| //=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a flow-sensitive, path-insensitive analysis of |
| // determining reachable blocks within a CFG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/Analyses/ReachableCode.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/Analysis/AnalysisDeclContext.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Core Reachability Analysis routines. |
| //===----------------------------------------------------------------------===// |
| |
| static bool isEnumConstant(const Expr *Ex) { |
| const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); |
| if (!DR) |
| return false; |
| return isa<EnumConstantDecl>(DR->getDecl()); |
| } |
| |
| static bool isTrivialExpression(const Expr *Ex) { |
| Ex = Ex->IgnoreParenCasts(); |
| return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || |
| isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || |
| isa<CharacterLiteral>(Ex) || |
| isEnumConstant(Ex); |
| } |
| |
| static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { |
| // Check if the block ends with a do...while() and see if 'S' is the |
| // condition. |
| if (const Stmt *Term = B->getTerminator()) { |
| if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { |
| const Expr *Cond = DS->getCond()->IgnoreParenCasts(); |
| return Cond == S && isTrivialExpression(Cond); |
| } |
| } |
| return false; |
| } |
| |
| static bool isBuiltinUnreachable(const Stmt *S) { |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) |
| if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) |
| return FDecl->getIdentifier() && |
| FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; |
| return false; |
| } |
| |
| static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { |
| // Look to see if the current control flow ends with a 'return', and see if |
| // 'S' is a substatement. The 'return' may not be the last element in the |
| // block, or may be in a subsequent block because of destructors. |
| const CFGBlock *Current = B; |
| while (true) { |
| for (CFGBlock::const_reverse_iterator I = Current->rbegin(), |
| E = Current->rend(); |
| I != E; ++I) { |
| if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { |
| if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { |
| if (RS == S) |
| return true; |
| if (const Expr *RE = RS->getRetValue()) { |
| RE = RE->IgnoreParenCasts(); |
| if (RE == S) |
| return true; |
| ParentMap PM(const_cast<Expr *>(RE)); |
| // If 'S' is in the ParentMap, it is a subexpression of |
| // the return statement. |
| return PM.getParent(S); |
| } |
| } |
| break; |
| } |
| } |
| // Note also that we are restricting the search for the return statement |
| // to stop at control-flow; only part of a return statement may be dead, |
| // without the whole return statement being dead. |
| if (Current->getTerminator().isTemporaryDtorsBranch()) { |
| // Temporary destructors have a predictable control flow, thus we want to |
| // look into the next block for the return statement. |
| // We look into the false branch, as we know the true branch only contains |
| // the call to the destructor. |
| assert(Current->succ_size() == 2); |
| Current = *(Current->succ_begin() + 1); |
| } else if (!Current->getTerminator() && Current->succ_size() == 1) { |
| // If there is only one successor, we're not dealing with outgoing control |
| // flow. Thus, look into the next block. |
| Current = *Current->succ_begin(); |
| if (Current->pred_size() > 1) { |
| // If there is more than one predecessor, we're dealing with incoming |
| // control flow - if the return statement is in that block, it might |
| // well be reachable via a different control flow, thus it's not dead. |
| return false; |
| } |
| } else { |
| // We hit control flow or a dead end. Stop searching. |
| return false; |
| } |
| } |
| llvm_unreachable("Broke out of infinite loop."); |
| } |
| |
| static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { |
| assert(Loc.isMacroID()); |
| SourceLocation Last; |
| while (Loc.isMacroID()) { |
| Last = Loc; |
| Loc = SM.getImmediateMacroCallerLoc(Loc); |
| } |
| return Last; |
| } |
| |
| /// Returns true if the statement is expanded from a configuration macro. |
| static bool isExpandedFromConfigurationMacro(const Stmt *S, |
| Preprocessor &PP, |
| bool IgnoreYES_NO = false) { |
| // FIXME: This is not very precise. Here we just check to see if the |
| // value comes from a macro, but we can do much better. This is likely |
| // to be over conservative. This logic is factored into a separate function |
| // so that we can refine it later. |
| SourceLocation L = S->getLocStart(); |
| if (L.isMacroID()) { |
| SourceManager &SM = PP.getSourceManager(); |
| if (IgnoreYES_NO) { |
| // The Objective-C constant 'YES' and 'NO' |
| // are defined as macros. Do not treat them |
| // as configuration values. |
| SourceLocation TopL = getTopMostMacro(L, SM); |
| StringRef MacroName = PP.getImmediateMacroName(TopL); |
| if (MacroName == "YES" || MacroName == "NO") |
| return false; |
| } else if (!PP.getLangOpts().CPlusPlus) { |
| // Do not treat C 'false' and 'true' macros as configuration values. |
| SourceLocation TopL = getTopMostMacro(L, SM); |
| StringRef MacroName = PP.getImmediateMacroName(TopL); |
| if (MacroName == "false" || MacroName == "true") |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); |
| |
| /// Returns true if the statement represents a configuration value. |
| /// |
| /// A configuration value is something usually determined at compile-time |
| /// to conditionally always execute some branch. Such guards are for |
| /// "sometimes unreachable" code. Such code is usually not interesting |
| /// to report as unreachable, and may mask truly unreachable code within |
| /// those blocks. |
| static bool isConfigurationValue(const Stmt *S, |
| Preprocessor &PP, |
| SourceRange *SilenceableCondVal = nullptr, |
| bool IncludeIntegers = true, |
| bool WrappedInParens = false) { |
| if (!S) |
| return false; |
| |
| S = S->IgnoreImplicit(); |
| |
| if (const Expr *Ex = dyn_cast<Expr>(S)) |
| S = Ex->IgnoreCasts(); |
| |
| // Special case looking for the sigil '()' around an integer literal. |
| if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) |
| if (!PE->getLocStart().isMacroID()) |
| return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, |
| IncludeIntegers, true); |
| |
| if (const Expr *Ex = dyn_cast<Expr>(S)) |
| S = Ex->IgnoreCasts(); |
| |
| bool IgnoreYES_NO = false; |
| |
| switch (S->getStmtClass()) { |
| case Stmt::CallExprClass: { |
| const FunctionDecl *Callee = |
| dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); |
| return Callee ? Callee->isConstexpr() : false; |
| } |
| case Stmt::DeclRefExprClass: |
| return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); |
| case Stmt::ObjCBoolLiteralExprClass: |
| IgnoreYES_NO = true; |
| // Fallthrough. |
| case Stmt::CXXBoolLiteralExprClass: |
| case Stmt::IntegerLiteralClass: { |
| const Expr *E = cast<Expr>(S); |
| if (IncludeIntegers) { |
| if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) |
| *SilenceableCondVal = E->getSourceRange(); |
| return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); |
| } |
| return false; |
| } |
| case Stmt::MemberExprClass: |
| return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); |
| case Stmt::UnaryExprOrTypeTraitExprClass: |
| return true; |
| case Stmt::BinaryOperatorClass: { |
| const BinaryOperator *B = cast<BinaryOperator>(S); |
| // Only include raw integers (not enums) as configuration |
| // values if they are used in a logical or comparison operator |
| // (not arithmetic). |
| IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); |
| return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, |
| IncludeIntegers) || |
| isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, |
| IncludeIntegers); |
| } |
| case Stmt::UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(S); |
| if (UO->getOpcode() != UO_LNot) |
| return false; |
| bool SilenceableCondValNotSet = |
| SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); |
| bool IsSubExprConfigValue = |
| isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, |
| IncludeIntegers, WrappedInParens); |
| // Update the silenceable condition value source range only if the range |
| // was set directly by the child expression. |
| if (SilenceableCondValNotSet && |
| SilenceableCondVal->getBegin().isValid() && |
| *SilenceableCondVal == |
| UO->getSubExpr()->IgnoreCasts()->getSourceRange()) |
| *SilenceableCondVal = UO->getSourceRange(); |
| return IsSubExprConfigValue; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { |
| if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) |
| return isConfigurationValue(ED->getInitExpr(), PP); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| // As a heuristic, treat globals as configuration values. Note |
| // that we only will get here if Sema evaluated this |
| // condition to a constant expression, which means the global |
| // had to be declared in a way to be a truly constant value. |
| // We could generalize this to local variables, but it isn't |
| // clear if those truly represent configuration values that |
| // gate unreachable code. |
| if (!VD->hasLocalStorage()) |
| return true; |
| |
| // As a heuristic, locals that have been marked 'const' explicitly |
| // can be treated as configuration values as well. |
| return VD->getType().isLocalConstQualified(); |
| } |
| return false; |
| } |
| |
| /// Returns true if we should always explore all successors of a block. |
| static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, |
| Preprocessor &PP) { |
| if (const Stmt *Term = B->getTerminator()) { |
| if (isa<SwitchStmt>(Term)) |
| return true; |
| // Specially handle '||' and '&&'. |
| if (isa<BinaryOperator>(Term)) { |
| return isConfigurationValue(Term, PP); |
| } |
| } |
| |
| const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); |
| return isConfigurationValue(Cond, PP); |
| } |
| |
| static unsigned scanFromBlock(const CFGBlock *Start, |
| llvm::BitVector &Reachable, |
| Preprocessor *PP, |
| bool IncludeSometimesUnreachableEdges) { |
| unsigned count = 0; |
| |
| // Prep work queue |
| SmallVector<const CFGBlock*, 32> WL; |
| |
| // The entry block may have already been marked reachable |
| // by the caller. |
| if (!Reachable[Start->getBlockID()]) { |
| ++count; |
| Reachable[Start->getBlockID()] = true; |
| } |
| |
| WL.push_back(Start); |
| |
| // Find the reachable blocks from 'Start'. |
| while (!WL.empty()) { |
| const CFGBlock *item = WL.pop_back_val(); |
| |
| // There are cases where we want to treat all successors as reachable. |
| // The idea is that some "sometimes unreachable" code is not interesting, |
| // and that we should forge ahead and explore those branches anyway. |
| // This allows us to potentially uncover some "always unreachable" code |
| // within the "sometimes unreachable" code. |
| // Look at the successors and mark then reachable. |
| Optional<bool> TreatAllSuccessorsAsReachable; |
| if (!IncludeSometimesUnreachableEdges) |
| TreatAllSuccessorsAsReachable = false; |
| |
| for (CFGBlock::const_succ_iterator I = item->succ_begin(), |
| E = item->succ_end(); I != E; ++I) { |
| const CFGBlock *B = *I; |
| if (!B) do { |
| const CFGBlock *UB = I->getPossiblyUnreachableBlock(); |
| if (!UB) |
| break; |
| |
| if (!TreatAllSuccessorsAsReachable.hasValue()) { |
| assert(PP); |
| TreatAllSuccessorsAsReachable = |
| shouldTreatSuccessorsAsReachable(item, *PP); |
| } |
| |
| if (TreatAllSuccessorsAsReachable.getValue()) { |
| B = UB; |
| break; |
| } |
| } |
| while (false); |
| |
| if (B) { |
| unsigned blockID = B->getBlockID(); |
| if (!Reachable[blockID]) { |
| Reachable.set(blockID); |
| WL.push_back(B); |
| ++count; |
| } |
| } |
| } |
| } |
| return count; |
| } |
| |
| static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, |
| Preprocessor &PP, |
| llvm::BitVector &Reachable) { |
| return scanFromBlock(Start, Reachable, &PP, true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Dead Code Scanner. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class DeadCodeScan { |
| llvm::BitVector Visited; |
| llvm::BitVector &Reachable; |
| SmallVector<const CFGBlock *, 10> WorkList; |
| Preprocessor &PP; |
| |
| typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> |
| DeferredLocsTy; |
| |
| DeferredLocsTy DeferredLocs; |
| |
| public: |
| DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP) |
| : Visited(reachable.size()), |
| Reachable(reachable), |
| PP(PP) {} |
| |
| void enqueue(const CFGBlock *block); |
| unsigned scanBackwards(const CFGBlock *Start, |
| clang::reachable_code::Callback &CB); |
| |
| bool isDeadCodeRoot(const CFGBlock *Block); |
| |
| const Stmt *findDeadCode(const CFGBlock *Block); |
| |
| void reportDeadCode(const CFGBlock *B, |
| const Stmt *S, |
| clang::reachable_code::Callback &CB); |
| }; |
| } |
| |
| void DeadCodeScan::enqueue(const CFGBlock *block) { |
| unsigned blockID = block->getBlockID(); |
| if (Reachable[blockID] || Visited[blockID]) |
| return; |
| Visited[blockID] = true; |
| WorkList.push_back(block); |
| } |
| |
| bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { |
| bool isDeadRoot = true; |
| |
| for (CFGBlock::const_pred_iterator I = Block->pred_begin(), |
| E = Block->pred_end(); I != E; ++I) { |
| if (const CFGBlock *PredBlock = *I) { |
| unsigned blockID = PredBlock->getBlockID(); |
| if (Visited[blockID]) { |
| isDeadRoot = false; |
| continue; |
| } |
| if (!Reachable[blockID]) { |
| isDeadRoot = false; |
| Visited[blockID] = true; |
| WorkList.push_back(PredBlock); |
| continue; |
| } |
| } |
| } |
| |
| return isDeadRoot; |
| } |
| |
| static bool isValidDeadStmt(const Stmt *S) { |
| if (S->getLocStart().isInvalid()) |
| return false; |
| if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) |
| return BO->getOpcode() != BO_Comma; |
| return true; |
| } |
| |
| const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { |
| for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) |
| if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { |
| const Stmt *S = CS->getStmt(); |
| if (isValidDeadStmt(S)) |
| return S; |
| } |
| |
| if (CFGTerminator T = Block->getTerminator()) { |
| if (!T.isTemporaryDtorsBranch()) { |
| const Stmt *S = T.getStmt(); |
| if (isValidDeadStmt(S)) |
| return S; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, |
| const std::pair<const CFGBlock *, const Stmt *> *p2) { |
| if (p1->second->getLocStart() < p2->second->getLocStart()) |
| return -1; |
| if (p2->second->getLocStart() < p1->second->getLocStart()) |
| return 1; |
| return 0; |
| } |
| |
| unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, |
| clang::reachable_code::Callback &CB) { |
| |
| unsigned count = 0; |
| enqueue(Start); |
| |
| while (!WorkList.empty()) { |
| const CFGBlock *Block = WorkList.pop_back_val(); |
| |
| // It is possible that this block has been marked reachable after |
| // it was enqueued. |
| if (Reachable[Block->getBlockID()]) |
| continue; |
| |
| // Look for any dead code within the block. |
| const Stmt *S = findDeadCode(Block); |
| |
| if (!S) { |
| // No dead code. Possibly an empty block. Look at dead predecessors. |
| for (CFGBlock::const_pred_iterator I = Block->pred_begin(), |
| E = Block->pred_end(); I != E; ++I) { |
| if (const CFGBlock *predBlock = *I) |
| enqueue(predBlock); |
| } |
| continue; |
| } |
| |
| // Specially handle macro-expanded code. |
| if (S->getLocStart().isMacroID()) { |
| count += scanMaybeReachableFromBlock(Block, PP, Reachable); |
| continue; |
| } |
| |
| if (isDeadCodeRoot(Block)) { |
| reportDeadCode(Block, S, CB); |
| count += scanMaybeReachableFromBlock(Block, PP, Reachable); |
| } |
| else { |
| // Record this statement as the possibly best location in a |
| // strongly-connected component of dead code for emitting a |
| // warning. |
| DeferredLocs.push_back(std::make_pair(Block, S)); |
| } |
| } |
| |
| // If we didn't find a dead root, then report the dead code with the |
| // earliest location. |
| if (!DeferredLocs.empty()) { |
| llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); |
| for (DeferredLocsTy::iterator I = DeferredLocs.begin(), |
| E = DeferredLocs.end(); I != E; ++I) { |
| const CFGBlock *Block = I->first; |
| if (Reachable[Block->getBlockID()]) |
| continue; |
| reportDeadCode(Block, I->second, CB); |
| count += scanMaybeReachableFromBlock(Block, PP, Reachable); |
| } |
| } |
| |
| return count; |
| } |
| |
| static SourceLocation GetUnreachableLoc(const Stmt *S, |
| SourceRange &R1, |
| SourceRange &R2) { |
| R1 = R2 = SourceRange(); |
| |
| if (const Expr *Ex = dyn_cast<Expr>(S)) |
| S = Ex->IgnoreParenImpCasts(); |
| |
| switch (S->getStmtClass()) { |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *BO = cast<BinaryOperator>(S); |
| return BO->getOperatorLoc(); |
| } |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(S); |
| R1 = UO->getSubExpr()->getSourceRange(); |
| return UO->getOperatorLoc(); |
| } |
| case Expr::CompoundAssignOperatorClass: { |
| const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); |
| R1 = CAO->getLHS()->getSourceRange(); |
| R2 = CAO->getRHS()->getSourceRange(); |
| return CAO->getOperatorLoc(); |
| } |
| case Expr::BinaryConditionalOperatorClass: |
| case Expr::ConditionalOperatorClass: { |
| const AbstractConditionalOperator *CO = |
| cast<AbstractConditionalOperator>(S); |
| return CO->getQuestionLoc(); |
| } |
| case Expr::MemberExprClass: { |
| const MemberExpr *ME = cast<MemberExpr>(S); |
| R1 = ME->getSourceRange(); |
| return ME->getMemberLoc(); |
| } |
| case Expr::ArraySubscriptExprClass: { |
| const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); |
| R1 = ASE->getLHS()->getSourceRange(); |
| R2 = ASE->getRHS()->getSourceRange(); |
| return ASE->getRBracketLoc(); |
| } |
| case Expr::CStyleCastExprClass: { |
| const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); |
| R1 = CSC->getSubExpr()->getSourceRange(); |
| return CSC->getLParenLoc(); |
| } |
| case Expr::CXXFunctionalCastExprClass: { |
| const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); |
| R1 = CE->getSubExpr()->getSourceRange(); |
| return CE->getLocStart(); |
| } |
| case Stmt::CXXTryStmtClass: { |
| return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); |
| } |
| case Expr::ObjCBridgedCastExprClass: { |
| const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); |
| R1 = CSC->getSubExpr()->getSourceRange(); |
| return CSC->getLParenLoc(); |
| } |
| default: ; |
| } |
| R1 = S->getSourceRange(); |
| return S->getLocStart(); |
| } |
| |
| void DeadCodeScan::reportDeadCode(const CFGBlock *B, |
| const Stmt *S, |
| clang::reachable_code::Callback &CB) { |
| // Classify the unreachable code found, or suppress it in some cases. |
| reachable_code::UnreachableKind UK = reachable_code::UK_Other; |
| |
| if (isa<BreakStmt>(S)) { |
| UK = reachable_code::UK_Break; |
| } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S)) { |
| return; |
| } |
| else if (isDeadReturn(B, S)) { |
| UK = reachable_code::UK_Return; |
| } |
| |
| SourceRange SilenceableCondVal; |
| |
| if (UK == reachable_code::UK_Other) { |
| // Check if the dead code is part of the "loop target" of |
| // a for/for-range loop. This is the block that contains |
| // the increment code. |
| if (const Stmt *LoopTarget = B->getLoopTarget()) { |
| SourceLocation Loc = LoopTarget->getLocStart(); |
| SourceRange R1(Loc, Loc), R2; |
| |
| if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { |
| const Expr *Inc = FS->getInc(); |
| Loc = Inc->getLocStart(); |
| R2 = Inc->getSourceRange(); |
| } |
| |
| CB.HandleUnreachable(reachable_code::UK_Loop_Increment, |
| Loc, SourceRange(), SourceRange(Loc, Loc), R2); |
| return; |
| } |
| |
| // Check if the dead block has a predecessor whose branch has |
| // a configuration value that *could* be modified to |
| // silence the warning. |
| CFGBlock::const_pred_iterator PI = B->pred_begin(); |
| if (PI != B->pred_end()) { |
| if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { |
| const Stmt *TermCond = |
| PredBlock->getTerminatorCondition(/* strip parens */ false); |
| isConfigurationValue(TermCond, PP, &SilenceableCondVal); |
| } |
| } |
| } |
| |
| SourceRange R1, R2; |
| SourceLocation Loc = GetUnreachableLoc(S, R1, R2); |
| CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Reachability APIs. |
| //===----------------------------------------------------------------------===// |
| |
| namespace clang { namespace reachable_code { |
| |
| void Callback::anchor() { } |
| |
| unsigned ScanReachableFromBlock(const CFGBlock *Start, |
| llvm::BitVector &Reachable) { |
| return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); |
| } |
| |
| void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, |
| Callback &CB) { |
| |
| CFG *cfg = AC.getCFG(); |
| if (!cfg) |
| return; |
| |
| // Scan for reachable blocks from the entrance of the CFG. |
| // If there are no unreachable blocks, we're done. |
| llvm::BitVector reachable(cfg->getNumBlockIDs()); |
| unsigned numReachable = |
| scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); |
| if (numReachable == cfg->getNumBlockIDs()) |
| return; |
| |
| // If there aren't explicit EH edges, we should include the 'try' dispatch |
| // blocks as roots. |
| if (!AC.getCFGBuildOptions().AddEHEdges) { |
| for (CFG::try_block_iterator I = cfg->try_blocks_begin(), |
| E = cfg->try_blocks_end() ; I != E; ++I) { |
| numReachable += scanMaybeReachableFromBlock(*I, PP, reachable); |
| } |
| if (numReachable == cfg->getNumBlockIDs()) |
| return; |
| } |
| |
| // There are some unreachable blocks. We need to find the root blocks that |
| // contain code that should be considered unreachable. |
| for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { |
| const CFGBlock *block = *I; |
| // A block may have been marked reachable during this loop. |
| if (reachable[block->getBlockID()]) |
| continue; |
| |
| DeadCodeScan DS(reachable, PP); |
| numReachable += DS.scanBackwards(block, CB); |
| |
| if (numReachable == cfg->getNumBlockIDs()) |
| return; |
| } |
| } |
| |
| }} // end namespace clang::reachable_code |