |
| Dec->printName(llvm::errs()); |
| llvm::errs() << "." << i << " " << ((const void*) Dec); |
| } |
| |
| /// Dumps an ASCII representation of the variable map to llvm::errs() |
| void dump() { |
| for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { |
| const Expr *Exp = VarDefinitions[i].Exp; |
| unsigned Ref = VarDefinitions[i].Ref; |
| |
| dumpVarDefinitionName(i); |
| llvm::errs() << " = "; |
| if (Exp) Exp->dump(); |
| else { |
| dumpVarDefinitionName(Ref); |
| llvm::errs() << "\n"; |
| } |
| } |
| } |
| |
| /// Dumps an ASCII representation of a Context to llvm::errs() |
| void dumpContext(Context C) { |
| for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { |
| const NamedDecl *D = I.getKey(); |
| D->printName(llvm::errs()); |
| const unsigned *i = C.lookup(D); |
| llvm::errs() << " -> "; |
| dumpVarDefinitionName(*i); |
| llvm::errs() << "\n"; |
| } |
| } |
| |
| /// Builds the variable map. |
| void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, |
| std::vector<CFGBlockInfo> &BlockInfo); |
| |
| protected: |
| // Get the current context index |
| unsigned getContextIndex() { return SavedContexts.size()-1; } |
| |
| // Save the current context for later replay |
| void saveContext(Stmt *S, Context C) { |
| SavedContexts.push_back(std::make_pair(S,C)); |
| } |
| |
| // Adds a new definition to the given context, and returns a new context. |
| // This method should be called when declaring a new variable. |
| Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { |
| assert(!Ctx.contains(D)); |
| unsigned newID = VarDefinitions.size(); |
| Context NewCtx = ContextFactory.add(Ctx, D, newID); |
| VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); |
| return NewCtx; |
| } |
| |
| // Add a new reference to an existing definition. |
| Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { |
| unsigned newID = VarDefinitions.size(); |
| Context NewCtx = ContextFactory.add(Ctx, D, newID); |
| VarDefinitions.push_back(VarDefinition(D, i, Ctx)); |
| return NewCtx; |
| } |
| |
| // Updates a definition only if that definition is already in the map. |
| // This method should be called when assigning to an existing variable. |
| Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { |
| if (Ctx.contains(D)) { |
| unsigned newID = VarDefinitions.size(); |
| Context NewCtx = ContextFactory.remove(Ctx, D); |
| NewCtx = ContextFactory.add(NewCtx, D, newID); |
| VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); |
| return NewCtx; |
| } |
| return Ctx; |
| } |
| |
| // Removes a definition from the context, but keeps the variable name |
| // as a valid variable. The index 0 is a placeholder for cleared definitions. |
| Context clearDefinition(const NamedDecl *D, Context Ctx) { |
| Context NewCtx = Ctx; |
| if (NewCtx.contains(D)) { |
| NewCtx = ContextFactory.remove(NewCtx, D); |
| NewCtx = ContextFactory.add(NewCtx, D, 0); |
| } |
| return NewCtx; |
| } |
| |
| // Remove a definition entirely frmo the context. |
| Context removeDefinition(const NamedDecl *D, Context Ctx) { |
| Context NewCtx = Ctx; |
| if (NewCtx.contains(D)) { |
| NewCtx = ContextFactory.remove(NewCtx, D); |
| } |
| return NewCtx; |
| } |
| |
| Context intersectContexts(Context C1, Context C2); |
| Context createReferenceContext(Context C); |
| void intersectBackEdge(Context C1, Context C2); |
| |
| friend class VarMapBuilder; |
| }; |
| |
| |
| // This has to be defined after LocalVariableMap. |
| CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { |
| return CFGBlockInfo(M.getEmptyContext()); |
| } |
| |
| |
| /// Visitor which builds a LocalVariableMap |
| class VarMapBuilder : public StmtVisitor<VarMapBuilder> { |
| public: |
| LocalVariableMap* VMap; |
| LocalVariableMap::Context Ctx; |
| |
| VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) |
| : VMap(VM), Ctx(C) {} |
| |
| void VisitDeclStmt(DeclStmt *S); |
| void VisitBinaryOperator(BinaryOperator *BO); |
| }; |
| |
| |
| // Add new local variables to the variable map |
| void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { |
| bool modifiedCtx = false; |
| DeclGroupRef DGrp = S->getDeclGroup(); |
| for (const auto *D : DGrp) { |
| if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { |
| const Expr *E = VD->getInit(); |
| |
| // Add local variables with trivial type to the variable map |
| QualType T = VD->getType(); |
| if (T.isTrivialType(VD->getASTContext())) { |
| Ctx = VMap->addDefinition(VD, E, Ctx); |
| modifiedCtx = true; |
| } |
| } |
| } |
| if (modifiedCtx) |
| VMap->saveContext(S, Ctx); |
| } |
| |
| // Update local variable definitions in variable map |
| void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { |
| if (!BO->isAssignmentOp()) |
| return; |
| |
| Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); |
| |
| // Update the variable map and current context. |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { |
| ValueDecl *VDec = DRE->getDecl(); |
| if (Ctx.lookup(VDec)) { |
| if (BO->getOpcode() == BO_Assign) |
| Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); |
| else |
| // FIXME -- handle compound assignment operators |
| Ctx = VMap->clearDefinition(VDec, Ctx); |
| VMap->saveContext(BO, Ctx); |
| } |
| } |
| } |
| |
| |
| // Computes the intersection of two contexts. The intersection is the |
| // set of variables which have the same definition in both contexts; |
| // variables with different definitions are discarded. |
| LocalVariableMap::Context |
| LocalVariableMap::intersectContexts(Context C1, Context C2) { |
| Context Result = C1; |
| for (const auto &P : C1) { |
| const NamedDecl *Dec = P.first; |
| const unsigned *i2 = C2.lookup(Dec); |
| if (!i2) // variable doesn't exist on second path |
| Result = removeDefinition(Dec, Result); |
| else if (*i2 != P.second) // variable exists, but has different definition |
| Result = clearDefinition(Dec, Result); |
| } |
| return Result; |
| } |
| |
| // For every variable in C, create a new variable that refers to the |
| // definition in C. Return a new context that contains these new variables. |
| // (We use this for a naive implementation of SSA on loop back-edges.) |
| LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { |
| Context Result = getEmptyContext(); |
| for (const auto &P : C) |
| Result = addReference(P.first, P.second, Result); |
| return Result; |
| } |
| |
| // This routine also takes the intersection of C1 and C2, but it does so by |
| // altering the VarDefinitions. C1 must be the result of an earlier call to |
| // createReferenceContext. |
| void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { |
| for (const auto &P : C1) { |
| unsigned i1 = P.second; |
| VarDefinition *VDef = &VarDefinitions[i1]; |
| assert(VDef->isReference()); |
| |
| const unsigned *i2 = C2.lookup(P.first); |
| if (!i2 || (*i2 != i1)) |
| VDef->Ref = 0; // Mark this variable as undefined |
| } |
| } |
| |
| |
| // Traverse the CFG in topological order, so all predecessors of a block |
| // (excluding back-edges) are visited before the block itself. At |
| // each point in the code, we calculate a Context, which holds the set of |
| // variable definitions which are visible at that point in execution. |
| // Visible variables are mapped to their definitions using an array that |
| // contains all definitions. |
| // |
| // At join points in the CFG, the set is computed as the intersection of |
| // the incoming sets along each edge, E.g. |
| // |
| // { Context | VarDefinitions } |
| // int x = 0; { x -> x1 | x1 = 0 } |
| // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } |
| // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } |
| // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } |
| // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } |
| // |
| // This is essentially a simpler and more naive version of the standard SSA |
| // algorithm. Those definitions that remain in the intersection are from blocks |
| // that strictly dominate the current block. We do not bother to insert proper |
| // phi nodes, because they are not used in our analysis; instead, wherever |
| // a phi node would be required, we simply remove that definition from the |
| // context (E.g. x above). |
| // |
| // The initial traversal does not capture back-edges, so those need to be |
| // handled on a separate pass. Whenever the first pass encounters an |
| // incoming back edge, it duplicates the context, creating new definitions |
| // that refer back to the originals. (These correspond to places where SSA |
| // might have to insert a phi node.) On the second pass, these definitions are |
| // set to NULL if the variable has changed on the back-edge (i.e. a phi |
| // node was actually required.) E.g. |
| // |
| // { Context | VarDefinitions } |
| // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } |
| // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } |
| // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } |
| // ... { y -> y1 | x3 = 2, x2 = 1, ... } |
| // |
| void LocalVariableMap::traverseCFG(CFG *CFGraph, |
| const PostOrderCFGView *SortedGraph, |
| std::vector<CFGBlockInfo> &BlockInfo) { |
| PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); |
| |
| CtxIndices.resize(CFGraph->getNumBlockIDs()); |
| |
| for (const auto *CurrBlock : *SortedGraph) { |
| int CurrBlockID = CurrBlock->getBlockID(); |
| CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; |
| |
| VisitedBlocks.insert(CurrBlock); |
| |
| // Calculate the entry context for the current block |
| bool HasBackEdges = false; |
| bool CtxInit = true; |
| for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), |
| PE = CurrBlock->pred_end(); PI != PE; ++PI) { |
| // if *PI -> CurrBlock is a back edge, so skip it |
| if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { |
| HasBackEdges = true; |
| continue; |
| } |
| |
| int PrevBlockID = (*PI)->getBlockID(); |
| CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; |
| |
| if (CtxInit) { |
| CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; |
| CtxInit = false; |
| } |
| else { |
| CurrBlockInfo->EntryContext = |
| intersectContexts(CurrBlockInfo->EntryContext, |
| PrevBlockInfo->ExitContext); |
| } |
| } |
| |
| // Duplicate the context if we have back-edges, so we can call |
| // intersectBackEdges later. |
| if (HasBackEdges) |
| CurrBlockInfo->EntryContext = |
| createReferenceContext(CurrBlockInfo->EntryContext); |
| |
| // Create a starting context index for the current block |
| saveContext(nullptr, CurrBlockInfo->EntryContext); |
| CurrBlockInfo->EntryIndex = getContextIndex(); |
| |
| // Visit all the statements in the basic block. |
| VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); |
| for (CFGBlock::const_iterator BI = CurrBlock->begin(), |
| BE = CurrBlock->end(); BI != BE; ++BI) { |
| switch (BI->getKind()) { |
| case CFGElement::Statement: { |
| CFGStmt CS = BI->castAs<CFGStmt>(); |
| VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| CurrBlockInfo->ExitContext = VMapBuilder.Ctx; |
| |
| // Mark variables on back edges as "unknown" if they've been changed. |
| for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), |
| SE = CurrBlock->succ_end(); SI != SE; ++SI) { |
| // if CurrBlock -> *SI is *not* a back edge |
| if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) |
| continue; |
| |
| CFGBlock *FirstLoopBlock = *SI; |
| Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; |
| Context LoopEnd = CurrBlockInfo->ExitContext; |
| intersectBackEdge(LoopBegin, LoopEnd); |
| } |
| } |
| |
| // Put an extra entry at the end of the indexed context array |
| unsigned exitID = CFGraph->getExit().getBlockID(); |
| saveContext(nullptr, BlockInfo[exitID].ExitContext); |
| } |
| |
| /// Find the appropriate source locations to use when producing diagnostics for |
| /// each block in the CFG. |
| static void findBlockLocations(CFG *CFGraph, |
| const PostOrderCFGView *SortedGraph, |
| std::vector<CFGBlockInfo> &BlockInfo) { |
| for (const auto *CurrBlock : *SortedGraph) { |
| CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; |
| |
| // Find the source location of the last statement in the block, if the |
| // block is not empty. |
| if (const Stmt *S = CurrBlock->getTerminator()) { |
| CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); |
| } else { |
| for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), |
| BE = CurrBlock->rend(); BI != BE; ++BI) { |
| // FIXME: Handle other CFGElement kinds. |
| if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { |
| CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); |
| break; |
| } |
| } |
| } |
| |
| if (CurrBlockInfo->ExitLoc.isValid()) { |
| // This block contains at least one statement. Find the source location |
| // of the first statement in the block. |
| for (CFGBlock::const_iterator BI = CurrBlock->begin(), |
| BE = CurrBlock->end(); BI != BE; ++BI) { |
| // FIXME: Handle other CFGElement kinds. |
| if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { |
| CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); |
| break; |
| } |
| } |
| } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && |
| CurrBlock != &CFGraph->getExit()) { |
| // The block is empty, and has a single predecessor. Use its exit |
| // location. |
| CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = |
| BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; |
| } |
| } |
| } |
| |
| class LockableFactEntry : public FactEntry { |
| private: |
| bool Managed; ///< managed by ScopedLockable object |
| |
| public: |
| LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, |
| bool Mng = false, bool Asrt = false) |
| : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} |
| |
| void |
| handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, |
| SourceLocation JoinLoc, LockErrorKind LEK, |
| ThreadSafetyHandler &Handler) const override { |
| if (!Managed && !asserted() && !negative() && !isUniversal()) { |
| Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, |
| LEK); |
| } |
| } |
| |
| void handleUnlock(FactSet &FSet, FactManager &FactMan, |
| const CapabilityExpr &Cp, SourceLocation UnlockLoc, |
| bool FullyRemove, ThreadSafetyHandler &Handler, |
| StringRef DiagKind) const override { |
| FSet.removeLock(FactMan, Cp); |
| if (!Cp.negative()) { |
| FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( |
| !Cp, LK_Exclusive, UnlockLoc)); |
| } |
| } |
| }; |
| |
| class ScopedLockableFactEntry : public FactEntry { |
| private: |
| SmallVector<const til::SExpr *, 4> UnderlyingMutexes; |
| |
| public: |
| ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc, |
| const CapExprSet &Excl, const CapExprSet &Shrd) |
| : FactEntry(CE, LK_Exclusive, Loc, false) { |
| for (const auto &M : Excl) |
| UnderlyingMutexes.push_back(M.sexpr()); |
| for (const auto &M : Shrd) |
| UnderlyingMutexes.push_back(M.sexpr()); |
| } |
| |
| void |
| handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, |
| SourceLocation JoinLoc, LockErrorKind LEK, |
| ThreadSafetyHandler &Handler) const override { |
| for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { |
| if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) { |
| // If this scoped lock manages another mutex, and if the underlying |
| // mutex is still held, then warn about the underlying mutex. |
| Handler.handleMutexHeldEndOfScope( |
| "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK); |
| } |
| } |
| } |
| |
| void handleUnlock(FactSet &FSet, FactManager &FactMan, |
| const CapabilityExpr &Cp, SourceLocation UnlockLoc, |
| bool FullyRemove, ThreadSafetyHandler &Handler, |
| StringRef DiagKind) const override { |
| assert(!Cp.negative() && "Managing object cannot be negative."); |
| for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { |
| CapabilityExpr UnderCp(UnderlyingMutex, false); |
| auto UnderEntry = llvm::make_unique<LockableFactEntry>( |
| !UnderCp, LK_Exclusive, UnlockLoc); |
| |
| if (FullyRemove) { |
| // We're destroying the managing object. |
| // Remove the underlying mutex if it exists; but don't warn. |
| if (FSet.findLock(FactMan, UnderCp)) { |
| FSet.removeLock(FactMan, UnderCp); |
| FSet.addLock(FactMan, std::move(UnderEntry)); |
| } |
| } else { |
| // We're releasing the underlying mutex, but not destroying the |
| // managing object. Warn on dual release. |
| if (!FSet.findLock(FactMan, UnderCp)) { |
| Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), |
| UnlockLoc); |
| } |
| FSet.removeLock(FactMan, UnderCp); |
| FSet.addLock(FactMan, std::move(UnderEntry)); |
| } |
| } |
| if (FullyRemove) |
| FSet.removeLock(FactMan, Cp); |
| } |
| }; |
| |
| /// \brief Class which implements the core thread safety analysis routines. |
| class ThreadSafetyAnalyzer { |
| friend class BuildLockset; |
| friend class threadSafety::BeforeSet; |
| |
| llvm::BumpPtrAllocator Bpa; |
| threadSafety::til::MemRegionRef Arena; |
| threadSafety::SExprBuilder SxBuilder; |
| |
| ThreadSafetyHandler &Handler; |
| const CXXMethodDecl *CurrentMethod; |
| LocalVariableMap LocalVarMap; |
| FactManager FactMan; |
| std::vector<CFGBlockInfo> BlockInfo; |
| |
| BeforeSet* GlobalBeforeSet; |
| |
| public: |
| ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) |
| : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} |
| |
| bool inCurrentScope(const CapabilityExpr &CapE); |
| |
| void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, |
| StringRef DiagKind, bool ReqAttr = false); |
| void removeLock(FactSet &FSet, const CapabilityExpr &CapE, |
| SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, |
| StringRef DiagKind); |
| |
| template <typename AttrType> |
| void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, |
| const NamedDecl *D, VarDecl *SelfDecl = nullptr); |
| |
| template <class AttrType> |
| void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, |
| const NamedDecl *D, |
| const CFGBlock *PredBlock, const CFGBlock *CurrBlock, |
| Expr *BrE, bool Neg); |
| |
| const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, |
| bool &Negate); |
| |
| void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, |
| const CFGBlock* PredBlock, |
| const CFGBlock *CurrBlock); |
| |
| void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, |
| SourceLocation JoinLoc, |
| LockErrorKind LEK1, LockErrorKind LEK2, |
| bool Modify=true); |
| |
| void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, |
| SourceLocation JoinLoc, LockErrorKind LEK1, |
| bool Modify=true) { |
| intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); |
| } |
| |
| void runAnalysis(AnalysisDeclContext &AC); |
| }; |
| } // namespace |
| |
| /// Process acquired_before and acquired_after attributes on Vd. |
| BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, |
| ThreadSafetyAnalyzer& Analyzer) { |
| // Create a new entry for Vd. |
| BeforeInfo *Info = nullptr; |
| { |
| // Keep InfoPtr in its own scope in case BMap is modified later and the |
| // reference becomes invalid. |
| std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; |
| if (!InfoPtr) |
| InfoPtr.reset(new BeforeInfo()); |
| Info = InfoPtr.get(); |
| } |
| |
| for (Attr* At : Vd->attrs()) { |
| switch (At->getKind()) { |
| case attr::AcquiredBefore: { |
| auto *A = cast<AcquiredBeforeAttr>(At); |
| |
| // Read exprs from the attribute, and add them to BeforeVect. |
| for (const auto *Arg : A->args()) { |
| CapabilityExpr Cp = |
| Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); |
| if (const ValueDecl *Cpvd = Cp.valueDecl()) { |
| Info->Vect.push_back(Cpvd); |
| auto It = BMap.find(Cpvd); |
| if (It == BMap.end()) |
| insertAttrExprs(Cpvd, Analyzer); |
| } |
| } |
| break; |
| } |
| case attr::AcquiredAfter: { |
| auto *A = cast<AcquiredAfterAttr>(At); |
| |
| // Read exprs from the attribute, and add them to BeforeVect. |
| for (const auto *Arg : A->args()) { |
| CapabilityExpr Cp = |
| Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); |
| if (const ValueDecl *ArgVd = Cp.valueDecl()) { |
| // Get entry for mutex listed in attribute |
| BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); |
| ArgInfo->Vect.push_back(Vd); |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| return Info; |
| } |
| |
| BeforeSet::BeforeInfo * |
| BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, |
| ThreadSafetyAnalyzer &Analyzer) { |
| auto It = BMap.find(Vd); |
| BeforeInfo *Info = nullptr; |
| if (It == BMap.end()) |
| Info = insertAttrExprs(Vd, Analyzer); |
| else |
| Info = It->second.get(); |
| assert(Info && "BMap contained nullptr?"); |
| return Info; |
| } |
| |
| /// Return true if any mutexes in FSet are in the acquired_before set of Vd. |
| void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, |
| const FactSet& FSet, |
| ThreadSafetyAnalyzer& Analyzer, |
| SourceLocation Loc, StringRef CapKind) { |
| SmallVector<BeforeInfo*, 8> InfoVect; |
| |
| // Do a depth-first traversal of Vd. |
| // Return true if there are cycles. |
| std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { |
| if (!Vd) |
| return false; |
| |
| BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); |
| |
| if (Info->Visited == 1) |
| return true; |
| |
| if (Info->Visited == 2) |
| return false; |
| |
| if (Info->Vect.empty()) |
| return false; |
| |
| InfoVect.push_back(Info); |
| Info->Visited = 1; |
| for (auto *Vdb : Info->Vect) { |
| // Exclude mutexes in our immediate before set. |
| if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { |
| StringRef L1 = StartVd->getName(); |
| StringRef L2 = Vdb->getName(); |
| Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); |
| } |
| // Transitively search other before sets, and warn on cycles. |
| if (traverse(Vdb)) { |
| if (CycMap.find(Vd) == CycMap.end()) { |
| CycMap.insert(std::make_pair(Vd, true)); |
| StringRef L1 = Vd->getName(); |
| Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); |
| } |
| } |
| } |
| Info->Visited = 2; |
| return false; |
| }; |
| |
| traverse(StartVd); |
| |
| for (auto* Info : InfoVect) |
| Info->Visited = 0; |
| } |
| |
| |
| |
| /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs. |
| static const ValueDecl *getValueDecl(const Expr *Exp) { |
| if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) |
| return getValueDecl(CE->getSubExpr()); |
| |
| if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) |
| return DR->getDecl(); |
| |
| if (const auto *ME = dyn_cast<MemberExpr>(Exp)) |
| return ME->getMemberDecl(); |
| |
| return nullptr; |
| } |
| |
| namespace { |
| template <typename Ty> |
| class has_arg_iterator_range { |
| typedef char yes[1]; |
| typedef char no[2]; |
| |
| template <typename Inner> |
| static yes& test(Inner *I, decltype(I->args()) * = nullptr); |
| |
| template <typename> |
| static no& test(...); |
| |
| public: |
| static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); |
| }; |
| } // namespace |
| |
| static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { |
| return A->getName(); |
| } |
| |
| static StringRef ClassifyDiagnostic(QualType VDT) { |
| // We need to look at the declaration of the type of the value to determine |
| // which it is. The type should either be a record or a typedef, or a pointer |
| // or reference thereof. |
| if (const auto *RT = VDT->getAs<RecordType>()) { |
| if (const auto *RD = RT->getDecl()) |
| if (const auto *CA = RD->getAttr<CapabilityAttr>()) |
| return ClassifyDiagnostic(CA); |
| } else if (const auto *TT = VDT->getAs<TypedefType>()) { |
| if (const auto *TD = TT->getDecl()) |
| if (const auto *CA = TD->getAttr<CapabilityAttr>()) |
| return ClassifyDiagnostic(CA); |
| } else if (VDT->isPointerType() || VDT->isReferenceType()) |
| return ClassifyDiagnostic(VDT->getPointeeType()); |
| |
| return "mutex"; |
| } |
| |
| static StringRef ClassifyDiagnostic(const ValueDecl *VD) { |
| assert(VD && "No ValueDecl passed"); |
| |
| // The ValueDecl is the declaration of a mutex or role (hopefully). |
| return ClassifyDiagnostic(VD->getType()); |
| } |
| |
| template <typename AttrTy> |
| static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, |
| StringRef>::type |
| ClassifyDiagnostic(const AttrTy *A) { |
| if (const ValueDecl *VD = getValueDecl(A->getArg())) |
| return ClassifyDiagnostic(VD); |
| return "mutex"; |
| } |
| |
| template <typename AttrTy> |
| static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, |
| StringRef>::type |
| ClassifyDiagnostic(const AttrTy *A) { |
| for (const auto *Arg : A->args()) { |
| if (const ValueDecl *VD = getValueDecl(Arg)) |
| return ClassifyDiagnostic(VD); |
| } |
| return "mutex"; |
| } |
| |
| |
| inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { |
| if (!CurrentMethod) |
| return false; |
| if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { |
| auto *VD = P->clangDecl(); |
| if (VD) |
| return VD->getDeclContext() == CurrentMethod->getDeclContext(); |
| } |
| return false; |
| } |
| |
| |
| /// \brief Add a new lock to the lockset, warning if the lock is already there. |
| /// \param ReqAttr -- true if this is part of an initial Requires attribute. |
| void ThreadSafetyAnalyzer::addLock(FactSet &FSet, |
| std::unique_ptr<FactEntry> Entry, |
| StringRef DiagKind, bool ReqAttr) { |
| if (Entry->shouldIgnore()) |
| return; |
| |
| if (!ReqAttr && !Entry->negative()) { |
| // look for the negative capability, and remove it from the fact set. |
| CapabilityExpr NegC = !*Entry; |
| FactEntry *Nen = FSet.findLock(FactMan, NegC); |
| if (Nen) { |
| FSet.removeLock(FactMan, NegC); |
| } |
| else { |
| if (inCurrentScope(*Entry) && !Entry->asserted()) |
| Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), |
| NegC.toString(), Entry->loc()); |
| } |
| } |
| |
| // Check before/after constraints |
| if (Handler.issueBetaWarnings() && |
| !Entry->asserted() && !Entry->declared()) { |
| GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, |
| Entry->loc(), DiagKind); |
| } |
| |
| // FIXME: Don't always warn when we have support for reentrant locks. |
| if (FSet.findLock(FactMan, *Entry)) { |
| if (!Entry->asserted()) |
| Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc()); |
| } else { |
| FSet.addLock(FactMan, std::move(Entry)); |
| } |
| } |
| |
| |
| /// \brief Remove a lock from the lockset, warning if the lock is not there. |
| /// \param UnlockLoc The source location of the unlock (only used in error msg) |
| void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, |
| SourceLocation UnlockLoc, |
| bool FullyRemove, LockKind ReceivedKind, |
| StringRef DiagKind) { |
| if (Cp.shouldIgnore()) |
| return; |
| |
| const FactEntry *LDat = FSet.findLock(FactMan, Cp); |
| if (!LDat) { |
| Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); |
| return; |
| } |
| |
| // Generic lock removal doesn't care about lock kind mismatches, but |
| // otherwise diagnose when the lock kinds are mismatched. |
| if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { |
| Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), |
| LDat->kind(), ReceivedKind, UnlockLoc); |
| } |
| |
| LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, |
| DiagKind); |
| } |
| |
| |
| /// \brief Extract the list of mutexIDs from the attribute on an expression, |
| /// and push them onto Mtxs, discarding any duplicates. |
| template <typename AttrType> |
| void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, |
| Expr *Exp, const NamedDecl *D, |
| VarDecl *SelfDecl) { |
| if (Attr->args_size() == 0) { |
| // The mutex held is the "this" object. |
| CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); |
| if (Cp.isInvalid()) { |
| warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); |
| return; |
| } |
| //else |
| if (!Cp.shouldIgnore()) |
| Mtxs.push_back_nodup(Cp); |
| return; |
| } |
| |
| for (const auto *Arg : Attr->args()) { |
| CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); |
| if (Cp.isInvalid()) { |
| warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); |
| continue; |
| } |
| //else |
| if (!Cp.shouldIgnore()) |
| Mtxs.push_back_nodup(Cp); |
| } |
| } |
| |
| |
| /// \brief Extract the list of mutexIDs from a trylock attribute. If the |
| /// trylock applies to the given edge, then push them onto Mtxs, discarding |
| /// any duplicates. |
| template <class AttrType> |
| void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, |
| Expr *Exp, const NamedDecl *D, |
| const CFGBlock *PredBlock, |
| const CFGBlock *CurrBlock, |
| Expr *BrE, bool Neg) { |
| // Find out which branch has the lock |
| bool branch = false; |
| if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) |
| branch = BLE->getValue(); |
| else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) |
| branch = ILE->getValue().getBoolValue(); |
| |
| int branchnum = branch ? 0 : 1; |
| if (Neg) |
| branchnum = !branchnum; |
| |
| // If we've taken the trylock branch, then add the lock |
| int i = 0; |
| for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), |
| SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { |
| if (*SI == CurrBlock && i == branchnum) |
| getMutexIDs(Mtxs, Attr, Exp, D); |
| } |
| } |
| |
| static bool getStaticBooleanValue(Expr *E, bool &TCond) { |
| if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { |
| TCond = false; |
| return true; |
| } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { |
| TCond = BLE->getValue(); |
| return true; |
| } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { |
| TCond = ILE->getValue().getBoolValue(); |
| return true; |
| } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { |
| return getStaticBooleanValue(CE->getSubExpr(), TCond); |
| } |
| return false; |
| } |
| |
| |
| // If Cond can be traced back to a function call, return the call expression. |
| // The negate variable should be called with false, and will be set to true |
| // if the function call is negated, e.g. if (!mu.tryLock(...)) |
| const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, |
| LocalVarContext C, |
| bool &Negate) { |
| if (!Cond) |
| return nullptr; |
| |
| if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { |
| return CallExp; |
| } |
| else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { |
| return getTrylockCallExpr(PE->getSubExpr(), C, Negate); |
| } |
| else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { |
| return getTrylockCallExpr(CE->getSubExpr(), C, Negate); |
| } |
| else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { |
| return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); |
| } |
| else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { |
| const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); |
| return getTrylockCallExpr(E, C, Negate); |
| } |
| else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { |
| if (UOP->getOpcode() == UO_LNot) { |
| Negate = !Negate; |
| return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); |
| } |
| return nullptr; |
| } |
| else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { |
| if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { |
| if (BOP->getOpcode() == BO_NE) |
| Negate = !Negate; |
| |
| bool TCond = false; |
| if (getStaticBooleanValue(BOP->getRHS(), TCond)) { |
| if (!TCond) Negate = !Negate; |
| return getTrylockCallExpr(BOP->getLHS(), C, Negate); |
| } |
| TCond = false; |
| if (getStaticBooleanValue(BOP->getLHS(), TCond)) { |
| if (!TCond) Negate = !Negate; |
| return getTrylockCallExpr(BOP->getRHS(), C, Negate); |
| } |
| return nullptr; |
| } |
| if (BOP->getOpcode() == BO_LAnd) { |
| // LHS must have been evaluated in a different block. |
| return getTrylockCallExpr(BOP->getRHS(), C, Negate); |
| } |
| if (BOP->getOpcode() == BO_LOr) { |
| return getTrylockCallExpr(BOP->getRHS(), C, Negate); |
| } |
| return nullptr; |
| } |
| return nullptr; |
| } |
| |
| |
| /// \brief Find the lockset that holds on the edge between PredBlock |
| /// and CurrBlock. The edge set is the exit set of PredBlock (passed |
| /// as the ExitSet parameter) plus any trylocks, which are conditionally held. |
| void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, |
| const FactSet &ExitSet, |
| const CFGBlock *PredBlock, |
| const CFGBlock *CurrBlock) { |
| Result = ExitSet; |
| |
| const Stmt *Cond = PredBlock->getTerminatorCondition(); |
| if (!Cond) |
| return; |
| |
| bool Negate = false; |
| const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; |
| const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; |
| StringRef CapDiagKind = "mutex"; |
| |
| CallExpr *Exp = |
| const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); |
| if (!Exp) |
| return; |
| |
| NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); |
| if(!FunDecl || !FunDecl->hasAttrs()) |
| return; |
| |
| CapExprSet ExclusiveLocksToAdd; |
| CapExprSet SharedLocksToAdd; |
| |
| // If the condition is a call to a Trylock function, then grab the attributes |
| for (auto *Attr : FunDecl->attrs()) { |
| switch (Attr->getKind()) { |
| case attr::ExclusiveTrylockFunction: { |
| ExclusiveTrylockFunctionAttr *A = |
| cast<ExclusiveTrylockFunctionAttr>(Attr); |
| getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, |
| PredBlock, CurrBlock, A->getSuccessValue(), Negate); |
| CapDiagKind = ClassifyDiagnostic(A); |
| break; |
| } |
| case attr::SharedTrylockFunction: { |
| SharedTrylockFunctionAttr *A = |
| cast<SharedTrylockFunctionAttr>(Attr); |
| getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, |
| PredBlock, CurrBlock, A->getSuccessValue(), Negate); |
| CapDiagKind = ClassifyDiagnostic(A); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| // Add and remove locks. |
| SourceLocation Loc = Exp->getExprLoc(); |
| for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) |
| addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd, |
| LK_Exclusive, Loc), |
| CapDiagKind); |
| for (const auto &SharedLockToAdd : SharedLocksToAdd) |
| addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd, |
| LK_Shared, Loc), |
| CapDiagKind); |
| } |
| |
| namespace { |
| /// \brief We use this class to visit different types of expressions in |
| /// CFGBlocks, and build up the lockset. |
| /// An expression may cause us to add or remove locks from the lockset, or else |
| /// output error messages related to missing locks. |
| /// FIXME: In future, we may be able to not inherit from a visitor. |
| class BuildLockset : public StmtVisitor<BuildLockset> { |
| friend class ThreadSafetyAnalyzer; |
| |
| ThreadSafetyAnalyzer *Analyzer; |
| FactSet FSet; |
| LocalVariableMap::Context LVarCtx; |
| unsigned CtxIndex; |
| |
| // helper functions |
| void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, |
| Expr *MutexExp, ProtectedOperationKind POK, |
| StringRef DiagKind, SourceLocation Loc); |
| void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, |
| StringRef DiagKind); |
| |
| void checkAccess(const Expr *Exp, AccessKind AK, |
| ProtectedOperationKind POK = POK_VarAccess); |
| void checkPtAccess(const Expr *Exp, AccessKind AK, |
| ProtectedOperationKind POK = POK_VarAccess); |
| |
| void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); |
| |
| public: |
| BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) |
| : StmtVisitor<BuildLockset>(), |
| Analyzer(Anlzr), |
| FSet(Info.EntrySet), |
| LVarCtx(Info.EntryContext), |
| CtxIndex(Info.EntryIndex) |
| {} |
| |
| void VisitUnaryOperator(UnaryOperator *UO); |
| void VisitBinaryOperator(BinaryOperator *BO); |
| void VisitCastExpr(CastExpr *CE); |
| void VisitCallExpr(CallExpr *Exp); |
| void VisitCXXConstructExpr(CXXConstructExpr *Exp); |
| void VisitDeclStmt(DeclStmt *S); |
| }; |
| } // namespace |
| |
| /// \brief Warn if the LSet does not contain a lock sufficient to protect access |
| /// of at least the passed in AccessKind. |
| void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, |
| AccessKind AK, Expr *MutexExp, |
| ProtectedOperationKind POK, |
| StringRef DiagKind, SourceLocation Loc) { |
| LockKind LK = getLockKindFromAccessKind(AK); |
| |
| CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); |
| if (Cp.isInvalid()) { |
| warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); |
| return; |
| } else if (Cp.shouldIgnore()) { |
| return; |
| } |
| |
| if (Cp.negative()) { |
| // Negative capabilities act like locks excluded |
| FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); |
| if (LDat) { |
| Analyzer->Handler.handleFunExcludesLock( |
| DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); |
| return; |
| } |
| |
| // If this does not refer to a negative capability in the same class, |
| // then stop here. |
| if (!Analyzer->inCurrentScope(Cp)) |
| return; |
| |
| // Otherwise the negative requirement must be propagated to the caller. |
| LDat = FSet.findLock(Analyzer->FactMan, Cp); |
| if (!LDat) { |
| Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), |
| LK_Shared, Loc); |
| } |
| return; |
| } |
| |
| FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); |
| bool NoError = true; |
| if (!LDat) { |
| // No exact match found. Look for a partial match. |
| LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); |
| if (LDat) { |
| // Warn that there's no precise match. |
| std::string PartMatchStr = LDat->toString(); |
| StringRef PartMatchName(PartMatchStr); |
| Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), |
| LK, Loc, &PartMatchName); |
| } else { |
| // Warn that there's no match at all. |
| Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), |
| LK, Loc); |
| } |
| NoError = false; |
| } |
| // Make sure the mutex we found is the right kind. |
| if (NoError && LDat && !LDat->isAtLeast(LK)) { |
| Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), |
| LK, Loc); |
| } |
| } |
| |
| /// \brief Warn if the LSet contains the given lock. |
| void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, |
| Expr *MutexExp, StringRef DiagKind) { |
| CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); |
| if (Cp.isInvalid()) { |
| warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); |
| return; |
| } else if (Cp.shouldIgnore()) { |
| return; |
| } |
| |
| FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp); |
| if (LDat) { |
| Analyzer->Handler.handleFunExcludesLock( |
| DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); |
| } |
| } |
| |
| /// \brief Checks guarded_by and pt_guarded_by attributes. |
| /// Whenever we identify an access (read or write) to a DeclRefExpr that is |
| /// marked with guarded_by, we must ensure the appropriate mutexes are held. |
| /// Similarly, we check if the access is to an expression that dereferences |
| /// a pointer marked with pt_guarded_by. |
| void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, |
| ProtectedOperationKind POK) { |
| Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); |
| |
| SourceLocation Loc = Exp->getExprLoc(); |
| |
| // Local variables of reference type cannot be re-assigned; |
| // map them to their initializer. |
| while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { |
| const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); |
| if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { |
| if (const auto *E = VD->getInit()) { |
| Exp = E; |
| continue; |
| } |
| } |
| break; |
| } |
| |
| if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { |
| // For dereferences |
| if (UO->getOpcode() == clang::UO_Deref) |
| checkPtAccess(UO->getSubExpr(), AK, POK); |
| return; |
| } |
| |
| if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { |
| checkPtAccess(AE->getLHS(), AK, POK); |
| return; |
| } |
| |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { |
| if (ME->isArrow()) |
| checkPtAccess(ME->getBase(), AK, POK); |
| else |
| checkAccess(ME->getBase(), AK, POK); |
| } |
| |
| const ValueDecl *D = getValueDecl(Exp); |
| if (!D || !D->hasAttrs()) |
| return; |
| |
| if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { |
| Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); |
| } |
| |
| for (const auto *I : D->specific_attrs<GuardedByAttr>()) |
| warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, |
| ClassifyDiagnostic(I), Loc); |
| } |
| |
| |
| /// \brief Checks pt_guarded_by and pt_guarded_var attributes. |
| /// POK is the same operationKind that was passed to checkAccess. |
| void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, |
| ProtectedOperationKind POK) { |
| while (true) { |
| if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { |
| Exp = PE->getSubExpr(); |
| continue; |
| } |
| if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { |
| if (CE->getCastKind() == CK_ArrayToPointerDecay) { |
| // If it's an actual array, and not a pointer, then it's elements |
| // are protected by GUARDED_BY, not PT_GUARDED_BY; |
| checkAccess(CE->getSubExpr(), AK, POK); |
| return; |
| } |
| Exp = CE->getSubExpr(); |
| continue; |
| } |
| break; |
| } |
| |
| // Pass by reference warnings are under a different flag. |
| ProtectedOperationKind PtPOK = POK_VarDereference; |
| if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; |
| |
| const ValueDecl *D = getValueDecl(Exp); |
| if (!D || !D->hasAttrs()) |
| return; |
| |
| if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) |
| Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, |
| Exp->getExprLoc()); |
| |
| for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) |
| warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, |
| ClassifyDiagnostic(I), Exp->getExprLoc()); |
| } |
| |
| /// \brief Process a function call, method call, constructor call, |
| /// or destructor call. This involves looking at the attributes on the |
| /// corresponding function/method/constructor/destructor, issuing warnings, |
| /// and updating the locksets accordingly. |
| /// |
| /// FIXME: For classes annotated with one of the guarded annotations, we need |
| /// to treat const method calls as reads and non-const method calls as writes, |
| /// and check that the appropriate locks are held. Non-const method calls with |
| /// the same signature as const method calls can be also treated as reads. |
| /// |
| void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { |
| SourceLocation Loc = Exp->getExprLoc(); |
| CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; |
| CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; |
| CapExprSet ScopedExclusiveReqs, ScopedSharedReqs; |
| StringRef CapDiagKind = "mutex"; |
| |
| // Figure out if we're calling the constructor of scoped lockable class |
| bool isScopedVar = false; |
| if (VD) { |
| if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { |
| const CXXRecordDecl* PD = CD->getParent(); |
| if (PD && PD->hasAttr<ScopedLockableAttr>()) |
| isScopedVar = true; |
| } |
| } |
| |
| for(Attr *Atconst : D->attrs()) { |
| Attr* At = const_cast<Attr*>(Atconst); |
| switch (At->getKind()) { |
| // When we encounter a lock function, we need to add the lock to our |
| // lockset. |
| case attr::AcquireCapability: { |
| auto *A = cast<AcquireCapabilityAttr>(At); |
| Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd |
| : ExclusiveLocksToAdd, |
| A, Exp, D, VD); |
| |
| CapDiagKind = ClassifyDiagnostic(A); |
| break; |
| } |
| |
| // An assert will add a lock to the lockset, but will not generate |
| // a warning if it is already there, and will not generate a warning |
| // if it is not removed. |
| case attr::AssertExclusiveLock: { |
| AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At); |
| |
| CapExprSet AssertLocks; |
| Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); |
| for (const auto &AssertLock : AssertLocks) |
| Analyzer->addLock(FSet, |
| llvm::make_unique<LockableFactEntry>( |
| AssertLock, LK_Exclusive, Loc, false, true), |
| ClassifyDiagnostic(A)); |
| break; |
| } |
| case attr::AssertSharedLock: { |
| AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At); |
| |
| CapExprSet AssertLocks; |
| Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); |
| for (const auto &AssertLock : AssertLocks) |
| Analyzer->addLock(FSet, |
| llvm::make_unique<LockableFactEntry>( |
| AssertLock, LK_Shared, Loc, false, true), |
| ClassifyDiagnostic(A)); |
| break; |
| } |
| |
| case attr::AssertCapability: { |
| AssertCapabilityAttr *A = cast<AssertCapabilityAttr>(At); |
| CapExprSet AssertLocks; |
| Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); |
| for (const auto &AssertLock : AssertLocks) |
| Analyzer->addLock(FSet, |
| llvm::make_unique<LockableFactEntry>( |
| AssertLock, |
| A->isShared() ? LK_Shared : LK_Exclusive, Loc, |
| false, true), |
| ClassifyDiagnostic(A)); |
| break; |
| } |
| |
| // When we encounter an unlock function, we need to remove unlocked |
| // mutexes from the lockset, and flag a warning if they are not there. |
| case attr::ReleaseCapability: { |
| auto *A = cast<ReleaseCapabilityAttr>(At); |
| if (A->isGeneric()) |
| Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); |
| else if (A->isShared()) |
| Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); |
| else |
| Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); |
| |
| CapDiagKind = ClassifyDiagnostic(A); |
| break; |
| } |
| |
| case attr::RequiresCapability: { |
| RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At); |
| for (auto *Arg : A->args()) { |
| warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, |
| POK_FunctionCall, ClassifyDiagnostic(A), |
| Exp->getExprLoc()); |
| // use for adopting a lock |
| if (isScopedVar) { |
| Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs |
| : ScopedExclusiveReqs, |
| A, Exp, D, VD); |
| } |
| } |
| break; |
| } |
| |
| case attr::LocksExcluded: { |
| LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); |
| for (auto *Arg : A->args()) |
| warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); |
| break; |
| } |
| |
| // Ignore attributes unrelated to thread-safety |
| default: |
| break; |
| } |
| } |
| |
| // Add locks. |
| for (const auto &M : ExclusiveLocksToAdd) |
| Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( |
| M, LK_Exclusive, Loc, isScopedVar), |
| CapDiagKind); |
| for (const auto &M : SharedLocksToAdd) |
| Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( |
| M, LK_Shared, Loc, isScopedVar), |
| CapDiagKind); |
| |
| if (isScopedVar) { |
| // Add the managing object as a dummy mutex, mapped to the underlying mutex. |
| SourceLocation MLoc = VD->getLocation(); |
| DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); |
| // FIXME: does this store a pointer to DRE? |
| CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); |
| |
| std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(), |
| std::back_inserter(ExclusiveLocksToAdd)); |
| std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(), |
| std::back_inserter(SharedLocksToAdd)); |
| Analyzer->addLock(FSet, |
| llvm::make_unique<ScopedLockableFactEntry>( |
| Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd), |
| CapDiagKind); |
| } |
| |
| // Remove locks. |
| // FIXME -- should only fully remove if the attribute refers to 'this'. |
| bool Dtor = isa<CXXDestructorDecl>(D); |
| for (const auto &M : ExclusiveLocksToRemove) |
| Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); |
| for (const auto &M : SharedLocksToRemove) |
| Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); |
| for (const auto &M : GenericLocksToRemove) |
| Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); |
| } |
| |
| |
| /// \brief For unary operations which read and write a variable, we need to |
| /// check whether we hold any required mutexes. Reads are checked in |
| /// VisitCastExpr. |
| void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { |
| switch (UO->getOpcode()) { |
| case clang::UO_PostDec: |
| case clang::UO_PostInc: |
| case clang::UO_PreDec: |
| case clang::UO_PreInc: { |
| checkAccess(UO->getSubExpr(), AK_Written); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /// For binary operations which assign to a variable (writes), we need to check |
| /// whether we hold any required mutexes. |
| /// FIXME: Deal with non-primitive types. |
| void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { |
| if (!BO->isAssignmentOp()) |
| return; |
| |
| // adjust the context |
| LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); |
| |
| checkAccess(BO->getLHS(), AK_Written); |
| } |
| |
| |
| /// Whenever we do an LValue to Rvalue cast, we are reading a variable and |
| /// need to ensure we hold any required mutexes. |
| /// FIXME: Deal with non-primitive types. |
| void BuildLockset::VisitCastExpr(CastExpr *CE) { |
| if (CE->getCastKind() != CK_LValueToRValue) |
| return; |
| checkAccess(CE->getSubExpr(), AK_Read); |
| } |
| |
| |
| void BuildLockset::VisitCallExpr(CallExpr *Exp) { |
| bool ExamineArgs = true; |
| bool OperatorFun = false; |
| |
| if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { |
| MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); |
| // ME can be null when calling a method pointer |
| CXXMethodDecl *MD = CE->getMethodDecl(); |
| |
| if (ME && MD) { |
| if (ME->isArrow()) { |
| if (MD->isConst()) { |
| checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); |
| } else { // FIXME -- should be AK_Written |
| checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); |
| } |
| } else { |
| if (MD->isConst()) |
| checkAccess(CE->getImplicitObjectArgument(), AK_Read); |
| else // FIXME -- should be AK_Written |
| checkAccess(CE->getImplicitObjectArgument(), AK_Read); |
| } |
| } |
| } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { |
| OperatorFun = true; |
| |
| auto OEop = OE->getOperator(); |
| switch (OEop) { |
| case OO_Equal: { |
| ExamineArgs = false; |
| const Expr *Target = OE->getArg(0); |
| const Expr *Source = OE->getArg(1); |
| checkAccess(Target, AK_Written); |
| checkAccess(Source, AK_Read); |
| break; |
| } |
| case OO_Star: |
| case OO_Arrow: |
| case OO_Subscript: { |
| const Expr *Obj = OE->getArg(0); |
| checkAccess(Obj, AK_Read); |
| if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { |
| // Grrr. operator* can be multiplication... |
| checkPtAccess(Obj, AK_Read); |
| } |
| break; |
| } |
| default: { |
| // TODO: get rid of this, and rely on pass-by-ref instead. |
| const Expr *Obj = OE->getArg(0); |
| checkAccess(Obj, AK_Read); |
| break; |
| } |
| } |
| } |
| |
| if (ExamineArgs) { |
| if (FunctionDecl *FD = Exp->getDirectCallee()) { |
| |
| // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it |
| // only turns off checking within the body of a function, but we also |
| // use it to turn off checking in arguments to the function. This |
| // could result in some false negatives, but the alternative is to |
| // create yet another attribute. |
| // |
| if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) { |
| unsigned Fn = FD->getNumParams(); |
| unsigned Cn = Exp->getNumArgs(); |
| unsigned Skip = 0; |
| |
| unsigned i = 0; |
| if (OperatorFun) { |
| if (isa<CXXMethodDecl>(FD)) { |
| // First arg in operator call is implicit self argument, |
| // and doesn't appear in the FunctionDecl. |
| Skip = 1; |
| Cn--; |
| } else { |
| // Ignore the first argument of operators; it's been checked above. |
| i = 1; |
| } |
| } |
| // Ignore default arguments |
| unsigned n = (Fn < Cn) ? Fn : Cn; |
| |
| for (; i < n; ++i) { |
| ParmVarDecl* Pvd = FD->getParamDecl(i); |
| Expr* Arg = Exp->getArg(i+Skip); |
| QualType Qt = Pvd->getType(); |
| if (Qt->isReferenceType()) |
| checkAccess(Arg, AK_Read, POK_PassByRef); |
| } |
| } |
| } |
| } |
| |
| NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); |
| if(!D || !D->hasAttrs()) |
| return; |
| handleCall(Exp, D); |
| } |
| |
| void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { |
| const CXXConstructorDecl *D = Exp->getConstructor(); |
| if (D && D->isCopyConstructor()) { |
| const Expr* Source = Exp->getArg(0); |
| checkAccess(Source, AK_Read); |
| } |
| // FIXME -- only handles constructors in DeclStmt below. |
| } |
| |
| void BuildLockset::VisitDeclStmt(DeclStmt *S) { |
| // adjust the context |
| LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); |
| |
| for (auto *D : S->getDeclGroup()) { |
| if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { |
| Expr *E = VD->getInit(); |
| // handle constructors that involve temporaries |
| if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) |
| E = EWC->getSubExpr(); |
| |
| if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { |
| NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); |
| if (!CtorD || !CtorD->hasAttrs()) |
| return; |
| handleCall(CE, CtorD, VD); |
| } |
| } |
| } |
| } |
| |
| |
| |
| /// \brief Compute the intersection of two locksets and issue warnings for any |
| /// locks in the symmetric difference. |
| /// |
| /// This function is used at a merge point in the CFG when comparing the lockset |
| /// of each branch being merged. For example, given the following sequence: |
| /// A; if () then B; else C; D; we need to check that the lockset after B and C |
| /// are the same. In the event of a difference, we use the intersection of these |
| /// two locksets at the start of D. |
| /// |
| /// \param FSet1 The first lockset. |
| /// \param FSet2 The second lockset. |
| /// \param JoinLoc The location of the join point for error reporting |
| /// \param LEK1 The error message to report if a mutex is missing from LSet1 |
| /// \param LEK2 The error message to report if a mutex is missing from Lset2 |
| void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, |
| const FactSet &FSet2, |
| SourceLocation JoinLoc, |
| LockErrorKind LEK1, |
| LockErrorKind LEK2, |
| bool Modify) { |
| FactSet FSet1Orig = FSet1; |
| |
| // Find locks in FSet2 that conflict or are not in FSet1, and warn. |
| for (const auto &Fact : FSet2) { |
| const FactEntry *LDat1 = nullptr; |
| const FactEntry *LDat2 = &FactMan[Fact]; |
| FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); |
| if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; |
| |
| if (LDat1) { |
| if (LDat1->kind() != LDat2->kind()) { |
| Handler.handleExclusiveAndShared("mutex", LDat2->toString(), |
| LDat2->loc(), LDat1->loc()); |
| if (Modify && LDat1->kind() != LK_Exclusive) { |
| // Take the exclusive lock, which is the one in FSet2. |
| *Iter1 = Fact; |
| } |
| } |
| else if (Modify && LDat1->asserted() && !LDat2->asserted()) { |
| // The non-asserted lock in FSet2 is the one we want to track. |
| *Iter1 = Fact; |
| } |
| } else { |
| LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, |
| Handler); |
| } |
| } |
| |
| // Find locks in FSet1 that are not in FSet2, and remove them. |
| for (const auto &Fact : FSet1Orig) { |
| const FactEntry *LDat1 = &FactMan[Fact]; |
| const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); |
| |
| if (!LDat2) { |
| LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, |
| Handler); |
| if (Modify) |
| FSet1.removeLock(FactMan, *LDat1); |
| } |
| } |
| } |
| |
| |
| // Return true if block B never continues to its successors. |
| static bool neverReturns(const CFGBlock *B) { |
| if (B->hasNoReturnElement()) |
| return true; |
| if (B->empty()) |
| return false; |
| |
| CFGElement Last = B->back(); |
| if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { |
| if (isa<CXXThrowExpr>(S->getStmt())) |
| return true; |
| } |
| return false; |
| } |
| |
| |
| /// \brief Check a function's CFG for thread-safety violations. |
| /// |
| /// We traverse the blocks in the CFG, compute the set of mutexes that are held |
| /// at the end of each block, and issue warnings for thread safety violations. |
| /// Each block in the CFG is traversed exactly once. |
| void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { |
| // TODO: this whole function needs be rewritten as a visitor for CFGWalker. |
| // For now, we just use the walker to set things up. |
| threadSafety::CFGWalker walker; |
| if (!walker.init(AC)) |
| return; |
| |
| // AC.dumpCFG(true); |
| // threadSafety::printSCFG(walker); |
| |
| CFG *CFGraph = walker.getGraph(); |
| const NamedDecl *D = walker.getDecl(); |
| const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D); |
| CurrentMethod = dyn_cast<CXXMethodDecl>(D); |
| |
| if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) |
| return; |
| |
| // FIXME: Do something a bit more intelligent inside constructor and |
| // destructor code. Constructors and destructors must assume unique access |
| // to 'this', so checks on member variable access is disabled, but we should |
| // still enable checks on other objects. |
| if (isa<CXXConstructorDecl>(D)) |
| return; // Don't check inside constructors. |
| if (isa<CXXDestructorDecl>(D)) |
| return; // Don't check inside destructors. |
| |
| Handler.enterFunction(CurrentFunction); |
| |
| BlockInfo.resize(CFGraph->getNumBlockIDs(), |
| CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); |
| |
| // We need to explore the CFG via a "topological" ordering. |
| // That way, we will be guaranteed to have information about required |
| // predecessor locksets when exploring a new block. |
| const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); |
| PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); |
| |
| // Mark entry block as reachable |
| BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; |
| |
| // Compute SSA names for local variables |
| LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); |
| |
| // Fill in source locations for all CFGBlocks. |
| findBlockLocations(CFGraph, SortedGraph, BlockInfo); |
| |
| CapExprSet ExclusiveLocksAcquired; |
| CapExprSet SharedLocksAcquired; |
| CapExprSet LocksReleased; |
| |
| // Add locks from exclusive_locks_required and shared_locks_required |
| // to initial lockset. Also turn off checking for lock and unlock functions. |
| // FIXME: is there a more intelligent way to check lock/unlock functions? |
| if (!SortedGraph->empty() && D->hasAttrs()) { |
| const CFGBlock *FirstBlock = *SortedGraph->begin(); |
| FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; |
| |
| CapExprSet ExclusiveLocksToAdd; |
| CapExprSet SharedLocksToAdd; |
| StringRef CapDiagKind = "mutex"; |
| |
| SourceLocation Loc = D->getLocation(); |
| for (const auto *Attr : D->attrs()) { |
| Loc = Attr->getLocation(); |
| if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { |
| getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, |
| nullptr, D); |
| CapDiagKind = ClassifyDiagnostic(A); |
| } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { |
| // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. |
| // We must ignore such methods. |
| if (A->args_size() == 0) |
| return; |
| // FIXME -- deal with exclusive vs. shared unlock functions? |
| getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); |
| getMutexIDs(LocksReleased, A, nullptr, D); |
| CapDiagKind = ClassifyDiagnostic(A); |
| } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { |
| if (A->args_size() == 0) |
| return; |
| getMutexIDs(A->isShared() ? SharedLocksAcquired |
| : ExclusiveLocksAcquired, |
| A, nullptr, D); |
| CapDiagKind = ClassifyDiagnostic(A); |
| } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { |
| // Don't try to check trylock functions for now |
| return; |
| } else if (isa<SharedTrylockFunctionAttr>(Attr)) { |
| // Don't try to check trylock functions for now |
| return; |
| } |
| } |
| |
| // FIXME -- Loc can be wrong here. |
| for (const auto &Mu : ExclusiveLocksToAdd) { |
| auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc); |
| Entry->setDeclared(true); |
| addLock(InitialLockset, std::move(Entry), CapDiagKind, true); |
| } |
| for (const auto &Mu : SharedLocksToAdd) { |
| auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc); |
| Entry->setDeclared(true); |
| addLock(InitialLockset, std::move(Entry), CapDiagKind, true); |
| } |
| } |
| |
| for (const auto *CurrBlock : *SortedGraph) { |
| int CurrBlockID = CurrBlock->getBlockID(); |
| CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; |
| |
| // Use the default initial lockset in case there are no predecessors. |
| VisitedBlocks.insert(CurrBlock); |
| |
| // Iterate through the predecessor blocks and warn if the lockset for all |
| // predecessors is not the same. We take the entry lockset of the current |
| // block to be the intersection of all previous locksets. |
| // FIXME: By keeping the intersection, we may output more errors in future |
| // for a lock which is not in the intersection, but was in the union. We |
| // may want to also keep the union in future. As an example, let's say |
| // the intersection contains Mutex L, and the union contains L and M. |
| // Later we unlock M. At this point, we would output an error because we |
| // never locked M; although the real error is probably that we forgot to |
| // lock M on all code paths. Conversely, let's say that later we lock M. |
| // In this case, we should compare against the intersection instead of the |
| // union because the real error is probably that we forgot to unlock M on |
| // all code paths. |
| bool LocksetInitialized = false; |
| SmallVector<CFGBlock *, 8> SpecialBlocks; |
| for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), |
| PE = CurrBlock->pred_end(); PI != PE; ++PI) { |
| |
| // if *PI -> CurrBlock is a back edge |
| if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) |
| continue; |
| |
| int PrevBlockID = (*PI)->getBlockID(); |
| CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; |
| |
| // Ignore edges from blocks that can't return. |
| if (neverReturns(*PI) || !PrevBlockInfo->Reachable) |
| continue; |
| |
| // Okay, we can reach this block from the entry. |
| CurrBlockInfo->Reachable = true; |
| |
| // If the previous block ended in a 'continue' or 'break' statement, then |
| // a difference in locksets is probably due to a bug in that block, rather |
| // than in some other predecessor. In that case, keep the other |
| // predecessor's lockset. |
| if (const Stmt *Terminator = (*PI)->getTerminator()) { |
| if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { |
| SpecialBlocks.push_back(*PI); |
| continue; |
| } |
| } |
| |
| FactSet PrevLockset; |
| getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); |
| |
| if (!LocksetInitialized) { |
| CurrBlockInfo->EntrySet = PrevLockset; |
| LocksetInitialized = true; |
| } else { |
| intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, |
| CurrBlockInfo->EntryLoc, |
| LEK_LockedSomePredecessors); |
| } |
| } |
| |
| // Skip rest of block if it's not reachable. |
| if (!CurrBlockInfo->Reachable) |
| continue; |
| |
| // Process continue and break blocks. Assume that the lockset for the |
| // resulting block is unaffected by any discrepancies in them. |
| for (const auto *PrevBlock : SpecialBlocks) { |
| int PrevBlockID = PrevBlock->getBlockID(); |
| CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; |
| |
| if (!LocksetInitialized) { |
| CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; |
| LocksetInitialized = true; |
| } else { |
| // Determine whether this edge is a loop terminator for diagnostic |
| // purposes. FIXME: A 'break' statement might be a loop terminator, but |
| // it might also be part of a switch. Also, a subsequent destructor |
| // might add to the lockset, in which case the real issue might be a |
| // double lock on the other path. |
| const Stmt *Terminator = PrevBlock->getTerminator(); |
| bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); |
| |
| FactSet PrevLockset; |
| getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, |
| PrevBlock, CurrBlock); |
| |
| // Do not update EntrySet. |
| intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, |
| PrevBlockInfo->ExitLoc, |
| IsLoop ? LEK_LockedSomeLoopIterations |
| : LEK_LockedSomePredecessors, |
| false); |
| } |
| } |
| |
| BuildLockset LocksetBuilder(this, *CurrBlockInfo); |
| |
| // Visit all the statements in the basic block. |
| for (CFGBlock::const_iterator BI = CurrBlock->begin(), |
| BE = CurrBlock->end(); BI != BE; ++BI) { |
| switch (BI->getKind()) { |
| case CFGElement::Statement: { |
| CFGStmt CS = BI->castAs<CFGStmt>(); |
| LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); |
| break; |
| } |
| // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. |
| case CFGElement::AutomaticObjectDtor: { |
| CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); |
| CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( |
| AD.getDestructorDecl(AC.getASTContext())); |
| if (!DD->hasAttrs()) |
| break; |
| |
| // Create a dummy expression, |
| VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); |
| DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(), |
| VK_LValue, AD.getTriggerStmt()->getLocEnd()); |
| LocksetBuilder.handleCall(&DRE, DD); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| CurrBlockInfo->ExitSet = LocksetBuilder.FSet; |
| |
| // For every back edge from CurrBlock (the end of the loop) to another block |
| // (FirstLoopBlock) we need to check that the Lockset of Block is equal to |
| // the one held at the beginning of FirstLoopBlock. We can look up the |
| // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. |
| for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), |
| SE = CurrBlock->succ_end(); SI != SE; ++SI) { |
| |
| // if CurrBlock -> *SI is *not* a back edge |
| if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) |
| continue; |
| |
| CFGBlock *FirstLoopBlock = *SI; |
| CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; |
| CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; |
| intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, |
| PreLoop->EntryLoc, |
| LEK_LockedSomeLoopIterations, |
| false); |
| } |
| } |
| |
| CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; |
| CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; |
| |
| // Skip the final check if the exit block is unreachable. |
| if (!Final->Reachable) |
| return; |
| |
| // By default, we expect all locks held on entry to be held on exit. |
| FactSet ExpectedExitSet = Initial->EntrySet; |
| |
| // Adjust the expected exit set by adding or removing locks, as declared |
| // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then |
| // issue the appropriate warning. |
| // FIXME: the location here is not quite right. |
| for (const auto &Lock : ExclusiveLocksAcquired) |
| ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( |
| Lock, LK_Exclusive, D->getLocation())); |
| for (const auto &Lock : SharedLocksAcquired) |
| ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( |
| Lock, LK_Shared, D->getLocation())); |
| for (const auto &Lock : LocksReleased) |
| ExpectedExitSet.removeLock(FactMan, Lock); |
| |
| // FIXME: Should we call this function for all blocks which exit the function? |
| intersectAndWarn(ExpectedExitSet, Final->ExitSet, |
| Final->ExitLoc, |
| LEK_LockedAtEndOfFunction, |
| LEK_NotLockedAtEndOfFunction, |
| false); |
| |
| Handler.leaveFunction(CurrentFunction); |
| } |
| |
| |
| /// \brief Check a function's CFG for thread-safety violations. |
| /// |
| /// We traverse the blocks in the CFG, compute the set of mutexes that are held |
| /// at the end of each block, and issue warnings for thread safety violations. |
| /// Each block in the CFG is traversed exactly once. |
| void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, |
| ThreadSafetyHandler &Handler, |
| BeforeSet **BSet) { |
| if (!*BSet) |
| *BSet = new BeforeSet; |
| ThreadSafetyAnalyzer Analyzer(Handler, *BSet); |
| Analyzer.runAnalysis(AC); |
| } |
| |
| void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } |
| |
| /// \brief Helper function that returns a LockKind required for the given level |
| /// of access. |
| LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { |
| switch (AK) { |
| case AK_Read : |
| return LK_Shared; |
| case AK_Written : |
| return LK_Exclusive; |
| } |
| llvm_unreachable("Unknown AccessKind"); |
| } |