| //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a variety of memory management related checkers, such as |
| // leak, double free, and use-after-free. |
| // |
| // The following checkers are defined here: |
| // |
| // * MallocChecker |
| // Despite its name, it models all sorts of memory allocations and |
| // de- or reallocation, including but not limited to malloc, free, |
| // relloc, new, delete. It also reports on a variety of memory misuse |
| // errors. |
| // Many other checkers interact very closely with this checker, in fact, |
| // most are merely options to this one. Other checkers may register |
| // MallocChecker, but do not enable MallocChecker's reports (more details |
| // to follow around its field, ChecksEnabled). |
| // It also has a boolean "Optimistic" checker option, which if set to true |
| // will cause the checker to model user defined memory management related |
| // functions annotated via the attribute ownership_takes, ownership_holds |
| // and ownership_returns. |
| // |
| // * NewDeleteChecker |
| // Enables the modeling of new, new[], delete, delete[] in MallocChecker, |
| // and checks for related double-free and use-after-free errors. |
| // |
| // * NewDeleteLeaksChecker |
| // Checks for leaks related to new, new[], delete, delete[]. |
| // Depends on NewDeleteChecker. |
| // |
| // * MismatchedDeallocatorChecker |
| // Enables checking whether memory is deallocated with the correspending |
| // allocation function in MallocChecker, such as malloc() allocated |
| // regions are only freed by free(), new by delete, new[] by delete[]. |
| // |
| // InnerPointerChecker interacts very closely with MallocChecker, but unlike |
| // the above checkers, it has it's own file, hence the many InnerPointerChecker |
| // related headers and non-static functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
| #include "InterCheckerAPI.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Lexer.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" |
| #include "clang/StaticAnalyzer/Core/Checker.h" |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "AllocationState.h" |
| #include <climits> |
| #include <utility> |
| |
| using namespace clang; |
| using namespace ento; |
| |
| //===----------------------------------------------------------------------===// |
| // The types of allocation we're modeling. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| // Used to check correspondence between allocators and deallocators. |
| enum AllocationFamily { |
| AF_None, |
| AF_Malloc, |
| AF_CXXNew, |
| AF_CXXNewArray, |
| AF_IfNameIndex, |
| AF_Alloca, |
| AF_InnerBuffer |
| }; |
| |
| struct MemFunctionInfoTy; |
| |
| } // end of anonymous namespace |
| |
| /// Determine family of a deallocation expression. |
| static AllocationFamily |
| getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, |
| const Stmt *S); |
| |
| /// Print names of allocators and deallocators. |
| /// |
| /// \returns true on success. |
| static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, |
| const Expr *E); |
| |
| /// Print expected name of an allocator based on the deallocator's |
| /// family derived from the DeallocExpr. |
| static void printExpectedAllocName(raw_ostream &os, |
| const MemFunctionInfoTy &MemFunctionInfo, |
| CheckerContext &C, const Expr *E); |
| |
| /// Print expected name of a deallocator based on the allocator's |
| /// family. |
| static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); |
| |
| //===----------------------------------------------------------------------===// |
| // The state of a symbol, in terms of memory management. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class RefState { |
| enum Kind { |
| // Reference to allocated memory. |
| Allocated, |
| // Reference to zero-allocated memory. |
| AllocatedOfSizeZero, |
| // Reference to released/freed memory. |
| Released, |
| // The responsibility for freeing resources has transferred from |
| // this reference. A relinquished symbol should not be freed. |
| Relinquished, |
| // We are no longer guaranteed to have observed all manipulations |
| // of this pointer/memory. For example, it could have been |
| // passed as a parameter to an opaque function. |
| Escaped |
| }; |
| |
| const Stmt *S; |
| |
| Kind K; |
| AllocationFamily Family; |
| |
| RefState(Kind k, const Stmt *s, AllocationFamily family) |
| : S(s), K(k), Family(family) { |
| assert(family != AF_None); |
| } |
| |
| public: |
| bool isAllocated() const { return K == Allocated; } |
| bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } |
| bool isReleased() const { return K == Released; } |
| bool isRelinquished() const { return K == Relinquished; } |
| bool isEscaped() const { return K == Escaped; } |
| AllocationFamily getAllocationFamily() const { return Family; } |
| const Stmt *getStmt() const { return S; } |
| |
| bool operator==(const RefState &X) const { |
| return K == X.K && S == X.S && Family == X.Family; |
| } |
| |
| static RefState getAllocated(AllocationFamily family, const Stmt *s) { |
| return RefState(Allocated, s, family); |
| } |
| static RefState getAllocatedOfSizeZero(const RefState *RS) { |
| return RefState(AllocatedOfSizeZero, RS->getStmt(), |
| RS->getAllocationFamily()); |
| } |
| static RefState getReleased(AllocationFamily family, const Stmt *s) { |
| return RefState(Released, s, family); |
| } |
| static RefState getRelinquished(AllocationFamily family, const Stmt *s) { |
| return RefState(Relinquished, s, family); |
| } |
| static RefState getEscaped(const RefState *RS) { |
| return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); |
| } |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const { |
| ID.AddInteger(K); |
| ID.AddPointer(S); |
| ID.AddInteger(Family); |
| } |
| |
| LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { |
| switch (K) { |
| #define CASE(ID) case ID: OS << #ID; break; |
| CASE(Allocated) |
| CASE(AllocatedOfSizeZero) |
| CASE(Released) |
| CASE(Relinquished) |
| CASE(Escaped) |
| } |
| } |
| |
| LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } |
| }; |
| |
| } // end of anonymous namespace |
| |
| REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) |
| |
| /// Check if the memory associated with this symbol was released. |
| static bool isReleased(SymbolRef Sym, CheckerContext &C); |
| |
| /// Update the RefState to reflect the new memory allocation. |
| /// The optional \p RetVal parameter specifies the newly allocated pointer |
| /// value; if unspecified, the value of expression \p E is used. |
| static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, |
| ProgramStateRef State, |
| AllocationFamily Family = AF_Malloc, |
| Optional<SVal> RetVal = None); |
| |
| //===----------------------------------------------------------------------===// |
| // The modeling of memory reallocation. |
| // |
| // The terminology 'toPtr' and 'fromPtr' will be used: |
| // toPtr = realloc(fromPtr, 20); |
| //===----------------------------------------------------------------------===// |
| |
| REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) |
| |
| namespace { |
| |
| /// The state of 'fromPtr' after reallocation is known to have failed. |
| enum OwnershipAfterReallocKind { |
| // The symbol needs to be freed (e.g.: realloc) |
| OAR_ToBeFreedAfterFailure, |
| // The symbol has been freed (e.g.: reallocf) |
| OAR_FreeOnFailure, |
| // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where |
| // 'fromPtr' was allocated: |
| // void Haha(int *ptr) { |
| // ptr = realloc(ptr, 67); |
| // // ... |
| // } |
| // ). |
| OAR_DoNotTrackAfterFailure |
| }; |
| |
| /// Stores information about the 'fromPtr' symbol after reallocation. |
| /// |
| /// This is important because realloc may fail, and that needs special modeling. |
| /// Whether reallocation failed or not will not be known until later, so we'll |
| /// store whether upon failure 'fromPtr' will be freed, or needs to be freed |
| /// later, etc. |
| struct ReallocPair { |
| |
| // The 'fromPtr'. |
| SymbolRef ReallocatedSym; |
| OwnershipAfterReallocKind Kind; |
| |
| ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) |
| : ReallocatedSym(S), Kind(K) {} |
| void Profile(llvm::FoldingSetNodeID &ID) const { |
| ID.AddInteger(Kind); |
| ID.AddPointer(ReallocatedSym); |
| } |
| bool operator==(const ReallocPair &X) const { |
| return ReallocatedSym == X.ReallocatedSym && |
| Kind == X.Kind; |
| } |
| }; |
| |
| } // end of anonymous namespace |
| |
| REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) |
| |
| //===----------------------------------------------------------------------===// |
| // Kinds of memory operations, information about resource managing functions. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| enum class MemoryOperationKind { MOK_Allocate, MOK_Free, MOK_Any }; |
| |
| struct MemFunctionInfoTy { |
| /// The value of the MallocChecker:Optimistic is stored in this variable. |
| /// |
| /// In pessimistic mode, the checker assumes that it does not know which |
| /// functions might free the memory. |
| /// In optimistic mode, the checker assumes that all user-defined functions |
| /// which might free a pointer are annotated. |
| DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; |
| |
| // TODO: Change these to CallDescription, and get rid of lazy initialization. |
| mutable IdentifierInfo *II_alloca = nullptr, *II_win_alloca = nullptr, |
| *II_malloc = nullptr, *II_free = nullptr, |
| *II_realloc = nullptr, *II_calloc = nullptr, |
| *II_valloc = nullptr, *II_reallocf = nullptr, |
| *II_strndup = nullptr, *II_strdup = nullptr, |
| *II_win_strdup = nullptr, *II_kmalloc = nullptr, |
| *II_if_nameindex = nullptr, |
| *II_if_freenameindex = nullptr, *II_wcsdup = nullptr, |
| *II_win_wcsdup = nullptr, *II_g_malloc = nullptr, |
| *II_g_malloc0 = nullptr, *II_g_realloc = nullptr, |
| *II_g_try_malloc = nullptr, |
| *II_g_try_malloc0 = nullptr, |
| *II_g_try_realloc = nullptr, *II_g_free = nullptr, |
| *II_g_memdup = nullptr, *II_g_malloc_n = nullptr, |
| *II_g_malloc0_n = nullptr, *II_g_realloc_n = nullptr, |
| *II_g_try_malloc_n = nullptr, |
| *II_g_try_malloc0_n = nullptr, *II_kfree = nullptr, |
| *II_g_try_realloc_n = nullptr; |
| |
| void initIdentifierInfo(ASTContext &C) const; |
| |
| ///@{ |
| /// Check if this is one of the functions which can allocate/reallocate |
| /// memory pointed to by one of its arguments. |
| bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; |
| bool isCMemFunction(const FunctionDecl *FD, ASTContext &C, |
| AllocationFamily Family, |
| MemoryOperationKind MemKind) const; |
| |
| /// Tells if the callee is one of the builtin new/delete operators, including |
| /// placement operators and other standard overloads. |
| bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; |
| ///@} |
| }; |
| |
| } // end of anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Definition of the MallocChecker class. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class MallocChecker |
| : public Checker<check::DeadSymbols, check::PointerEscape, |
| check::ConstPointerEscape, check::PreStmt<ReturnStmt>, |
| check::EndFunction, check::PreCall, |
| check::PostStmt<CallExpr>, check::PostStmt<CXXNewExpr>, |
| check::NewAllocator, check::PreStmt<CXXDeleteExpr>, |
| check::PostStmt<BlockExpr>, check::PostObjCMessage, |
| check::Location, eval::Assume> { |
| public: |
| MemFunctionInfoTy MemFunctionInfo; |
| |
| /// Many checkers are essentially built into this one, so enabling them will |
| /// make MallocChecker perform additional modeling and reporting. |
| enum CheckKind { |
| /// When a subchecker is enabled but MallocChecker isn't, model memory |
| /// management but do not emit warnings emitted with MallocChecker only |
| /// enabled. |
| CK_MallocChecker, |
| CK_NewDeleteChecker, |
| CK_NewDeleteLeaksChecker, |
| CK_MismatchedDeallocatorChecker, |
| CK_InnerPointerChecker, |
| CK_NumCheckKinds |
| }; |
| |
| using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; |
| |
| DefaultBool ChecksEnabled[CK_NumCheckKinds]; |
| CheckerNameRef CheckNames[CK_NumCheckKinds]; |
| |
| void checkPreCall(const CallEvent &Call, CheckerContext &C) const; |
| void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; |
| void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; |
| void checkNewAllocator(const CXXNewExpr *NE, SVal Target, |
| CheckerContext &C) const; |
| void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; |
| void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; |
| void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; |
| void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; |
| void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; |
| void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; |
| ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, |
| bool Assumption) const; |
| void checkLocation(SVal l, bool isLoad, const Stmt *S, |
| CheckerContext &C) const; |
| |
| ProgramStateRef checkPointerEscape(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind) const; |
| ProgramStateRef checkConstPointerEscape(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind) const; |
| |
| void printState(raw_ostream &Out, ProgramStateRef State, |
| const char *NL, const char *Sep) const override; |
| |
| private: |
| mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_DoubleDelete; |
| mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_MismatchedDealloc; |
| mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; |
| mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; |
| |
| // TODO: Remove mutable by moving the initializtaion to the registry function. |
| mutable Optional<uint64_t> KernelZeroFlagVal; |
| |
| /// Process C++ operator new()'s allocation, which is the part of C++ |
| /// new-expression that goes before the constructor. |
| void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, |
| SVal Target) const; |
| |
| /// Perform a zero-allocation check. |
| /// |
| /// \param [in] E The expression that allocates memory. |
| /// \param [in] IndexOfSizeArg Index of the argument that specifies the size |
| /// of the memory that needs to be allocated. E.g. for malloc, this would be |
| /// 0. |
| /// \param [in] RetVal Specifies the newly allocated pointer value; |
| /// if unspecified, the value of expression \p E is used. |
| static ProgramStateRef ProcessZeroAllocCheck(CheckerContext &C, const Expr *E, |
| const unsigned IndexOfSizeArg, |
| ProgramStateRef State, |
| Optional<SVal> RetVal = None); |
| |
| /// Model functions with the ownership_returns attribute. |
| /// |
| /// User-defined function may have the ownership_returns attribute, which |
| /// annotates that the function returns with an object that was allocated on |
| /// the heap, and passes the ownertship to the callee. |
| /// |
| /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); |
| /// |
| /// It has two parameters: |
| /// - first: name of the resource (e.g. 'malloc') |
| /// - (OPTIONAL) second: size of the allocated region |
| /// |
| /// \param [in] CE The expression that allocates memory. |
| /// \param [in] Att The ownership_returns attribute. |
| /// \param [in] State The \c ProgramState right before allocation. |
| /// \returns The ProgramState right after allocation. |
| ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, |
| const CallExpr *CE, |
| const OwnershipAttr* Att, |
| ProgramStateRef State) const; |
| |
| /// Models memory allocation. |
| /// |
| /// \param [in] CE The expression that allocates memory. |
| /// \param [in] SizeEx Size of the memory that needs to be allocated. |
| /// \param [in] Init The value the allocated memory needs to be initialized. |
| /// with. For example, \c calloc initializes the allocated memory to 0, |
| /// malloc leaves it undefined. |
| /// \param [in] State The \c ProgramState right before allocation. |
| /// \returns The ProgramState right after allocation. |
| static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, |
| const Expr *SizeEx, SVal Init, |
| ProgramStateRef State, |
| AllocationFamily Family = AF_Malloc); |
| |
| /// Models memory allocation. |
| /// |
| /// \param [in] CE The expression that allocates memory. |
| /// \param [in] Size Size of the memory that needs to be allocated. |
| /// \param [in] Init The value the allocated memory needs to be initialized. |
| /// with. For example, \c calloc initializes the allocated memory to 0, |
| /// malloc leaves it undefined. |
| /// \param [in] State The \c ProgramState right before allocation. |
| /// \returns The ProgramState right after allocation. |
| static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, |
| SVal Size, SVal Init, |
| ProgramStateRef State, |
| AllocationFamily Family = AF_Malloc); |
| |
| static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, |
| ProgramStateRef State, SVal Target); |
| |
| // Check if this malloc() for special flags. At present that means M_ZERO or |
| // __GFP_ZERO (in which case, treat it like calloc). |
| llvm::Optional<ProgramStateRef> |
| performKernelMalloc(const CallExpr *CE, CheckerContext &C, |
| const ProgramStateRef &State) const; |
| |
| /// Model functions with the ownership_takes and ownership_holds attributes. |
| /// |
| /// User-defined function may have the ownership_takes and/or ownership_holds |
| /// attributes, which annotates that the function frees the memory passed as a |
| /// parameter. |
| /// |
| /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); |
| /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); |
| /// |
| /// They have two parameters: |
| /// - first: name of the resource (e.g. 'malloc') |
| /// - second: index of the parameter the attribute applies to |
| /// |
| /// \param [in] CE The expression that frees memory. |
| /// \param [in] Att The ownership_takes or ownership_holds attribute. |
| /// \param [in] State The \c ProgramState right before allocation. |
| /// \returns The ProgramState right after deallocation. |
| ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, |
| const OwnershipAttr* Att, |
| ProgramStateRef State) const; |
| |
| /// Models memory deallocation. |
| /// |
| /// \param [in] CE The expression that frees memory. |
| /// \param [in] State The \c ProgramState right before allocation. |
| /// \param [in] Num Index of the argument that needs to be freed. This is |
| /// normally 0, but for custom free functions it may be different. |
| /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds |
| /// attribute. |
| /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known |
| /// to have been allocated, or in other words, the symbol to be freed was |
| /// registered as allocated by this checker. In the following case, \c ptr |
| /// isn't known to be allocated. |
| /// void Haha(int *ptr) { |
| /// ptr = realloc(ptr, 67); |
| /// // ... |
| /// } |
| /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function |
| /// we're modeling returns with Null on failure. |
| /// \returns The ProgramState right after deallocation. |
| ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, |
| ProgramStateRef State, unsigned Num, bool Hold, |
| bool &IsKnownToBeAllocated, |
| bool ReturnsNullOnFailure = false) const; |
| |
| /// Models memory deallocation. |
| /// |
| /// \param [in] ArgExpr The variable who's pointee needs to be freed. |
| /// \param [in] ParentExpr The expression that frees the memory. |
| /// \param [in] State The \c ProgramState right before allocation. |
| /// normally 0, but for custom free functions it may be different. |
| /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds |
| /// attribute. |
| /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known |
| /// to have been allocated, or in other words, the symbol to be freed was |
| /// registered as allocated by this checker. In the following case, \c ptr |
| /// isn't known to be allocated. |
| /// void Haha(int *ptr) { |
| /// ptr = realloc(ptr, 67); |
| /// // ... |
| /// } |
| /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function |
| /// we're modeling returns with Null on failure. |
| /// \returns The ProgramState right after deallocation. |
| ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, |
| const Expr *ParentExpr, ProgramStateRef State, |
| bool Hold, bool &IsKnownToBeAllocated, |
| bool ReturnsNullOnFailure = false) const; |
| |
| // TODO: Needs some refactoring, as all other deallocation modeling |
| // functions are suffering from out parameters and messy code due to how |
| // realloc is handled. |
| // |
| /// Models memory reallocation. |
| /// |
| /// \param [in] CE The expression that reallocated memory |
| /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied |
| /// memory should be freed. |
| /// \param [in] State The \c ProgramState right before reallocation. |
| /// \param [in] SuffixWithN Whether the reallocation function we're modeling |
| /// has an '_n' suffix, such as g_realloc_n. |
| /// \returns The ProgramState right after reallocation. |
| ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, |
| bool ShouldFreeOnFail, ProgramStateRef State, |
| bool SuffixWithN = false) const; |
| |
| /// Evaluates the buffer size that needs to be allocated. |
| /// |
| /// \param [in] Blocks The amount of blocks that needs to be allocated. |
| /// \param [in] BlockBytes The size of a block. |
| /// \returns The symbolic value of \p Blocks * \p BlockBytes. |
| static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, |
| const Expr *BlockBytes); |
| |
| /// Models zero initialized array allocation. |
| /// |
| /// \param [in] CE The expression that reallocated memory |
| /// \param [in] State The \c ProgramState right before reallocation. |
| /// \returns The ProgramState right after allocation. |
| static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, |
| ProgramStateRef State); |
| |
| /// See if deallocation happens in a suspicious context. If so, escape the |
| /// pointers that otherwise would have been deallocated and return true. |
| bool suppressDeallocationsInSuspiciousContexts(const CallExpr *CE, |
| CheckerContext &C) const; |
| |
| /// If in \p S \p Sym is used, check whether \p Sym was already freed. |
| bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; |
| |
| /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero |
| /// sized memory region. |
| void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, |
| const Stmt *S) const; |
| |
| /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. |
| bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; |
| |
| /// Check if the function is known to free memory, or if it is |
| /// "interesting" and should be modeled explicitly. |
| /// |
| /// \param [out] EscapingSymbol A function might not free memory in general, |
| /// but could be known to free a particular symbol. In this case, false is |
| /// returned and the single escaping symbol is returned through the out |
| /// parameter. |
| /// |
| /// We assume that pointers do not escape through calls to system functions |
| /// not handled by this checker. |
| bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, |
| ProgramStateRef State, |
| SymbolRef &EscapingSymbol) const; |
| |
| /// Implementation of the checkPointerEscape callbacks. |
| ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, |
| const InvalidatedSymbols &Escaped, |
| const CallEvent *Call, |
| PointerEscapeKind Kind, |
| bool IsConstPointerEscape) const; |
| |
| // Implementation of the checkPreStmt and checkEndFunction callbacks. |
| void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; |
| |
| ///@{ |
| /// Tells if a given family/call/symbol is tracked by the current checker. |
| /// Sets CheckKind to the kind of the checker responsible for this |
| /// family/call/symbol. |
| Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, |
| bool IsALeakCheck = false) const; |
| Optional<CheckKind> getCheckIfTracked(CheckerContext &C, |
| const Stmt *AllocDeallocStmt, |
| bool IsALeakCheck = false) const; |
| Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, |
| bool IsALeakCheck = false) const; |
| ///@} |
| static bool SummarizeValue(raw_ostream &os, SVal V); |
| static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); |
| |
| void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, |
| const Expr *DeallocExpr) const; |
| void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, |
| SourceRange Range) const; |
| void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, |
| const Expr *DeallocExpr, const RefState *RS, |
| SymbolRef Sym, bool OwnershipTransferred) const; |
| void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, |
| const Expr *DeallocExpr, |
| const Expr *AllocExpr = nullptr) const; |
| void ReportUseAfterFree(CheckerContext &C, SourceRange Range, |
| SymbolRef Sym) const; |
| void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, |
| SymbolRef Sym, SymbolRef PrevSym) const; |
| |
| void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; |
| |
| void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, |
| SymbolRef Sym) const; |
| |
| void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, |
| SourceRange Range, const Expr *FreeExpr) const; |
| |
| /// Find the location of the allocation for Sym on the path leading to the |
| /// exploded node N. |
| static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, |
| CheckerContext &C); |
| |
| void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Definition of MallocBugVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| /// The bug visitor which allows us to print extra diagnostics along the |
| /// BugReport path. For example, showing the allocation site of the leaked |
| /// region. |
| class MallocBugVisitor final : public BugReporterVisitor { |
| protected: |
| enum NotificationMode { Normal, ReallocationFailed }; |
| |
| // The allocated region symbol tracked by the main analysis. |
| SymbolRef Sym; |
| |
| // The mode we are in, i.e. what kind of diagnostics will be emitted. |
| NotificationMode Mode; |
| |
| // A symbol from when the primary region should have been reallocated. |
| SymbolRef FailedReallocSymbol; |
| |
| // A C++ destructor stack frame in which memory was released. Used for |
| // miscellaneous false positive suppression. |
| const StackFrameContext *ReleaseDestructorLC; |
| |
| bool IsLeak; |
| |
| public: |
| MallocBugVisitor(SymbolRef S, bool isLeak = false) |
| : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), |
| ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} |
| |
| static void *getTag() { |
| static int Tag = 0; |
| return &Tag; |
| } |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const override { |
| ID.AddPointer(getTag()); |
| ID.AddPointer(Sym); |
| } |
| |
| /// Did not track -> allocated. Other state (released) -> allocated. |
| static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, |
| const Stmt *Stmt) { |
| return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && |
| (RSCurr && |
| (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && |
| (!RSPrev || |
| !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); |
| } |
| |
| /// Did not track -> released. Other state (allocated) -> released. |
| /// The statement associated with the release might be missing. |
| static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, |
| const Stmt *Stmt) { |
| bool IsReleased = |
| (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); |
| assert(!IsReleased || |
| (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || |
| (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); |
| return IsReleased; |
| } |
| |
| /// Did not track -> relinquished. Other state (allocated) -> relinquished. |
| static inline bool isRelinquished(const RefState *RSCurr, |
| const RefState *RSPrev, const Stmt *Stmt) { |
| return (Stmt && |
| (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || |
| isa<ObjCPropertyRefExpr>(Stmt)) && |
| (RSCurr && RSCurr->isRelinquished()) && |
| (!RSPrev || !RSPrev->isRelinquished())); |
| } |
| |
| /// If the expression is not a call, and the state change is |
| /// released -> allocated, it must be the realloc return value |
| /// check. If we have to handle more cases here, it might be cleaner just |
| /// to track this extra bit in the state itself. |
| static inline bool hasReallocFailed(const RefState *RSCurr, |
| const RefState *RSPrev, |
| const Stmt *Stmt) { |
| return ((!Stmt || !isa<CallExpr>(Stmt)) && |
| (RSCurr && |
| (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && |
| (RSPrev && |
| !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); |
| } |
| |
| PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) override; |
| |
| PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, |
| const ExplodedNode *EndPathNode, |
| PathSensitiveBugReport &BR) override { |
| if (!IsLeak) |
| return nullptr; |
| |
| PathDiagnosticLocation L = BR.getLocation(); |
| // Do not add the statement itself as a range in case of leak. |
| return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), |
| false); |
| } |
| |
| private: |
| class StackHintGeneratorForReallocationFailed |
| : public StackHintGeneratorForSymbol { |
| public: |
| StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) |
| : StackHintGeneratorForSymbol(S, M) {} |
| |
| std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { |
| // Printed parameters start at 1, not 0. |
| ++ArgIndex; |
| |
| SmallString<200> buf; |
| llvm::raw_svector_ostream os(buf); |
| |
| os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) |
| << " parameter failed"; |
| |
| return os.str(); |
| } |
| |
| std::string getMessageForReturn(const CallExpr *CallExpr) override { |
| return "Reallocation of returned value failed"; |
| } |
| }; |
| }; |
| |
| } // end anonymous namespace |
| |
| // A map from the freed symbol to the symbol representing the return value of |
| // the free function. |
| REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) |
| |
| namespace { |
| class StopTrackingCallback final : public SymbolVisitor { |
| ProgramStateRef state; |
| public: |
| StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} |
| ProgramStateRef getState() const { return state; } |
| |
| bool VisitSymbol(SymbolRef sym) override { |
| state = state->remove<RegionState>(sym); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Methods of MemFunctionInfoTy. |
| //===----------------------------------------------------------------------===// |
| |
| void MemFunctionInfoTy::initIdentifierInfo(ASTContext &Ctx) const { |
| if (II_malloc) |
| return; |
| II_alloca = &Ctx.Idents.get("alloca"); |
| II_malloc = &Ctx.Idents.get("malloc"); |
| II_free = &Ctx.Idents.get("free"); |
| II_realloc = &Ctx.Idents.get("realloc"); |
| II_reallocf = &Ctx.Idents.get("reallocf"); |
| II_calloc = &Ctx.Idents.get("calloc"); |
| II_valloc = &Ctx.Idents.get("valloc"); |
| II_strdup = &Ctx.Idents.get("strdup"); |
| II_strndup = &Ctx.Idents.get("strndup"); |
| II_wcsdup = &Ctx.Idents.get("wcsdup"); |
| II_kmalloc = &Ctx.Idents.get("kmalloc"); |
| II_kfree = &Ctx.Idents.get("kfree"); |
| II_if_nameindex = &Ctx.Idents.get("if_nameindex"); |
| II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); |
| |
| //MSVC uses `_`-prefixed instead, so we check for them too. |
| II_win_strdup = &Ctx.Idents.get("_strdup"); |
| II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); |
| II_win_alloca = &Ctx.Idents.get("_alloca"); |
| |
| // Glib |
| II_g_malloc = &Ctx.Idents.get("g_malloc"); |
| II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); |
| II_g_realloc = &Ctx.Idents.get("g_realloc"); |
| II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); |
| II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); |
| II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); |
| II_g_free = &Ctx.Idents.get("g_free"); |
| II_g_memdup = &Ctx.Idents.get("g_memdup"); |
| II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); |
| II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); |
| II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); |
| II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); |
| II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); |
| II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); |
| } |
| |
| bool MemFunctionInfoTy::isMemFunction(const FunctionDecl *FD, |
| ASTContext &C) const { |
| if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) |
| return true; |
| |
| if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) |
| return true; |
| |
| if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) |
| return true; |
| |
| if (isStandardNewDelete(FD, C)) |
| return true; |
| |
| return false; |
| } |
| |
| bool MemFunctionInfoTy::isCMemFunction(const FunctionDecl *FD, ASTContext &C, |
| AllocationFamily Family, |
| MemoryOperationKind MemKind) const { |
| if (!FD) |
| return false; |
| |
| bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || |
| MemKind == MemoryOperationKind::MOK_Free); |
| bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || |
| MemKind == MemoryOperationKind::MOK_Allocate); |
| |
| if (FD->getKind() == Decl::Function) { |
| const IdentifierInfo *FunI = FD->getIdentifier(); |
| initIdentifierInfo(C); |
| |
| if (Family == AF_Malloc && CheckFree) { |
| if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || |
| FunI == II_g_free || FunI == II_kfree) |
| return true; |
| } |
| |
| if (Family == AF_Malloc && CheckAlloc) { |
| if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || |
| FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || |
| FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || |
| FunI == II_win_wcsdup || FunI == II_kmalloc || |
| FunI == II_g_malloc || FunI == II_g_malloc0 || |
| FunI == II_g_realloc || FunI == II_g_try_malloc || |
| FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || |
| FunI == II_g_memdup || FunI == II_g_malloc_n || |
| FunI == II_g_malloc0_n || FunI == II_g_realloc_n || |
| FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || |
| FunI == II_g_try_realloc_n) |
| return true; |
| } |
| |
| if (Family == AF_IfNameIndex && CheckFree) { |
| if (FunI == II_if_freenameindex) |
| return true; |
| } |
| |
| if (Family == AF_IfNameIndex && CheckAlloc) { |
| if (FunI == II_if_nameindex) |
| return true; |
| } |
| |
| if (Family == AF_Alloca && CheckAlloc) { |
| if (FunI == II_alloca || FunI == II_win_alloca) |
| return true; |
| } |
| } |
| |
| if (Family != AF_Malloc) |
| return false; |
| |
| if (ShouldIncludeOwnershipAnnotatedFunctions && FD->hasAttrs()) { |
| for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { |
| OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); |
| if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { |
| if (CheckFree) |
| return true; |
| } else if (OwnKind == OwnershipAttr::Returns) { |
| if (CheckAlloc) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| bool MemFunctionInfoTy::isStandardNewDelete(const FunctionDecl *FD, |
| ASTContext &C) const { |
| if (!FD) |
| return false; |
| |
| OverloadedOperatorKind Kind = FD->getOverloadedOperator(); |
| if (Kind != OO_New && Kind != OO_Array_New && |
| Kind != OO_Delete && Kind != OO_Array_Delete) |
| return false; |
| |
| // This is standard if and only if it's not defined in a user file. |
| SourceLocation L = FD->getLocation(); |
| // If the header for operator delete is not included, it's still defined |
| // in an invalid source location. Check to make sure we don't crash. |
| return !L.isValid() || C.getSourceManager().isInSystemHeader(L); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods of MallocChecker and MallocBugVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( |
| const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { |
| // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: |
| // |
| // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); |
| // |
| // One of the possible flags is M_ZERO, which means 'give me back an |
| // allocation which is already zeroed', like calloc. |
| |
| // 2-argument kmalloc(), as used in the Linux kernel: |
| // |
| // void *kmalloc(size_t size, gfp_t flags); |
| // |
| // Has the similar flag value __GFP_ZERO. |
| |
| // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some |
| // code could be shared. |
| |
| ASTContext &Ctx = C.getASTContext(); |
| llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); |
| |
| if (!KernelZeroFlagVal.hasValue()) { |
| if (OS == llvm::Triple::FreeBSD) |
| KernelZeroFlagVal = 0x0100; |
| else if (OS == llvm::Triple::NetBSD) |
| KernelZeroFlagVal = 0x0002; |
| else if (OS == llvm::Triple::OpenBSD) |
| KernelZeroFlagVal = 0x0008; |
| else if (OS == llvm::Triple::Linux) |
| // __GFP_ZERO |
| KernelZeroFlagVal = 0x8000; |
| else |
| // FIXME: We need a more general way of getting the M_ZERO value. |
| // See also: O_CREAT in UnixAPIChecker.cpp. |
| |
| // Fall back to normal malloc behavior on platforms where we don't |
| // know M_ZERO. |
| return None; |
| } |
| |
| // We treat the last argument as the flags argument, and callers fall-back to |
| // normal malloc on a None return. This works for the FreeBSD kernel malloc |
| // as well as Linux kmalloc. |
| if (CE->getNumArgs() < 2) |
| return None; |
| |
| const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); |
| const SVal V = C.getSVal(FlagsEx); |
| if (!V.getAs<NonLoc>()) { |
| // The case where 'V' can be a location can only be due to a bad header, |
| // so in this case bail out. |
| return None; |
| } |
| |
| NonLoc Flags = V.castAs<NonLoc>(); |
| NonLoc ZeroFlag = C.getSValBuilder() |
| .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) |
| .castAs<NonLoc>(); |
| SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, |
| Flags, ZeroFlag, |
| FlagsEx->getType()); |
| if (MaskedFlagsUC.isUnknownOrUndef()) |
| return None; |
| DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); |
| |
| // Check if maskedFlags is non-zero. |
| ProgramStateRef TrueState, FalseState; |
| std::tie(TrueState, FalseState) = State->assume(MaskedFlags); |
| |
| // If M_ZERO is set, treat this like calloc (initialized). |
| if (TrueState && !FalseState) { |
| SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); |
| return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); |
| } |
| |
| return None; |
| } |
| |
| SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, |
| const Expr *BlockBytes) { |
| SValBuilder &SB = C.getSValBuilder(); |
| SVal BlocksVal = C.getSVal(Blocks); |
| SVal BlockBytesVal = C.getSVal(BlockBytes); |
| ProgramStateRef State = C.getState(); |
| SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, |
| SB.getContext().getSizeType()); |
| return TotalSize; |
| } |
| |
| void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { |
| if (C.wasInlined) |
| return; |
| |
| const FunctionDecl *FD = C.getCalleeDecl(CE); |
| if (!FD) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| bool IsKnownToBeAllocatedMemory = false; |
| |
| if (FD->getKind() == Decl::Function) { |
| MemFunctionInfo.initIdentifierInfo(C.getASTContext()); |
| IdentifierInfo *FunI = FD->getIdentifier(); |
| |
| if (FunI == MemFunctionInfo.II_malloc || |
| FunI == MemFunctionInfo.II_g_malloc || |
| FunI == MemFunctionInfo.II_g_try_malloc) { |
| switch (CE->getNumArgs()) { |
| default: |
| return; |
| case 1: |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| State = ProcessZeroAllocCheck(C, CE, 0, State); |
| break; |
| case 2: |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| break; |
| case 3: |
| llvm::Optional<ProgramStateRef> MaybeState = |
| performKernelMalloc(CE, C, State); |
| if (MaybeState.hasValue()) |
| State = MaybeState.getValue(); |
| else |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| break; |
| } |
| } else if (FunI == MemFunctionInfo.II_kmalloc) { |
| if (CE->getNumArgs() < 1) |
| return; |
| llvm::Optional<ProgramStateRef> MaybeState = |
| performKernelMalloc(CE, C, State); |
| if (MaybeState.hasValue()) |
| State = MaybeState.getValue(); |
| else |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| } else if (FunI == MemFunctionInfo.II_valloc) { |
| if (CE->getNumArgs() < 1) |
| return; |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); |
| State = ProcessZeroAllocCheck(C, CE, 0, State); |
| } else if (FunI == MemFunctionInfo.II_realloc || |
| FunI == MemFunctionInfo.II_g_realloc || |
| FunI == MemFunctionInfo.II_g_try_realloc) { |
| State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State); |
| State = ProcessZeroAllocCheck(C, CE, 1, State); |
| } else if (FunI == MemFunctionInfo.II_reallocf) { |
| State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ true, State); |
| State = ProcessZeroAllocCheck(C, CE, 1, State); |
| } else if (FunI == MemFunctionInfo.II_calloc) { |
| State = CallocMem(C, CE, State); |
| State = ProcessZeroAllocCheck(C, CE, 0, State); |
| State = ProcessZeroAllocCheck(C, CE, 1, State); |
| } else if (FunI == MemFunctionInfo.II_free || |
| FunI == MemFunctionInfo.II_g_free || |
| FunI == MemFunctionInfo.II_kfree) { |
| if (suppressDeallocationsInSuspiciousContexts(CE, C)) |
| return; |
| |
| State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); |
| } else if (FunI == MemFunctionInfo.II_strdup || |
| FunI == MemFunctionInfo.II_win_strdup || |
| FunI == MemFunctionInfo.II_wcsdup || |
| FunI == MemFunctionInfo.II_win_wcsdup) { |
| State = MallocUpdateRefState(C, CE, State); |
| } else if (FunI == MemFunctionInfo.II_strndup) { |
| State = MallocUpdateRefState(C, CE, State); |
| } else if (FunI == MemFunctionInfo.II_alloca || |
| FunI == MemFunctionInfo.II_win_alloca) { |
| if (CE->getNumArgs() < 1) |
| return; |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, |
| AF_Alloca); |
| State = ProcessZeroAllocCheck(C, CE, 0, State); |
| } else if (MemFunctionInfo.isStandardNewDelete(FD, C.getASTContext())) { |
| // Process direct calls to operator new/new[]/delete/delete[] functions |
| // as distinct from new/new[]/delete/delete[] expressions that are |
| // processed by the checkPostStmt callbacks for CXXNewExpr and |
| // CXXDeleteExpr. |
| switch (FD->getOverloadedOperator()) { |
| case OO_New: |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, |
| AF_CXXNew); |
| State = ProcessZeroAllocCheck(C, CE, 0, State); |
| break; |
| case OO_Array_New: |
| State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, |
| AF_CXXNewArray); |
| State = ProcessZeroAllocCheck(C, CE, 0, State); |
| break; |
| case OO_Delete: |
| case OO_Array_Delete: |
| State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); |
| break; |
| default: |
| llvm_unreachable("not a new/delete operator"); |
| } |
| } else if (FunI == MemFunctionInfo.II_if_nameindex) { |
| // Should we model this differently? We can allocate a fixed number of |
| // elements with zeros in the last one. |
| State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, |
| AF_IfNameIndex); |
| } else if (FunI == MemFunctionInfo.II_if_freenameindex) { |
| State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); |
| } else if (FunI == MemFunctionInfo.II_g_malloc0 || |
| FunI == MemFunctionInfo.II_g_try_malloc0) { |
| if (CE->getNumArgs() < 1) |
| return; |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); |
| State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); |
| State = ProcessZeroAllocCheck(C, CE, 0, State); |
| } else if (FunI == MemFunctionInfo.II_g_memdup) { |
| if (CE->getNumArgs() < 2) |
| return; |
| State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); |
| State = ProcessZeroAllocCheck(C, CE, 1, State); |
| } else if (FunI == MemFunctionInfo.II_g_malloc_n || |
| FunI == MemFunctionInfo.II_g_try_malloc_n || |
| FunI == MemFunctionInfo.II_g_malloc0_n || |
| FunI == MemFunctionInfo.II_g_try_malloc0_n) { |
| if (CE->getNumArgs() < 2) |
| return; |
| SVal Init = UndefinedVal(); |
| if (FunI == MemFunctionInfo.II_g_malloc0_n || |
| FunI == MemFunctionInfo.II_g_try_malloc0_n) { |
| SValBuilder &SB = C.getSValBuilder(); |
| Init = SB.makeZeroVal(SB.getContext().CharTy); |
| } |
| SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); |
| State = MallocMemAux(C, CE, TotalSize, Init, State); |
| State = ProcessZeroAllocCheck(C, CE, 0, State); |
| State = ProcessZeroAllocCheck(C, CE, 1, State); |
| } else if (FunI == MemFunctionInfo.II_g_realloc_n || |
| FunI == MemFunctionInfo.II_g_try_realloc_n) { |
| if (CE->getNumArgs() < 3) |
| return; |
| State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State, |
| /*SuffixWithN*/ true); |
| State = ProcessZeroAllocCheck(C, CE, 1, State); |
| State = ProcessZeroAllocCheck(C, CE, 2, State); |
| } |
| } |
| |
| if (MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions || |
| ChecksEnabled[CK_MismatchedDeallocatorChecker]) { |
| // Check all the attributes, if there are any. |
| // There can be multiple of these attributes. |
| if (FD->hasAttrs()) |
| for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { |
| switch (I->getOwnKind()) { |
| case OwnershipAttr::Returns: |
| State = MallocMemReturnsAttr(C, CE, I, State); |
| break; |
| case OwnershipAttr::Takes: |
| case OwnershipAttr::Holds: |
| State = FreeMemAttr(C, CE, I, State); |
| break; |
| } |
| } |
| } |
| C.addTransition(State); |
| } |
| |
| // Performs a 0-sized allocations check. |
| ProgramStateRef MallocChecker::ProcessZeroAllocCheck( |
| CheckerContext &C, const Expr *E, const unsigned IndexOfSizeArg, |
| ProgramStateRef State, Optional<SVal> RetVal) { |
| if (!State) |
| return nullptr; |
| |
| if (!RetVal) |
| RetVal = C.getSVal(E); |
| |
| const Expr *Arg = nullptr; |
| |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| Arg = CE->getArg(IndexOfSizeArg); |
| } |
| else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { |
| if (NE->isArray()) |
| Arg = *NE->getArraySize(); |
| else |
| return State; |
| } |
| else |
| llvm_unreachable("not a CallExpr or CXXNewExpr"); |
| |
| assert(Arg); |
| |
| Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); |
| |
| if (!DefArgVal) |
| return State; |
| |
| // Check if the allocation size is 0. |
| ProgramStateRef TrueState, FalseState; |
| SValBuilder &SvalBuilder = C.getSValBuilder(); |
| DefinedSVal Zero = |
| SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); |
| |
| std::tie(TrueState, FalseState) = |
| State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); |
| |
| if (TrueState && !FalseState) { |
| SymbolRef Sym = RetVal->getAsLocSymbol(); |
| if (!Sym) |
| return State; |
| |
| const RefState *RS = State->get<RegionState>(Sym); |
| if (RS) { |
| if (RS->isAllocated()) |
| return TrueState->set<RegionState>(Sym, |
| RefState::getAllocatedOfSizeZero(RS)); |
| else |
| return State; |
| } else { |
| // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as |
| // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not |
| // tracked. Add zero-reallocated Sym to the state to catch references |
| // to zero-allocated memory. |
| return TrueState->add<ReallocSizeZeroSymbols>(Sym); |
| } |
| } |
| |
| // Assume the value is non-zero going forward. |
| assert(FalseState); |
| return FalseState; |
| } |
| |
| static QualType getDeepPointeeType(QualType T) { |
| QualType Result = T, PointeeType = T->getPointeeType(); |
| while (!PointeeType.isNull()) { |
| Result = PointeeType; |
| PointeeType = PointeeType->getPointeeType(); |
| } |
| return Result; |
| } |
| |
| /// \returns true if the constructor invoked by \p NE has an argument of a |
| /// pointer/reference to a record type. |
| static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { |
| |
| const CXXConstructExpr *ConstructE = NE->getConstructExpr(); |
| if (!ConstructE) |
| return false; |
| |
| if (!NE->getAllocatedType()->getAsCXXRecordDecl()) |
| return false; |
| |
| const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); |
| |
| // Iterate over the constructor parameters. |
| for (const auto *CtorParam : CtorD->parameters()) { |
| |
| QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); |
| if (CtorParamPointeeT.isNull()) |
| continue; |
| |
| CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); |
| |
| if (CtorParamPointeeT->getAsCXXRecordDecl()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void MallocChecker::processNewAllocation(const CXXNewExpr *NE, |
| CheckerContext &C, |
| SVal Target) const { |
| if (!MemFunctionInfo.isStandardNewDelete(NE->getOperatorNew(), |
| C.getASTContext())) |
| return; |
| |
| const ParentMap &PM = C.getLocationContext()->getParentMap(); |
| |
| // Non-trivial constructors have a chance to escape 'this', but marking all |
| // invocations of trivial constructors as escaped would cause too great of |
| // reduction of true positives, so let's just do that for constructors that |
| // have an argument of a pointer-to-record type. |
| if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| // The return value from operator new is bound to a specified initialization |
| // value (if any) and we don't want to loose this value. So we call |
| // MallocUpdateRefState() instead of MallocMemAux() which breaks the |
| // existing binding. |
| State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray |
| : AF_CXXNew, Target); |
| State = addExtentSize(C, NE, State, Target); |
| State = ProcessZeroAllocCheck(C, NE, 0, State, Target); |
| C.addTransition(State); |
| } |
| |
| void MallocChecker::checkPostStmt(const CXXNewExpr *NE, |
| CheckerContext &C) const { |
| if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) |
| processNewAllocation(NE, C, C.getSVal(NE)); |
| } |
| |
| void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, |
| CheckerContext &C) const { |
| if (!C.wasInlined) |
| processNewAllocation(NE, C, Target); |
| } |
| |
| // Sets the extent value of the MemRegion allocated by |
| // new expression NE to its size in Bytes. |
| // |
| ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, |
| const CXXNewExpr *NE, |
| ProgramStateRef State, |
| SVal Target) { |
| if (!State) |
| return nullptr; |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| SVal ElementCount; |
| const SubRegion *Region; |
| if (NE->isArray()) { |
| const Expr *SizeExpr = *NE->getArraySize(); |
| ElementCount = C.getSVal(SizeExpr); |
| // Store the extent size for the (symbolic)region |
| // containing the elements. |
| Region = Target.getAsRegion() |
| ->castAs<SubRegion>() |
| ->StripCasts() |
| ->castAs<SubRegion>(); |
| } else { |
| ElementCount = svalBuilder.makeIntVal(1, true); |
| Region = Target.getAsRegion()->castAs<SubRegion>(); |
| } |
| |
| // Set the region's extent equal to the Size in Bytes. |
| QualType ElementType = NE->getAllocatedType(); |
| ASTContext &AstContext = C.getASTContext(); |
| CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); |
| |
| if (ElementCount.getAs<NonLoc>()) { |
| DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); |
| // size in Bytes = ElementCount*TypeSize |
| SVal SizeInBytes = svalBuilder.evalBinOpNN( |
| State, BO_Mul, ElementCount.castAs<NonLoc>(), |
| svalBuilder.makeArrayIndex(TypeSize.getQuantity()), |
| svalBuilder.getArrayIndexType()); |
| DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( |
| State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); |
| State = State->assume(extentMatchesSize, true); |
| } |
| return State; |
| } |
| |
| void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, |
| CheckerContext &C) const { |
| |
| if (!ChecksEnabled[CK_NewDeleteChecker]) |
| if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) |
| checkUseAfterFree(Sym, C, DE->getArgument()); |
| |
| if (!MemFunctionInfo.isStandardNewDelete(DE->getOperatorDelete(), |
| C.getASTContext())) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| bool IsKnownToBeAllocated; |
| State = FreeMemAux(C, DE->getArgument(), DE, State, |
| /*Hold*/ false, IsKnownToBeAllocated); |
| |
| C.addTransition(State); |
| } |
| |
| static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { |
| // If the first selector piece is one of the names below, assume that the |
| // object takes ownership of the memory, promising to eventually deallocate it |
| // with free(). |
| // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; |
| // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) |
| StringRef FirstSlot = Call.getSelector().getNameForSlot(0); |
| return FirstSlot == "dataWithBytesNoCopy" || |
| FirstSlot == "initWithBytesNoCopy" || |
| FirstSlot == "initWithCharactersNoCopy"; |
| } |
| |
| static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { |
| Selector S = Call.getSelector(); |
| |
| // FIXME: We should not rely on fully-constrained symbols being folded. |
| for (unsigned i = 1; i < S.getNumArgs(); ++i) |
| if (S.getNameForSlot(i).equals("freeWhenDone")) |
| return !Call.getArgSVal(i).isZeroConstant(); |
| |
| return None; |
| } |
| |
| void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, |
| CheckerContext &C) const { |
| if (C.wasInlined) |
| return; |
| |
| if (!isKnownDeallocObjCMethodName(Call)) |
| return; |
| |
| if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) |
| if (!*FreeWhenDone) |
| return; |
| |
| bool IsKnownToBeAllocatedMemory; |
| ProgramStateRef State = |
| FreeMemAux(C, Call.getArgExpr(0), Call.getOriginExpr(), C.getState(), |
| /*Hold=*/true, IsKnownToBeAllocatedMemory, |
| /*RetNullOnFailure=*/true); |
| |
| C.addTransition(State); |
| } |
| |
| ProgramStateRef |
| MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, |
| const OwnershipAttr *Att, |
| ProgramStateRef State) const { |
| if (!State) |
| return nullptr; |
| |
| if (Att->getModule() != MemFunctionInfo.II_malloc) |
| return nullptr; |
| |
| OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); |
| if (I != E) { |
| return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), |
| State); |
| } |
| return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); |
| } |
| |
| ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, |
| const CallExpr *CE, |
| const Expr *SizeEx, SVal Init, |
| ProgramStateRef State, |
| AllocationFamily Family) { |
| if (!State) |
| return nullptr; |
| |
| return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); |
| } |
| |
| ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, |
| const CallExpr *CE, |
| SVal Size, SVal Init, |
| ProgramStateRef State, |
| AllocationFamily Family) { |
| if (!State) |
| return nullptr; |
| |
| // We expect the malloc functions to return a pointer. |
| if (!Loc::isLocType(CE->getType())) |
| return nullptr; |
| |
| // Bind the return value to the symbolic value from the heap region. |
| // TODO: We could rewrite post visit to eval call; 'malloc' does not have |
| // side effects other than what we model here. |
| unsigned Count = C.blockCount(); |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); |
| DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) |
| .castAs<DefinedSVal>(); |
| State = State->BindExpr(CE, C.getLocationContext(), RetVal); |
| |
| // Fill the region with the initialization value. |
| State = State->bindDefaultInitial(RetVal, Init, LCtx); |
| |
| // Set the region's extent equal to the Size parameter. |
| const SymbolicRegion *R = |
| dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); |
| if (!R) |
| return nullptr; |
| if (Optional<DefinedOrUnknownSVal> DefinedSize = |
| Size.getAs<DefinedOrUnknownSVal>()) { |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); |
| DefinedOrUnknownSVal extentMatchesSize = |
| svalBuilder.evalEQ(State, Extent, *DefinedSize); |
| |
| State = State->assume(extentMatchesSize, true); |
| assert(State); |
| } |
| |
| return MallocUpdateRefState(C, CE, State, Family); |
| } |
| |
| static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, |
| ProgramStateRef State, |
| AllocationFamily Family, |
| Optional<SVal> RetVal) { |
| if (!State) |
| return nullptr; |
| |
| // Get the return value. |
| if (!RetVal) |
| RetVal = C.getSVal(E); |
| |
| // We expect the malloc functions to return a pointer. |
| if (!RetVal->getAs<Loc>()) |
| return nullptr; |
| |
| SymbolRef Sym = RetVal->getAsLocSymbol(); |
| // This is a return value of a function that was not inlined, such as malloc() |
| // or new(). We've checked that in the caller. Therefore, it must be a symbol. |
| assert(Sym); |
| |
| // Set the symbol's state to Allocated. |
| return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); |
| } |
| |
| ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, |
| const CallExpr *CE, |
| const OwnershipAttr *Att, |
| ProgramStateRef State) const { |
| if (!State) |
| return nullptr; |
| |
| if (Att->getModule() != MemFunctionInfo.II_malloc) |
| return nullptr; |
| |
| bool IsKnownToBeAllocated = false; |
| |
| for (const auto &Arg : Att->args()) { |
| ProgramStateRef StateI = FreeMemAux( |
| C, CE, State, Arg.getASTIndex(), |
| Att->getOwnKind() == OwnershipAttr::Holds, IsKnownToBeAllocated); |
| if (StateI) |
| State = StateI; |
| } |
| return State; |
| } |
| |
| ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE, |
| ProgramStateRef State, unsigned Num, |
| bool Hold, bool &IsKnownToBeAllocated, |
| bool ReturnsNullOnFailure) const { |
| if (!State) |
| return nullptr; |
| |
| if (CE->getNumArgs() < (Num + 1)) |
| return nullptr; |
| |
| return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, IsKnownToBeAllocated, |
| ReturnsNullOnFailure); |
| } |
| |
| /// Checks if the previous call to free on the given symbol failed - if free |
| /// failed, returns true. Also, returns the corresponding return value symbol. |
| static bool didPreviousFreeFail(ProgramStateRef State, |
| SymbolRef Sym, SymbolRef &RetStatusSymbol) { |
| const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); |
| if (Ret) { |
| assert(*Ret && "We should not store the null return symbol"); |
| ConstraintManager &CMgr = State->getConstraintManager(); |
| ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); |
| RetStatusSymbol = *Ret; |
| return FreeFailed.isConstrainedTrue(); |
| } |
| return false; |
| } |
| |
| static AllocationFamily |
| getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, |
| const Stmt *S) { |
| |
| if (!S) |
| return AF_None; |
| |
| if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { |
| const FunctionDecl *FD = C.getCalleeDecl(CE); |
| |
| if (!FD) |
| FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); |
| |
| ASTContext &Ctx = C.getASTContext(); |
| |
| if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, |
| MemoryOperationKind::MOK_Any)) |
| return AF_Malloc; |
| |
| if (MemFunctionInfo.isStandardNewDelete(FD, Ctx)) { |
| OverloadedOperatorKind Kind = FD->getOverloadedOperator(); |
| if (Kind == OO_New || Kind == OO_Delete) |
| return AF_CXXNew; |
| else if (Kind == OO_Array_New || Kind == OO_Array_Delete) |
| return AF_CXXNewArray; |
| } |
| |
| if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, |
| MemoryOperationKind::MOK_Any)) |
| return AF_IfNameIndex; |
| |
| if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Alloca, |
| MemoryOperationKind::MOK_Any)) |
| return AF_Alloca; |
| |
| return AF_None; |
| } |
| |
| if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) |
| return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; |
| |
| if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) |
| return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; |
| |
| if (isa<ObjCMessageExpr>(S)) |
| return AF_Malloc; |
| |
| return AF_None; |
| } |
| |
| static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, |
| const Expr *E) { |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| // FIXME: This doesn't handle indirect calls. |
| const FunctionDecl *FD = CE->getDirectCallee(); |
| if (!FD) |
| return false; |
| |
| os << *FD; |
| if (!FD->isOverloadedOperator()) |
| os << "()"; |
| return true; |
| } |
| |
| if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { |
| if (Msg->isInstanceMessage()) |
| os << "-"; |
| else |
| os << "+"; |
| Msg->getSelector().print(os); |
| return true; |
| } |
| |
| if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { |
| os << "'" |
| << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) |
| << "'"; |
| return true; |
| } |
| |
| if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { |
| os << "'" |
| << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) |
| << "'"; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void printExpectedAllocName(raw_ostream &os, |
| const MemFunctionInfoTy &MemFunctionInfo, |
| CheckerContext &C, const Expr *E) { |
| AllocationFamily Family = getAllocationFamily(MemFunctionInfo, C, E); |
| |
| switch(Family) { |
| case AF_Malloc: os << "malloc()"; return; |
| case AF_CXXNew: os << "'new'"; return; |
| case AF_CXXNewArray: os << "'new[]'"; return; |
| case AF_IfNameIndex: os << "'if_nameindex()'"; return; |
| case AF_InnerBuffer: os << "container-specific allocator"; return; |
| case AF_Alloca: |
| case AF_None: llvm_unreachable("not a deallocation expression"); |
| } |
| } |
| |
| static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { |
| switch(Family) { |
| case AF_Malloc: os << "free()"; return; |
| case AF_CXXNew: os << "'delete'"; return; |
| case AF_CXXNewArray: os << "'delete[]'"; return; |
| case AF_IfNameIndex: os << "'if_freenameindex()'"; return; |
| case AF_InnerBuffer: os << "container-specific deallocator"; return; |
| case AF_Alloca: |
| case AF_None: llvm_unreachable("suspicious argument"); |
| } |
| } |
| |
| ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, |
| const Expr *ArgExpr, |
| const Expr *ParentExpr, |
| ProgramStateRef State, bool Hold, |
| bool &IsKnownToBeAllocated, |
| bool ReturnsNullOnFailure) const { |
| |
| if (!State) |
| return nullptr; |
| |
| SVal ArgVal = C.getSVal(ArgExpr); |
| if (!ArgVal.getAs<DefinedOrUnknownSVal>()) |
| return nullptr; |
| DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); |
| |
| // Check for null dereferences. |
| if (!location.getAs<Loc>()) |
| return nullptr; |
| |
| // The explicit NULL case, no operation is performed. |
| ProgramStateRef notNullState, nullState; |
| std::tie(notNullState, nullState) = State->assume(location); |
| if (nullState && !notNullState) |
| return nullptr; |
| |
| // Unknown values could easily be okay |
| // Undefined values are handled elsewhere |
| if (ArgVal.isUnknownOrUndef()) |
| return nullptr; |
| |
| const MemRegion *R = ArgVal.getAsRegion(); |
| |
| // Nonlocs can't be freed, of course. |
| // Non-region locations (labels and fixed addresses) also shouldn't be freed. |
| if (!R) { |
| ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); |
| return nullptr; |
| } |
| |
| R = R->StripCasts(); |
| |
| // Blocks might show up as heap data, but should not be free()d |
| if (isa<BlockDataRegion>(R)) { |
| ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); |
| return nullptr; |
| } |
| |
| const MemSpaceRegion *MS = R->getMemorySpace(); |
| |
| // Parameters, locals, statics, globals, and memory returned by |
| // __builtin_alloca() shouldn't be freed. |
| if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { |
| // FIXME: at the time this code was written, malloc() regions were |
| // represented by conjured symbols, which are all in UnknownSpaceRegion. |
| // This means that there isn't actually anything from HeapSpaceRegion |
| // that should be freed, even though we allow it here. |
| // Of course, free() can work on memory allocated outside the current |
| // function, so UnknownSpaceRegion is always a possibility. |
| // False negatives are better than false positives. |
| |
| if (isa<AllocaRegion>(R)) |
| ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); |
| else |
| ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); |
| |
| return nullptr; |
| } |
| |
| const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); |
| // Various cases could lead to non-symbol values here. |
| // For now, ignore them. |
| if (!SrBase) |
| return nullptr; |
| |
| SymbolRef SymBase = SrBase->getSymbol(); |
| const RefState *RsBase = State->get<RegionState>(SymBase); |
| SymbolRef PreviousRetStatusSymbol = nullptr; |
| |
| IsKnownToBeAllocated = |
| RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); |
| |
| if (RsBase) { |
| |
| // Memory returned by alloca() shouldn't be freed. |
| if (RsBase->getAllocationFamily() == AF_Alloca) { |
| ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); |
| return nullptr; |
| } |
| |
| // Check for double free first. |
| if ((RsBase->isReleased() || RsBase->isRelinquished()) && |
| !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { |
| ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), |
| SymBase, PreviousRetStatusSymbol); |
| return nullptr; |
| |
| // If the pointer is allocated or escaped, but we are now trying to free it, |
| // check that the call to free is proper. |
| } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || |
| RsBase->isEscaped()) { |
| |
| // Check if an expected deallocation function matches the real one. |
| bool DeallocMatchesAlloc = |
| RsBase->getAllocationFamily() == |
| getAllocationFamily(MemFunctionInfo, C, ParentExpr); |
| if (!DeallocMatchesAlloc) { |
| ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), |
| ParentExpr, RsBase, SymBase, Hold); |
| return nullptr; |
| } |
| |
| // Check if the memory location being freed is the actual location |
| // allocated, or an offset. |
| RegionOffset Offset = R->getAsOffset(); |
| if (Offset.isValid() && |
| !Offset.hasSymbolicOffset() && |
| Offset.getOffset() != 0) { |
| const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); |
| ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, |
| AllocExpr); |
| return nullptr; |
| } |
| } |
| } |
| |
| if (SymBase->getType()->isFunctionPointerType()) { |
| ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); |
| return nullptr; |
| } |
| |
| // Clean out the info on previous call to free return info. |
| State = State->remove<FreeReturnValue>(SymBase); |
| |
| // Keep track of the return value. If it is NULL, we will know that free |
| // failed. |
| if (ReturnsNullOnFailure) { |
| SVal RetVal = C.getSVal(ParentExpr); |
| SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); |
| if (RetStatusSymbol) { |
| C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); |
| State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); |
| } |
| } |
| |
| AllocationFamily Family = |
| RsBase ? RsBase->getAllocationFamily() |
| : getAllocationFamily(MemFunctionInfo, C, ParentExpr); |
| // Normal free. |
| if (Hold) |
| return State->set<RegionState>(SymBase, |
| RefState::getRelinquished(Family, |
| ParentExpr)); |
| |
| return State->set<RegionState>(SymBase, |
| RefState::getReleased(Family, ParentExpr)); |
| } |
| |
| Optional<MallocChecker::CheckKind> |
| MallocChecker::getCheckIfTracked(AllocationFamily Family, |
| bool IsALeakCheck) const { |
| switch (Family) { |
| case AF_Malloc: |
| case AF_Alloca: |
| case AF_IfNameIndex: { |
| if (ChecksEnabled[CK_MallocChecker]) |
| return CK_MallocChecker; |
| return None; |
| } |
| case AF_CXXNew: |
| case AF_CXXNewArray: { |
| if (IsALeakCheck) { |
| if (ChecksEnabled[CK_NewDeleteLeaksChecker]) |
| return CK_NewDeleteLeaksChecker; |
| } |
| else { |
| if (ChecksEnabled[CK_NewDeleteChecker]) |
| return CK_NewDeleteChecker; |
| } |
| return None; |
| } |
| case AF_InnerBuffer: { |
| if (ChecksEnabled[CK_InnerPointerChecker]) |
| return CK_InnerPointerChecker; |
| return None; |
| } |
| case AF_None: { |
| llvm_unreachable("no family"); |
| } |
| } |
| llvm_unreachable("unhandled family"); |
| } |
| |
| Optional<MallocChecker::CheckKind> |
| MallocChecker::getCheckIfTracked(CheckerContext &C, |
| const Stmt *AllocDeallocStmt, |
| bool IsALeakCheck) const { |
| return getCheckIfTracked( |
| getAllocationFamily(MemFunctionInfo, C, AllocDeallocStmt), IsALeakCheck); |
| } |
| |
| Optional<MallocChecker::CheckKind> |
| MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, |
| bool IsALeakCheck) const { |
| if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) |
| return CK_MallocChecker; |
| |
| const RefState *RS = C.getState()->get<RegionState>(Sym); |
| assert(RS); |
| return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); |
| } |
| |
| bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { |
| if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) |
| os << "an integer (" << IntVal->getValue() << ")"; |
| else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) |
| os << "a constant address (" << ConstAddr->getValue() << ")"; |
| else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) |
| os << "the address of the label '" << Label->getLabel()->getName() << "'"; |
| else |
| return false; |
| |
| return true; |
| } |
| |
| bool MallocChecker::SummarizeRegion(raw_ostream &os, |
| const MemRegion *MR) { |
| switch (MR->getKind()) { |
| case MemRegion::FunctionCodeRegionKind: { |
| const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); |
| if (FD) |
| os << "the address of the function '" << *FD << '\''; |
| else |
| os << "the address of a function"; |
| return true; |
| } |
| case MemRegion::BlockCodeRegionKind: |
| os << "block text"; |
| return true; |
| case MemRegion::BlockDataRegionKind: |
| // FIXME: where the block came from? |
| os << "a block"; |
| return true; |
| default: { |
| const MemSpaceRegion *MS = MR->getMemorySpace(); |
| |
| if (isa<StackLocalsSpaceRegion>(MS)) { |
| const VarRegion *VR = dyn_cast<VarRegion>(MR); |
| const VarDecl *VD; |
| if (VR) |
| VD = VR->getDecl(); |
| else |
| VD = nullptr; |
| |
| if (VD) |
| os << "the address of the local variable '" << VD->getName() << "'"; |
| else |
| os << "the address of a local stack variable"; |
| return true; |
| } |
| |
| if (isa<StackArgumentsSpaceRegion>(MS)) { |
| const VarRegion *VR = dyn_cast<VarRegion>(MR); |
| const VarDecl *VD; |
| if (VR) |
| VD = VR->getDecl(); |
| else |
| VD = nullptr; |
| |
| if (VD) |
| os << "the address of the parameter '" << VD->getName() << "'"; |
| else |
| os << "the address of a parameter"; |
| return true; |
| } |
| |
| if (isa<GlobalsSpaceRegion>(MS)) { |
| const VarRegion *VR = dyn_cast<VarRegion>(MR); |
| const VarDecl *VD; |
| if (VR) |
| VD = VR->getDecl(); |
| else |
| VD = nullptr; |
| |
| if (VD) { |
| if (VD->isStaticLocal()) |
| os << "the address of the static variable '" << VD->getName() << "'"; |
| else |
| os << "the address of the global variable '" << VD->getName() << "'"; |
| } else |
| os << "the address of a global variable"; |
| return true; |
| } |
| |
| return false; |
| } |
| } |
| } |
| |
| void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, |
| SourceRange Range, |
| const Expr *DeallocExpr) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = |
| getCheckIfTracked(C, DeallocExpr); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_BadFree[*CheckKind]) |
| BT_BadFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Bad free", categories::MemoryError)); |
| |
| SmallString<100> buf; |
| llvm::raw_svector_ostream os(buf); |
| |
| const MemRegion *MR = ArgVal.getAsRegion(); |
| while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) |
| MR = ER->getSuperRegion(); |
| |
| os << "Argument to "; |
| if (!printAllocDeallocName(os, C, DeallocExpr)) |
| os << "deallocator"; |
| |
| os << " is "; |
| bool Summarized = MR ? SummarizeRegion(os, MR) |
| : SummarizeValue(os, ArgVal); |
| if (Summarized) |
| os << ", which is not memory allocated by "; |
| else |
| os << "not memory allocated by "; |
| |
| printExpectedAllocName(os, MemFunctionInfo, C, DeallocExpr); |
| |
| auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], |
| os.str(), N); |
| R->markInteresting(MR); |
| R->addRange(Range); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, |
| SourceRange Range) const { |
| |
| Optional<MallocChecker::CheckKind> CheckKind; |
| |
| if (ChecksEnabled[CK_MallocChecker]) |
| CheckKind = CK_MallocChecker; |
| else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) |
| CheckKind = CK_MismatchedDeallocatorChecker; |
| else |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_FreeAlloca[*CheckKind]) |
| BT_FreeAlloca[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); |
| |
| auto R = std::make_unique<PathSensitiveBugReport>( |
| *BT_FreeAlloca[*CheckKind], |
| "Memory allocated by alloca() should not be deallocated", N); |
| R->markInteresting(ArgVal.getAsRegion()); |
| R->addRange(Range); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, |
| SourceRange Range, |
| const Expr *DeallocExpr, |
| const RefState *RS, |
| SymbolRef Sym, |
| bool OwnershipTransferred) const { |
| |
| if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_MismatchedDealloc) |
| BT_MismatchedDealloc.reset( |
| new BugType(CheckNames[CK_MismatchedDeallocatorChecker], |
| "Bad deallocator", categories::MemoryError)); |
| |
| SmallString<100> buf; |
| llvm::raw_svector_ostream os(buf); |
| |
| const Expr *AllocExpr = cast<Expr>(RS->getStmt()); |
| SmallString<20> AllocBuf; |
| llvm::raw_svector_ostream AllocOs(AllocBuf); |
| SmallString<20> DeallocBuf; |
| llvm::raw_svector_ostream DeallocOs(DeallocBuf); |
| |
| if (OwnershipTransferred) { |
| if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) |
| os << DeallocOs.str() << " cannot"; |
| else |
| os << "Cannot"; |
| |
| os << " take ownership of memory"; |
| |
| if (printAllocDeallocName(AllocOs, C, AllocExpr)) |
| os << " allocated by " << AllocOs.str(); |
| } else { |
| os << "Memory"; |
| if (printAllocDeallocName(AllocOs, C, AllocExpr)) |
| os << " allocated by " << AllocOs.str(); |
| |
| os << " should be deallocated by "; |
| printExpectedDeallocName(os, RS->getAllocationFamily()); |
| |
| if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) |
| os << ", not " << DeallocOs.str(); |
| } |
| |
| auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, |
| os.str(), N); |
| R->markInteresting(Sym); |
| R->addRange(Range); |
| R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, |
| SourceRange Range, const Expr *DeallocExpr, |
| const Expr *AllocExpr) const { |
| |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = |
| getCheckIfTracked(C, AllocExpr); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| ExplodedNode *N = C.generateErrorNode(); |
| if (!N) |
| return; |
| |
| if (!BT_OffsetFree[*CheckKind]) |
| BT_OffsetFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Offset free", categories::MemoryError)); |
| |
| SmallString<100> buf; |
| llvm::raw_svector_ostream os(buf); |
| SmallString<20> AllocNameBuf; |
| llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); |
| |
| const MemRegion *MR = ArgVal.getAsRegion(); |
| assert(MR && "Only MemRegion based symbols can have offset free errors"); |
| |
| RegionOffset Offset = MR->getAsOffset(); |
| assert((Offset.isValid() && |
| !Offset.hasSymbolicOffset() && |
| Offset.getOffset() != 0) && |
| "Only symbols with a valid offset can have offset free errors"); |
| |
| int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); |
| |
| os << "Argument to "; |
| if (!printAllocDeallocName(os, C, DeallocExpr)) |
| os << "deallocator"; |
| os << " is offset by " |
| << offsetBytes |
| << " " |
| << ((abs(offsetBytes) > 1) ? "bytes" : "byte") |
| << " from the start of "; |
| if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) |
| os << "memory allocated by " << AllocNameOs.str(); |
| else |
| os << "allocated memory"; |
| |
| auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], |
| os.str(), N); |
| R->markInteresting(MR->getBaseRegion()); |
| R->addRange(Range); |
| C.emitReport(std::move(R)); |
| } |
| |
| void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, |
| SymbolRef Sym) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker] && |
| !ChecksEnabled[CK_InnerPointerChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_UseFree[*CheckKind]) |
| BT_UseFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); |
| |
| AllocationFamily AF = |
| C.getState()->get<RegionState>(Sym)->getAllocationFamily(); |
| |
| auto R = std::make_unique<PathSensitiveBugReport>( |
| *BT_UseFree[*CheckKind], |
| AF == AF_InnerBuffer |
| ? "Inner pointer of container used after re/deallocation" |
| : "Use of memory after it is freed", |
| N); |
| |
| R->markInteresting(Sym); |
| R->addRange(Range); |
| R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); |
| |
| if (AF == AF_InnerBuffer) |
| R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); |
| |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, |
| bool Released, SymbolRef Sym, |
| SymbolRef PrevSym) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_DoubleFree[*CheckKind]) |
| BT_DoubleFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Double free", categories::MemoryError)); |
| |
| auto R = std::make_unique<PathSensitiveBugReport>( |
| *BT_DoubleFree[*CheckKind], |
| (Released ? "Attempt to free released memory" |
| : "Attempt to free non-owned memory"), |
| N); |
| R->addRange(Range); |
| R->markInteresting(Sym); |
| if (PrevSym) |
| R->markInteresting(PrevSym); |
| R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { |
| |
| if (!ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_DoubleDelete) |
| BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], |
| "Double delete", |
| categories::MemoryError)); |
| |
| auto R = std::make_unique<PathSensitiveBugReport>( |
| *BT_DoubleDelete, "Attempt to delete released memory", N); |
| |
| R->markInteresting(Sym); |
| R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, |
| SourceRange Range, |
| SymbolRef Sym) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); |
| |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_UseZerroAllocated[*CheckKind]) |
| BT_UseZerroAllocated[*CheckKind].reset( |
| new BugType(CheckNames[*CheckKind], "Use of zero allocated", |
| categories::MemoryError)); |
| |
| auto R = std::make_unique<PathSensitiveBugReport>( |
| *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); |
| |
| R->addRange(Range); |
| if (Sym) { |
| R->markInteresting(Sym); |
| R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); |
| } |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, |
| SourceRange Range, |
| const Expr *FreeExpr) const { |
| if (!ChecksEnabled[CK_MallocChecker]) |
| return; |
| |
| Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); |
| if (!CheckKind.hasValue()) |
| return; |
| |
| if (ExplodedNode *N = C.generateErrorNode()) { |
| if (!BT_BadFree[*CheckKind]) |
| BT_BadFree[*CheckKind].reset(new BugType( |
| CheckNames[*CheckKind], "Bad free", categories::MemoryError)); |
| |
| SmallString<100> Buf; |
| llvm::raw_svector_ostream Os(Buf); |
| |
| const MemRegion *MR = ArgVal.getAsRegion(); |
| while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) |
| MR = ER->getSuperRegion(); |
| |
| Os << "Argument to "; |
| if (!printAllocDeallocName(Os, C, FreeExpr)) |
| Os << "deallocator"; |
| |
| Os << " is a function pointer"; |
| |
| auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], |
| Os.str(), N); |
| R->markInteresting(MR); |
| R->addRange(Range); |
| C.emitReport(std::move(R)); |
| } |
| } |
| |
| ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, |
| const CallExpr *CE, |
| bool ShouldFreeOnFail, |
| ProgramStateRef State, |
| bool SuffixWithN) const { |
| if (!State) |
| return nullptr; |
| |
| if (SuffixWithN && CE->getNumArgs() < 3) |
| return nullptr; |
| else if (CE->getNumArgs() < 2) |
| return nullptr; |
| |
| const Expr *arg0Expr = CE->getArg(0); |
| SVal Arg0Val = C.getSVal(arg0Expr); |
| if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) |
| return nullptr; |
| DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| |
| DefinedOrUnknownSVal PtrEQ = |
| svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); |
| |
| // Get the size argument. |
| const Expr *Arg1 = CE->getArg(1); |
| |
| // Get the value of the size argument. |
| SVal TotalSize = C.getSVal(Arg1); |
| if (SuffixWithN) |
| TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); |
| if (!TotalSize.getAs<DefinedOrUnknownSVal>()) |
| return nullptr; |
| |
| // Compare the size argument to 0. |
| DefinedOrUnknownSVal SizeZero = |
| svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), |
| svalBuilder.makeIntValWithPtrWidth(0, false)); |
| |
| ProgramStateRef StatePtrIsNull, StatePtrNotNull; |
| std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); |
| ProgramStateRef StateSizeIsZero, StateSizeNotZero; |
| std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); |
| // We only assume exceptional states if they are definitely true; if the |
| // state is under-constrained, assume regular realloc behavior. |
| bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; |
| bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; |
| |
| // If the ptr is NULL and the size is not 0, the call is equivalent to |
| // malloc(size). |
| if (PrtIsNull && !SizeIsZero) { |
| ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, |
| UndefinedVal(), StatePtrIsNull); |
| return stateMalloc; |
| } |
| |
| if (PrtIsNull && SizeIsZero) |
| return State; |
| |
| // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). |
| assert(!PrtIsNull); |
| SymbolRef FromPtr = arg0Val.getAsSymbol(); |
| SVal RetVal = C.getSVal(CE); |
| SymbolRef ToPtr = RetVal.getAsSymbol(); |
| if (!FromPtr || !ToPtr) |
| return nullptr; |
| |
| bool IsKnownToBeAllocated = false; |
| |
| // If the size is 0, free the memory. |
| if (SizeIsZero) |
| // The semantics of the return value are: |
| // If size was equal to 0, either NULL or a pointer suitable to be passed |
| // to free() is returned. We just free the input pointer and do not add |
| // any constrains on the output pointer. |
| if (ProgramStateRef stateFree = |
| FreeMemAux(C, CE, StateSizeIsZero, 0, false, IsKnownToBeAllocated)) |
| return stateFree; |
| |
| // Default behavior. |
| if (ProgramStateRef stateFree = |
| FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocated)) { |
| |
| ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, |
| UnknownVal(), stateFree); |
| if (!stateRealloc) |
| return nullptr; |
| |
| OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; |
| if (ShouldFreeOnFail) |
| Kind = OAR_FreeOnFailure; |
| else if (!IsKnownToBeAllocated) |
| Kind = OAR_DoNotTrackAfterFailure; |
| |
| // Record the info about the reallocated symbol so that we could properly |
| // process failed reallocation. |
| stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, |
| ReallocPair(FromPtr, Kind)); |
| // The reallocated symbol should stay alive for as long as the new symbol. |
| C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); |
| return stateRealloc; |
| } |
| return nullptr; |
| } |
| |
| ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, |
| ProgramStateRef State) { |
| if (!State) |
| return nullptr; |
| |
| if (CE->getNumArgs() < 2) |
| return nullptr; |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); |
| SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); |
| |
| return MallocMemAux(C, CE, TotalSize, zeroVal, State); |
| } |
| |
| MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, |
| SymbolRef Sym, |
| CheckerContext &C) { |
| const LocationContext *LeakContext = N->getLocationContext(); |
| // Walk the ExplodedGraph backwards and find the first node that referred to |
| // the tracked symbol. |
| const ExplodedNode *AllocNode = N; |
| const MemRegion *ReferenceRegion = nullptr; |
| |
| while (N) { |
| ProgramStateRef State = N->getState(); |
| if (!State->get<RegionState>(Sym)) |
| break; |
| |
| // Find the most recent expression bound to the symbol in the current |
| // context. |
| if (!ReferenceRegion) { |
| if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { |
| SVal Val = State->getSVal(MR); |
| if (Val.getAsLocSymbol() == Sym) { |
| const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); |
| // Do not show local variables belonging to a function other than |
| // where the error is reported. |
| if (!VR || |
| (VR->getStackFrame() == LeakContext->getStackFrame())) |
| ReferenceRegion = MR; |
| } |
| } |
| } |
| |
| // Allocation node, is the last node in the current or parent context in |
| // which the symbol was tracked. |
| const LocationContext *NContext = N->getLocationContext(); |
| if (NContext == LeakContext || |
| NContext->isParentOf(LeakContext)) |
| AllocNode = N; |
| N = N->pred_empty() ? nullptr : *(N->pred_begin()); |
| } |
| |
| return LeakInfo(AllocNode, ReferenceRegion); |
| } |
| |
| void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, |
| CheckerContext &C) const { |
| |
| if (!ChecksEnabled[CK_MallocChecker] && |
| !ChecksEnabled[CK_NewDeleteLeaksChecker]) |
| return; |
| |
| const RefState *RS = C.getState()->get<RegionState>(Sym); |
| assert(RS && "cannot leak an untracked symbol"); |
| AllocationFamily Family = RS->getAllocationFamily(); |
| |
| if (Family == AF_Alloca) |
| return; |
| |
| Optional<MallocChecker::CheckKind> |
| CheckKind = getCheckIfTracked(Family, true); |
| |
| if (!CheckKind.hasValue()) |
| return; |
| |
| assert(N); |
| if (!BT_Leak[*CheckKind]) { |
| // Leaks should not be reported if they are post-dominated by a sink: |
| // (1) Sinks are higher importance bugs. |
| // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending |
| // with __noreturn functions such as assert() or exit(). We choose not |
| // to report leaks on such paths. |
| BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", |
| categories::MemoryError, |
| /*SuppressOnSink=*/true)); |
| } |
| |
| // Most bug reports are cached at the location where they occurred. |
| // With leaks, we want to unique them by the location where they were |
| // allocated, and only report a single path. |
| PathDiagnosticLocation LocUsedForUniqueing; |
| const ExplodedNode *AllocNode = nullptr; |
| const MemRegion *Region = nullptr; |
| std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); |
| |
| const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); |
| if (AllocationStmt) |
| LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, |
| C.getSourceManager(), |
| AllocNode->getLocationContext()); |
| |
| SmallString<200> buf; |
| llvm::raw_svector_ostream os(buf); |
| if (Region && Region->canPrintPretty()) { |
| os << "Potential leak of memory pointed to by "; |
| Region->printPretty(os); |
| } else { |
| os << "Potential memory leak"; |
| } |
| |
| auto R = std::make_unique<PathSensitiveBugReport>( |
| *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, |
| AllocNode->getLocationContext()->getDecl()); |
| R->markInteresting(Sym); |
| R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true)); |
| C.emitReport(std::move(R)); |
| } |
| |
| void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, |
| CheckerContext &C) const |
| { |
| ProgramStateRef state = C.getState(); |
| RegionStateTy OldRS = state->get<RegionState>(); |
| RegionStateTy::Factory &F = state->get_context<RegionState>(); |
| |
| RegionStateTy RS = OldRS; |
| SmallVector<SymbolRef, 2> Errors; |
| for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { |
| if (SymReaper.isDead(I->first)) { |
| if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) |
| Errors.push_back(I->first); |
| // Remove the dead symbol from the map. |
| RS = F.remove(RS, I->first); |
| } |
| } |
| |
| if (RS == OldRS) { |
| // We shouldn't have touched other maps yet. |
| assert(state->get<ReallocPairs>() == |
| C.getState()->get<ReallocPairs>()); |
| assert(state->get<FreeReturnValue>() == |
| C.getState()->get<FreeReturnValue>()); |
| return; |
| } |
| |
| // Cleanup the Realloc Pairs Map. |
| ReallocPairsTy RP = state->get<ReallocPairs>(); |
| for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { |
| if (SymReaper.isDead(I->first) || |
| SymReaper.isDead(I->second.ReallocatedSym)) { |
| state = state->remove<ReallocPairs>(I->first); |
| } |
| } |
| |
| // Cleanup the FreeReturnValue Map. |
| FreeReturnValueTy FR = state->get<FreeReturnValue>(); |
| for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { |
| if (SymReaper.isDead(I->first) || |
| SymReaper.isDead(I->second)) { |
| state = state->remove<FreeReturnValue>(I->first); |
| } |
| } |
| |
| // Generate leak node. |
| ExplodedNode *N = C.getPredecessor(); |
| if (!Errors.empty()) { |
| static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); |
| N = C.generateNonFatalErrorNode(C.getState(), &Tag); |
| if (N) { |
| for (SmallVectorImpl<SymbolRef>::iterator |
| I = Errors.begin(), E = Errors.end(); I != E; ++I) { |
| reportLeak(*I, N, C); |
| } |
| } |
| } |
| |
| C.addTransition(state->set<RegionState>(RS), N); |
| } |
| |
| void MallocChecker::checkPreCall(const CallEvent &Call, |
| CheckerContext &C) const { |
| |
| if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { |
| SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); |
| if (!Sym || checkDoubleDelete(Sym, C)) |
| return; |
| } |
| |
| // We will check for double free in the post visit. |
| if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { |
| const FunctionDecl *FD = FC->getDecl(); |
| if (!FD) |
| return; |
| |
| ASTContext &Ctx = C.getASTContext(); |
| if (ChecksEnabled[CK_MallocChecker] && |
| (MemFunctionInfo |