| //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This defines CStringChecker, which is an assortment of checks on calls |
| // to functions in <string.h>. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
| #include "InterCheckerAPI.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/Checker.h" |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace clang; |
| using namespace ento; |
| |
| namespace { |
| class CStringChecker : public Checker< eval::Call, |
| check::PreStmt<DeclStmt>, |
| check::LiveSymbols, |
| check::DeadSymbols, |
| check::RegionChanges |
| > { |
| mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, |
| BT_NotCString, BT_AdditionOverflow; |
| |
| mutable const char *CurrentFunctionDescription; |
| |
| public: |
| /// The filter is used to filter out the diagnostics which are not enabled by |
| /// the user. |
| struct CStringChecksFilter { |
| DefaultBool CheckCStringNullArg; |
| DefaultBool CheckCStringOutOfBounds; |
| DefaultBool CheckCStringBufferOverlap; |
| DefaultBool CheckCStringNotNullTerm; |
| |
| CheckerNameRef CheckNameCStringNullArg; |
| CheckerNameRef CheckNameCStringOutOfBounds; |
| CheckerNameRef CheckNameCStringBufferOverlap; |
| CheckerNameRef CheckNameCStringNotNullTerm; |
| }; |
| |
| CStringChecksFilter Filter; |
| |
| static void *getTag() { static int tag; return &tag; } |
| |
| bool evalCall(const CallEvent &Call, CheckerContext &C) const; |
| void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; |
| void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; |
| void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; |
| |
| ProgramStateRef |
| checkRegionChanges(ProgramStateRef state, |
| const InvalidatedSymbols *, |
| ArrayRef<const MemRegion *> ExplicitRegions, |
| ArrayRef<const MemRegion *> Regions, |
| const LocationContext *LCtx, |
| const CallEvent *Call) const; |
| |
| typedef void (CStringChecker::*FnCheck)(CheckerContext &, |
| const CallExpr *) const; |
| CallDescriptionMap<FnCheck> Callbacks = { |
| {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, |
| {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, |
| {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, |
| {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, |
| {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, |
| {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, |
| {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, |
| {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, |
| {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, |
| {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, |
| {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, |
| {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, |
| {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, |
| {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, |
| {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, |
| {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, |
| {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, |
| {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, |
| {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, |
| {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, |
| {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, |
| {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, |
| {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, |
| {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, |
| }; |
| |
| // These require a bit of special handling. |
| CallDescription StdCopy{{"std", "copy"}, 3}, |
| StdCopyBackward{{"std", "copy_backward"}, 3}; |
| |
| FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; |
| void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; |
| void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; |
| void evalMemmove(CheckerContext &C, const CallExpr *CE) const; |
| void evalBcopy(CheckerContext &C, const CallExpr *CE) const; |
| void evalCopyCommon(CheckerContext &C, const CallExpr *CE, |
| ProgramStateRef state, |
| const Expr *Size, |
| const Expr *Source, |
| const Expr *Dest, |
| bool Restricted = false, |
| bool IsMempcpy = false) const; |
| |
| void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; |
| |
| void evalstrLength(CheckerContext &C, const CallExpr *CE) const; |
| void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; |
| void evalstrLengthCommon(CheckerContext &C, |
| const CallExpr *CE, |
| bool IsStrnlen = false) const; |
| |
| void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; |
| void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrcpyCommon(CheckerContext &C, |
| const CallExpr *CE, |
| bool returnEnd, |
| bool isBounded, |
| bool isAppending, |
| bool returnPtr = true) const; |
| |
| void evalStrcat(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrncat(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; |
| |
| void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; |
| void evalStrcmpCommon(CheckerContext &C, |
| const CallExpr *CE, |
| bool isBounded = false, |
| bool ignoreCase = false) const; |
| |
| void evalStrsep(CheckerContext &C, const CallExpr *CE) const; |
| |
| void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; |
| void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; |
| void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; |
| void evalMemset(CheckerContext &C, const CallExpr *CE) const; |
| void evalBzero(CheckerContext &C, const CallExpr *CE) const; |
| |
| // Utility methods |
| std::pair<ProgramStateRef , ProgramStateRef > |
| static assumeZero(CheckerContext &C, |
| ProgramStateRef state, SVal V, QualType Ty); |
| |
| static ProgramStateRef setCStringLength(ProgramStateRef state, |
| const MemRegion *MR, |
| SVal strLength); |
| static SVal getCStringLengthForRegion(CheckerContext &C, |
| ProgramStateRef &state, |
| const Expr *Ex, |
| const MemRegion *MR, |
| bool hypothetical); |
| SVal getCStringLength(CheckerContext &C, |
| ProgramStateRef &state, |
| const Expr *Ex, |
| SVal Buf, |
| bool hypothetical = false) const; |
| |
| const StringLiteral *getCStringLiteral(CheckerContext &C, |
| ProgramStateRef &state, |
| const Expr *expr, |
| SVal val) const; |
| |
| static ProgramStateRef InvalidateBuffer(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *Ex, SVal V, |
| bool IsSourceBuffer, |
| const Expr *Size); |
| |
| static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, |
| const MemRegion *MR); |
| |
| static bool memsetAux(const Expr *DstBuffer, SVal CharE, |
| const Expr *Size, CheckerContext &C, |
| ProgramStateRef &State); |
| |
| // Re-usable checks |
| ProgramStateRef checkNonNull(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *S, |
| SVal l, |
| unsigned IdxOfArg) const; |
| ProgramStateRef CheckLocation(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *S, |
| SVal l, |
| const char *message = nullptr) const; |
| ProgramStateRef CheckBufferAccess(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *Size, |
| const Expr *FirstBuf, |
| const Expr *SecondBuf, |
| const char *firstMessage = nullptr, |
| const char *secondMessage = nullptr, |
| bool WarnAboutSize = false) const; |
| |
| ProgramStateRef CheckBufferAccess(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *Size, |
| const Expr *Buf, |
| const char *message = nullptr, |
| bool WarnAboutSize = false) const { |
| // This is a convenience overload. |
| return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, |
| WarnAboutSize); |
| } |
| ProgramStateRef CheckOverlap(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *Size, |
| const Expr *First, |
| const Expr *Second) const; |
| void emitOverlapBug(CheckerContext &C, |
| ProgramStateRef state, |
| const Stmt *First, |
| const Stmt *Second) const; |
| |
| void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, |
| StringRef WarningMsg) const; |
| void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, |
| const Stmt *S, StringRef WarningMsg) const; |
| void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, |
| const Stmt *S, StringRef WarningMsg) const; |
| void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; |
| |
| ProgramStateRef checkAdditionOverflow(CheckerContext &C, |
| ProgramStateRef state, |
| NonLoc left, |
| NonLoc right) const; |
| |
| // Return true if the destination buffer of the copy function may be in bound. |
| // Expects SVal of Size to be positive and unsigned. |
| // Expects SVal of FirstBuf to be a FieldRegion. |
| static bool IsFirstBufInBound(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *FirstBuf, |
| const Expr *Size); |
| }; |
| |
| } //end anonymous namespace |
| |
| REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) |
| |
| //===----------------------------------------------------------------------===// |
| // Individual checks and utility methods. |
| //===----------------------------------------------------------------------===// |
| |
| std::pair<ProgramStateRef , ProgramStateRef > |
| CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, |
| QualType Ty) { |
| Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); |
| if (!val) |
| return std::pair<ProgramStateRef , ProgramStateRef >(state, state); |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); |
| return state->assume(svalBuilder.evalEQ(state, *val, zero)); |
| } |
| |
| ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *S, SVal l, |
| unsigned IdxOfArg) const { |
| // If a previous check has failed, propagate the failure. |
| if (!state) |
| return nullptr; |
| |
| ProgramStateRef stateNull, stateNonNull; |
| std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); |
| |
| if (stateNull && !stateNonNull) { |
| if (Filter.CheckCStringNullArg) { |
| SmallString<80> buf; |
| llvm::raw_svector_ostream OS(buf); |
| assert(CurrentFunctionDescription); |
| OS << "Null pointer argument in call to " << CurrentFunctionDescription |
| << ' ' << IdxOfArg << llvm::getOrdinalSuffix(IdxOfArg) |
| << " parameter"; |
| |
| emitNullArgBug(C, stateNull, S, OS.str()); |
| } |
| return nullptr; |
| } |
| |
| // From here on, assume that the value is non-null. |
| assert(stateNonNull); |
| return stateNonNull; |
| } |
| |
| // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? |
| ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *S, SVal l, |
| const char *warningMsg) const { |
| // If a previous check has failed, propagate the failure. |
| if (!state) |
| return nullptr; |
| |
| // Check for out of bound array element access. |
| const MemRegion *R = l.getAsRegion(); |
| if (!R) |
| return state; |
| |
| const ElementRegion *ER = dyn_cast<ElementRegion>(R); |
| if (!ER) |
| return state; |
| |
| if (ER->getValueType() != C.getASTContext().CharTy) |
| return state; |
| |
| // Get the size of the array. |
| const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| SVal Extent = |
| svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); |
| DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); |
| |
| // Get the index of the accessed element. |
| DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); |
| |
| ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); |
| ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); |
| if (StOutBound && !StInBound) { |
| // These checks are either enabled by the CString out-of-bounds checker |
| // explicitly or implicitly by the Malloc checker. |
| // In the latter case we only do modeling but do not emit warning. |
| if (!Filter.CheckCStringOutOfBounds) |
| return nullptr; |
| // Emit a bug report. |
| if (warningMsg) { |
| emitOutOfBoundsBug(C, StOutBound, S, warningMsg); |
| } else { |
| assert(CurrentFunctionDescription); |
| assert(CurrentFunctionDescription[0] != '\0'); |
| |
| SmallString<80> buf; |
| llvm::raw_svector_ostream os(buf); |
| os << toUppercase(CurrentFunctionDescription[0]) |
| << &CurrentFunctionDescription[1] |
| << " accesses out-of-bound array element"; |
| emitOutOfBoundsBug(C, StOutBound, S, os.str()); |
| } |
| return nullptr; |
| } |
| |
| // Array bound check succeeded. From this point forward the array bound |
| // should always succeed. |
| return StInBound; |
| } |
| |
| ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *Size, |
| const Expr *FirstBuf, |
| const Expr *SecondBuf, |
| const char *firstMessage, |
| const char *secondMessage, |
| bool WarnAboutSize) const { |
| // If a previous check has failed, propagate the failure. |
| if (!state) |
| return nullptr; |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| ASTContext &Ctx = svalBuilder.getContext(); |
| const LocationContext *LCtx = C.getLocationContext(); |
| |
| QualType sizeTy = Size->getType(); |
| QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); |
| |
| // Check that the first buffer is non-null. |
| SVal BufVal = C.getSVal(FirstBuf); |
| state = checkNonNull(C, state, FirstBuf, BufVal, 1); |
| if (!state) |
| return nullptr; |
| |
| // If out-of-bounds checking is turned off, skip the rest. |
| if (!Filter.CheckCStringOutOfBounds) |
| return state; |
| |
| // Get the access length and make sure it is known. |
| // FIXME: This assumes the caller has already checked that the access length |
| // is positive. And that it's unsigned. |
| SVal LengthVal = C.getSVal(Size); |
| Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
| if (!Length) |
| return state; |
| |
| // Compute the offset of the last element to be accessed: size-1. |
| NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); |
| SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); |
| if (Offset.isUnknown()) |
| return nullptr; |
| NonLoc LastOffset = Offset.castAs<NonLoc>(); |
| |
| // Check that the first buffer is sufficiently long. |
| SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); |
| if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { |
| const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); |
| |
| SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, |
| LastOffset, PtrTy); |
| state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); |
| |
| // If the buffer isn't large enough, abort. |
| if (!state) |
| return nullptr; |
| } |
| |
| // If there's a second buffer, check it as well. |
| if (SecondBuf) { |
| BufVal = state->getSVal(SecondBuf, LCtx); |
| state = checkNonNull(C, state, SecondBuf, BufVal, 2); |
| if (!state) |
| return nullptr; |
| |
| BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); |
| if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { |
| const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); |
| |
| SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, |
| LastOffset, PtrTy); |
| state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); |
| } |
| } |
| |
| // Large enough or not, return this state! |
| return state; |
| } |
| |
| ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *Size, |
| const Expr *First, |
| const Expr *Second) const { |
| if (!Filter.CheckCStringBufferOverlap) |
| return state; |
| |
| // Do a simple check for overlap: if the two arguments are from the same |
| // buffer, see if the end of the first is greater than the start of the second |
| // or vice versa. |
| |
| // If a previous check has failed, propagate the failure. |
| if (!state) |
| return nullptr; |
| |
| ProgramStateRef stateTrue, stateFalse; |
| |
| // Get the buffer values and make sure they're known locations. |
| const LocationContext *LCtx = C.getLocationContext(); |
| SVal firstVal = state->getSVal(First, LCtx); |
| SVal secondVal = state->getSVal(Second, LCtx); |
| |
| Optional<Loc> firstLoc = firstVal.getAs<Loc>(); |
| if (!firstLoc) |
| return state; |
| |
| Optional<Loc> secondLoc = secondVal.getAs<Loc>(); |
| if (!secondLoc) |
| return state; |
| |
| // Are the two values the same? |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| std::tie(stateTrue, stateFalse) = |
| state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); |
| |
| if (stateTrue && !stateFalse) { |
| // If the values are known to be equal, that's automatically an overlap. |
| emitOverlapBug(C, stateTrue, First, Second); |
| return nullptr; |
| } |
| |
| // assume the two expressions are not equal. |
| assert(stateFalse); |
| state = stateFalse; |
| |
| // Which value comes first? |
| QualType cmpTy = svalBuilder.getConditionType(); |
| SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, |
| *firstLoc, *secondLoc, cmpTy); |
| Optional<DefinedOrUnknownSVal> reverseTest = |
| reverse.getAs<DefinedOrUnknownSVal>(); |
| if (!reverseTest) |
| return state; |
| |
| std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); |
| if (stateTrue) { |
| if (stateFalse) { |
| // If we don't know which one comes first, we can't perform this test. |
| return state; |
| } else { |
| // Switch the values so that firstVal is before secondVal. |
| std::swap(firstLoc, secondLoc); |
| |
| // Switch the Exprs as well, so that they still correspond. |
| std::swap(First, Second); |
| } |
| } |
| |
| // Get the length, and make sure it too is known. |
| SVal LengthVal = state->getSVal(Size, LCtx); |
| Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
| if (!Length) |
| return state; |
| |
| // Convert the first buffer's start address to char*. |
| // Bail out if the cast fails. |
| ASTContext &Ctx = svalBuilder.getContext(); |
| QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); |
| SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, |
| First->getType()); |
| Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); |
| if (!FirstStartLoc) |
| return state; |
| |
| // Compute the end of the first buffer. Bail out if THAT fails. |
| SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, |
| *FirstStartLoc, *Length, CharPtrTy); |
| Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); |
| if (!FirstEndLoc) |
| return state; |
| |
| // Is the end of the first buffer past the start of the second buffer? |
| SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, |
| *FirstEndLoc, *secondLoc, cmpTy); |
| Optional<DefinedOrUnknownSVal> OverlapTest = |
| Overlap.getAs<DefinedOrUnknownSVal>(); |
| if (!OverlapTest) |
| return state; |
| |
| std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); |
| |
| if (stateTrue && !stateFalse) { |
| // Overlap! |
| emitOverlapBug(C, stateTrue, First, Second); |
| return nullptr; |
| } |
| |
| // assume the two expressions don't overlap. |
| assert(stateFalse); |
| return stateFalse; |
| } |
| |
| void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, |
| const Stmt *First, const Stmt *Second) const { |
| ExplodedNode *N = C.generateErrorNode(state); |
| if (!N) |
| return; |
| |
| if (!BT_Overlap) |
| BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, |
| categories::UnixAPI, "Improper arguments")); |
| |
| // Generate a report for this bug. |
| auto report = std::make_unique<PathSensitiveBugReport>( |
| *BT_Overlap, "Arguments must not be overlapping buffers", N); |
| report->addRange(First->getSourceRange()); |
| report->addRange(Second->getSourceRange()); |
| |
| C.emitReport(std::move(report)); |
| } |
| |
| void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, |
| const Stmt *S, StringRef WarningMsg) const { |
| if (ExplodedNode *N = C.generateErrorNode(State)) { |
| if (!BT_Null) |
| BT_Null.reset(new BuiltinBug( |
| Filter.CheckNameCStringNullArg, categories::UnixAPI, |
| "Null pointer argument in call to byte string function")); |
| |
| BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); |
| auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); |
| Report->addRange(S->getSourceRange()); |
| if (const auto *Ex = dyn_cast<Expr>(S)) |
| bugreporter::trackExpressionValue(N, Ex, *Report); |
| C.emitReport(std::move(Report)); |
| } |
| } |
| |
| void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, |
| ProgramStateRef State, const Stmt *S, |
| StringRef WarningMsg) const { |
| if (ExplodedNode *N = C.generateErrorNode(State)) { |
| if (!BT_Bounds) |
| BT_Bounds.reset(new BuiltinBug( |
| Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds |
| : Filter.CheckNameCStringNullArg, |
| "Out-of-bound array access", |
| "Byte string function accesses out-of-bound array element")); |
| |
| BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); |
| |
| // FIXME: It would be nice to eventually make this diagnostic more clear, |
| // e.g., by referencing the original declaration or by saying *why* this |
| // reference is outside the range. |
| auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); |
| Report->addRange(S->getSourceRange()); |
| C.emitReport(std::move(Report)); |
| } |
| } |
| |
| void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, |
| const Stmt *S, |
| StringRef WarningMsg) const { |
| if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { |
| if (!BT_NotCString) |
| BT_NotCString.reset(new BuiltinBug( |
| Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, |
| "Argument is not a null-terminated string.")); |
| |
| auto Report = |
| std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); |
| |
| Report->addRange(S->getSourceRange()); |
| C.emitReport(std::move(Report)); |
| } |
| } |
| |
| void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, |
| ProgramStateRef State) const { |
| if (ExplodedNode *N = C.generateErrorNode(State)) { |
| if (!BT_NotCString) |
| BT_NotCString.reset( |
| new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", |
| "Sum of expressions causes overflow.")); |
| |
| // This isn't a great error message, but this should never occur in real |
| // code anyway -- you'd have to create a buffer longer than a size_t can |
| // represent, which is sort of a contradiction. |
| const char *WarningMsg = |
| "This expression will create a string whose length is too big to " |
| "be represented as a size_t"; |
| |
| auto Report = |
| std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); |
| C.emitReport(std::move(Report)); |
| } |
| } |
| |
| ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, |
| ProgramStateRef state, |
| NonLoc left, |
| NonLoc right) const { |
| // If out-of-bounds checking is turned off, skip the rest. |
| if (!Filter.CheckCStringOutOfBounds) |
| return state; |
| |
| // If a previous check has failed, propagate the failure. |
| if (!state) |
| return nullptr; |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); |
| |
| QualType sizeTy = svalBuilder.getContext().getSizeType(); |
| const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); |
| NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); |
| |
| SVal maxMinusRight; |
| if (right.getAs<nonloc::ConcreteInt>()) { |
| maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, |
| sizeTy); |
| } else { |
| // Try switching the operands. (The order of these two assignments is |
| // important!) |
| maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, |
| sizeTy); |
| left = right; |
| } |
| |
| if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { |
| QualType cmpTy = svalBuilder.getConditionType(); |
| // If left > max - right, we have an overflow. |
| SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, |
| *maxMinusRightNL, cmpTy); |
| |
| ProgramStateRef stateOverflow, stateOkay; |
| std::tie(stateOverflow, stateOkay) = |
| state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); |
| |
| if (stateOverflow && !stateOkay) { |
| // We have an overflow. Emit a bug report. |
| emitAdditionOverflowBug(C, stateOverflow); |
| return nullptr; |
| } |
| |
| // From now on, assume an overflow didn't occur. |
| assert(stateOkay); |
| state = stateOkay; |
| } |
| |
| return state; |
| } |
| |
| ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, |
| const MemRegion *MR, |
| SVal strLength) { |
| assert(!strLength.isUndef() && "Attempt to set an undefined string length"); |
| |
| MR = MR->StripCasts(); |
| |
| switch (MR->getKind()) { |
| case MemRegion::StringRegionKind: |
| // FIXME: This can happen if we strcpy() into a string region. This is |
| // undefined [C99 6.4.5p6], but we should still warn about it. |
| return state; |
| |
| case MemRegion::SymbolicRegionKind: |
| case MemRegion::AllocaRegionKind: |
| case MemRegion::VarRegionKind: |
| case MemRegion::FieldRegionKind: |
| case MemRegion::ObjCIvarRegionKind: |
| // These are the types we can currently track string lengths for. |
| break; |
| |
| case MemRegion::ElementRegionKind: |
| // FIXME: Handle element regions by upper-bounding the parent region's |
| // string length. |
| return state; |
| |
| default: |
| // Other regions (mostly non-data) can't have a reliable C string length. |
| // For now, just ignore the change. |
| // FIXME: These are rare but not impossible. We should output some kind of |
| // warning for things like strcpy((char[]){'a', 0}, "b"); |
| return state; |
| } |
| |
| if (strLength.isUnknown()) |
| return state->remove<CStringLength>(MR); |
| |
| return state->set<CStringLength>(MR, strLength); |
| } |
| |
| SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, |
| ProgramStateRef &state, |
| const Expr *Ex, |
| const MemRegion *MR, |
| bool hypothetical) { |
| if (!hypothetical) { |
| // If there's a recorded length, go ahead and return it. |
| const SVal *Recorded = state->get<CStringLength>(MR); |
| if (Recorded) |
| return *Recorded; |
| } |
| |
| // Otherwise, get a new symbol and update the state. |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| QualType sizeTy = svalBuilder.getContext().getSizeType(); |
| SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), |
| MR, Ex, sizeTy, |
| C.getLocationContext(), |
| C.blockCount()); |
| |
| if (!hypothetical) { |
| if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { |
| // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 |
| BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); |
| const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); |
| llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); |
| const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, |
| fourInt); |
| NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); |
| SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, |
| maxLength, sizeTy); |
| state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); |
| } |
| state = state->set<CStringLength>(MR, strLength); |
| } |
| |
| return strLength; |
| } |
| |
| SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, |
| const Expr *Ex, SVal Buf, |
| bool hypothetical) const { |
| const MemRegion *MR = Buf.getAsRegion(); |
| if (!MR) { |
| // If we can't get a region, see if it's something we /know/ isn't a |
| // C string. In the context of locations, the only time we can issue such |
| // a warning is for labels. |
| if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { |
| if (Filter.CheckCStringNotNullTerm) { |
| SmallString<120> buf; |
| llvm::raw_svector_ostream os(buf); |
| assert(CurrentFunctionDescription); |
| os << "Argument to " << CurrentFunctionDescription |
| << " is the address of the label '" << Label->getLabel()->getName() |
| << "', which is not a null-terminated string"; |
| |
| emitNotCStringBug(C, state, Ex, os.str()); |
| } |
| return UndefinedVal(); |
| } |
| |
| // If it's not a region and not a label, give up. |
| return UnknownVal(); |
| } |
| |
| // If we have a region, strip casts from it and see if we can figure out |
| // its length. For anything we can't figure out, just return UnknownVal. |
| MR = MR->StripCasts(); |
| |
| switch (MR->getKind()) { |
| case MemRegion::StringRegionKind: { |
| // Modifying the contents of string regions is undefined [C99 6.4.5p6], |
| // so we can assume that the byte length is the correct C string length. |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| QualType sizeTy = svalBuilder.getContext().getSizeType(); |
| const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); |
| return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); |
| } |
| case MemRegion::SymbolicRegionKind: |
| case MemRegion::AllocaRegionKind: |
| case MemRegion::VarRegionKind: |
| case MemRegion::FieldRegionKind: |
| case MemRegion::ObjCIvarRegionKind: |
| return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); |
| case MemRegion::CompoundLiteralRegionKind: |
| // FIXME: Can we track this? Is it necessary? |
| return UnknownVal(); |
| case MemRegion::ElementRegionKind: |
| // FIXME: How can we handle this? It's not good enough to subtract the |
| // offset from the base string length; consider "123\x00567" and &a[5]. |
| return UnknownVal(); |
| default: |
| // Other regions (mostly non-data) can't have a reliable C string length. |
| // In this case, an error is emitted and UndefinedVal is returned. |
| // The caller should always be prepared to handle this case. |
| if (Filter.CheckCStringNotNullTerm) { |
| SmallString<120> buf; |
| llvm::raw_svector_ostream os(buf); |
| |
| assert(CurrentFunctionDescription); |
| os << "Argument to " << CurrentFunctionDescription << " is "; |
| |
| if (SummarizeRegion(os, C.getASTContext(), MR)) |
| os << ", which is not a null-terminated string"; |
| else |
| os << "not a null-terminated string"; |
| |
| emitNotCStringBug(C, state, Ex, os.str()); |
| } |
| return UndefinedVal(); |
| } |
| } |
| |
| const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, |
| ProgramStateRef &state, const Expr *expr, SVal val) const { |
| |
| // Get the memory region pointed to by the val. |
| const MemRegion *bufRegion = val.getAsRegion(); |
| if (!bufRegion) |
| return nullptr; |
| |
| // Strip casts off the memory region. |
| bufRegion = bufRegion->StripCasts(); |
| |
| // Cast the memory region to a string region. |
| const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); |
| if (!strRegion) |
| return nullptr; |
| |
| // Return the actual string in the string region. |
| return strRegion->getStringLiteral(); |
| } |
| |
| bool CStringChecker::IsFirstBufInBound(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *FirstBuf, |
| const Expr *Size) { |
| // If we do not know that the buffer is long enough we return 'true'. |
| // Otherwise the parent region of this field region would also get |
| // invalidated, which would lead to warnings based on an unknown state. |
| |
| // Originally copied from CheckBufferAccess and CheckLocation. |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| ASTContext &Ctx = svalBuilder.getContext(); |
| const LocationContext *LCtx = C.getLocationContext(); |
| |
| QualType sizeTy = Size->getType(); |
| QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); |
| SVal BufVal = state->getSVal(FirstBuf, LCtx); |
| |
| SVal LengthVal = state->getSVal(Size, LCtx); |
| Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
| if (!Length) |
| return true; // cf top comment. |
| |
| // Compute the offset of the last element to be accessed: size-1. |
| NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); |
| SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); |
| if (Offset.isUnknown()) |
| return true; // cf top comment |
| NonLoc LastOffset = Offset.castAs<NonLoc>(); |
| |
| // Check that the first buffer is sufficiently long. |
| SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); |
| Optional<Loc> BufLoc = BufStart.getAs<Loc>(); |
| if (!BufLoc) |
| return true; // cf top comment. |
| |
| SVal BufEnd = |
| svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); |
| |
| // Check for out of bound array element access. |
| const MemRegion *R = BufEnd.getAsRegion(); |
| if (!R) |
| return true; // cf top comment. |
| |
| const ElementRegion *ER = dyn_cast<ElementRegion>(R); |
| if (!ER) |
| return true; // cf top comment. |
| |
| // FIXME: Does this crash when a non-standard definition |
| // of a library function is encountered? |
| assert(ER->getValueType() == C.getASTContext().CharTy && |
| "IsFirstBufInBound should only be called with char* ElementRegions"); |
| |
| // Get the size of the array. |
| const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); |
| SVal Extent = |
| svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); |
| DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); |
| |
| // Get the index of the accessed element. |
| DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); |
| |
| ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); |
| |
| return static_cast<bool>(StInBound); |
| } |
| |
| ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, |
| ProgramStateRef state, |
| const Expr *E, SVal V, |
| bool IsSourceBuffer, |
| const Expr *Size) { |
| Optional<Loc> L = V.getAs<Loc>(); |
| if (!L) |
| return state; |
| |
| // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes |
| // some assumptions about the value that CFRefCount can't. Even so, it should |
| // probably be refactored. |
| if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { |
| const MemRegion *R = MR->getRegion()->StripCasts(); |
| |
| // Are we dealing with an ElementRegion? If so, we should be invalidating |
| // the super-region. |
| if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { |
| R = ER->getSuperRegion(); |
| // FIXME: What about layers of ElementRegions? |
| } |
| |
| // Invalidate this region. |
| const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); |
| |
| bool CausesPointerEscape = false; |
| RegionAndSymbolInvalidationTraits ITraits; |
| // Invalidate and escape only indirect regions accessible through the source |
| // buffer. |
| if (IsSourceBuffer) { |
| ITraits.setTrait(R->getBaseRegion(), |
| RegionAndSymbolInvalidationTraits::TK_PreserveContents); |
| ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); |
| CausesPointerEscape = true; |
| } else { |
| const MemRegion::Kind& K = R->getKind(); |
| if (K == MemRegion::FieldRegionKind) |
| if (Size && IsFirstBufInBound(C, state, E, Size)) { |
| // If destination buffer is a field region and access is in bound, |
| // do not invalidate its super region. |
| ITraits.setTrait( |
| R, |
| RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| } |
| } |
| |
| return state->invalidateRegions(R, E, C.blockCount(), LCtx, |
| CausesPointerEscape, nullptr, nullptr, |
| &ITraits); |
| } |
| |
| // If we have a non-region value by chance, just remove the binding. |
| // FIXME: is this necessary or correct? This handles the non-Region |
| // cases. Is it ever valid to store to these? |
| return state->killBinding(*L); |
| } |
| |
| bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, |
| const MemRegion *MR) { |
| const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); |
| |
| switch (MR->getKind()) { |
| case MemRegion::FunctionCodeRegionKind: { |
| const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); |
| if (FD) |
| os << "the address of the function '" << *FD << '\''; |
| else |
| os << "the address of a function"; |
| return true; |
| } |
| case MemRegion::BlockCodeRegionKind: |
| os << "block text"; |
| return true; |
| case MemRegion::BlockDataRegionKind: |
| os << "a block"; |
| return true; |
| case MemRegion::CXXThisRegionKind: |
| case MemRegion::CXXTempObjectRegionKind: |
| os << "a C++ temp object of type " << TVR->getValueType().getAsString(); |
| return true; |
| case MemRegion::VarRegionKind: |
| os << "a variable of type" << TVR->getValueType().getAsString(); |
| return true; |
| case MemRegion::FieldRegionKind: |
| os << "a field of type " << TVR->getValueType().getAsString(); |
| return true; |
| case MemRegion::ObjCIvarRegionKind: |
| os << "an instance variable of type " << TVR->getValueType().getAsString(); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, |
| const Expr *Size, CheckerContext &C, |
| ProgramStateRef &State) { |
| SVal MemVal = C.getSVal(DstBuffer); |
| SVal SizeVal = C.getSVal(Size); |
| const MemRegion *MR = MemVal.getAsRegion(); |
| if (!MR) |
| return false; |
| |
| // We're about to model memset by producing a "default binding" in the Store. |
| // Our current implementation - RegionStore - doesn't support default bindings |
| // that don't cover the whole base region. So we should first get the offset |
| // and the base region to figure out whether the offset of buffer is 0. |
| RegionOffset Offset = MR->getAsOffset(); |
| const MemRegion *BR = Offset.getRegion(); |
| |
| Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); |
| if (!SizeNL) |
| return false; |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| ASTContext &Ctx = C.getASTContext(); |
| |
| // void *memset(void *dest, int ch, size_t count); |
| // For now we can only handle the case of offset is 0 and concrete char value. |
| if (Offset.isValid() && !Offset.hasSymbolicOffset() && |
| Offset.getOffset() == 0) { |
| // Get the base region's extent. |
| auto *SubReg = cast<SubRegion>(BR); |
| DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder); |
| |
| ProgramStateRef StateWholeReg, StateNotWholeReg; |
| std::tie(StateWholeReg, StateNotWholeReg) = |
| State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL)); |
| |
| // With the semantic of 'memset()', we should convert the CharVal to |
| // unsigned char. |
| CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); |
| |
| ProgramStateRef StateNullChar, StateNonNullChar; |
| std::tie(StateNullChar, StateNonNullChar) = |
| assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); |
| |
| if (StateWholeReg && !StateNotWholeReg && StateNullChar && |
| !StateNonNullChar) { |
| // If the 'memset()' acts on the whole region of destination buffer and |
| // the value of the second argument of 'memset()' is zero, bind the second |
| // argument's value to the destination buffer with 'default binding'. |
| // FIXME: Since there is no perfect way to bind the non-zero character, we |
| // can only deal with zero value here. In the future, we need to deal with |
| // the binding of non-zero value in the case of whole region. |
| State = State->bindDefaultZero(svalBuilder.makeLoc(BR), |
| C.getLocationContext()); |
| } else { |
| // If the destination buffer's extent is not equal to the value of |
| // third argument, just invalidate buffer. |
| State = InvalidateBuffer(C, State, DstBuffer, MemVal, |
| /*IsSourceBuffer*/ false, Size); |
| } |
| |
| if (StateNullChar && !StateNonNullChar) { |
| // If the value of the second argument of 'memset()' is zero, set the |
| // string length of destination buffer to 0 directly. |
| State = setCStringLength(State, MR, |
| svalBuilder.makeZeroVal(Ctx.getSizeType())); |
| } else if (!StateNullChar && StateNonNullChar) { |
| SVal NewStrLen = svalBuilder.getMetadataSymbolVal( |
| CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), |
| C.getLocationContext(), C.blockCount()); |
| |
| // If the value of second argument is not zero, then the string length |
| // is at least the size argument. |
| SVal NewStrLenGESize = svalBuilder.evalBinOp( |
| State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); |
| |
| State = setCStringLength( |
| State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), |
| MR, NewStrLen); |
| } |
| } else { |
| // If the offset is not zero and char value is not concrete, we can do |
| // nothing but invalidate the buffer. |
| State = InvalidateBuffer(C, State, DstBuffer, MemVal, |
| /*IsSourceBuffer*/ false, Size); |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // evaluation of individual function calls. |
| //===----------------------------------------------------------------------===// |
| |
| void CStringChecker::evalCopyCommon(CheckerContext &C, |
| const CallExpr *CE, |
| ProgramStateRef state, |
| const Expr *Size, const Expr *Dest, |
| const Expr *Source, bool Restricted, |
| bool IsMempcpy) const { |
| CurrentFunctionDescription = "memory copy function"; |
| |
| // See if the size argument is zero. |
| const LocationContext *LCtx = C.getLocationContext(); |
| SVal sizeVal = state->getSVal(Size, LCtx); |
| QualType sizeTy = Size->getType(); |
| |
| ProgramStateRef stateZeroSize, stateNonZeroSize; |
| std::tie(stateZeroSize, stateNonZeroSize) = |
| assumeZero(C, state, sizeVal, sizeTy); |
| |
| // Get the value of the Dest. |
| SVal destVal = state->getSVal(Dest, LCtx); |
| |
| // If the size is zero, there won't be any actual memory access, so |
| // just bind the return value to the destination buffer and return. |
| if (stateZeroSize && !stateNonZeroSize) { |
| stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); |
| C.addTransition(stateZeroSize); |
| return; |
| } |
| |
| // If the size can be nonzero, we have to check the other arguments. |
| if (stateNonZeroSize) { |
| state = stateNonZeroSize; |
| |
| // Ensure the destination is not null. If it is NULL there will be a |
| // NULL pointer dereference. |
| state = checkNonNull(C, state, Dest, destVal, 1); |
| if (!state) |
| return; |
| |
| // Get the value of the Src. |
| SVal srcVal = state->getSVal(Source, LCtx); |
| |
| // Ensure the source is not null. If it is NULL there will be a |
| // NULL pointer dereference. |
| state = checkNonNull(C, state, Source, srcVal, 2); |
| if (!state) |
| return; |
| |
| // Ensure the accesses are valid and that the buffers do not overlap. |
| const char * const writeWarning = |
| "Memory copy function overflows destination buffer"; |
| state = CheckBufferAccess(C, state, Size, Dest, Source, |
| writeWarning, /* sourceWarning = */ nullptr); |
| if (Restricted) |
| state = CheckOverlap(C, state, Size, Dest, Source); |
| |
| if (!state) |
| return; |
| |
| // If this is mempcpy, get the byte after the last byte copied and |
| // bind the expr. |
| if (IsMempcpy) { |
| // Get the byte after the last byte copied. |
| SValBuilder &SvalBuilder = C.getSValBuilder(); |
| ASTContext &Ctx = SvalBuilder.getContext(); |
| QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); |
| SVal DestRegCharVal = |
| SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); |
| SVal lastElement = C.getSValBuilder().evalBinOp( |
| state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); |
| // If we don't know how much we copied, we can at least |
| // conjure a return value for later. |
| if (lastElement.isUnknown()) |
| lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, |
| C.blockCount()); |
| |
| // The byte after the last byte copied is the return value. |
| state = state->BindExpr(CE, LCtx, lastElement); |
| } else { |
| // All other copies return the destination buffer. |
| // (Well, bcopy() has a void return type, but this won't hurt.) |
| state = state->BindExpr(CE, LCtx, destVal); |
| } |
| |
| // Invalidate the destination (regular invalidation without pointer-escaping |
| // the address of the top-level region). |
| // FIXME: Even if we can't perfectly model the copy, we should see if we |
| // can use LazyCompoundVals to copy the source values into the destination. |
| // This would probably remove any existing bindings past the end of the |
| // copied region, but that's still an improvement over blank invalidation. |
| state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), |
| /*IsSourceBuffer*/false, Size); |
| |
| // Invalidate the source (const-invalidation without const-pointer-escaping |
| // the address of the top-level region). |
| state = InvalidateBuffer(C, state, Source, C.getSVal(Source), |
| /*IsSourceBuffer*/true, nullptr); |
| |
| C.addTransition(state); |
| } |
| } |
| |
| |
| void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { |
| // void *memcpy(void *restrict dst, const void *restrict src, size_t n); |
| // The return value is the address of the destination buffer. |
| const Expr *Dest = CE->getArg(0); |
| ProgramStateRef state = C.getState(); |
| |
| evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); |
| } |
| |
| void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { |
| // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); |
| // The return value is a pointer to the byte following the last written byte. |
| const Expr *Dest = CE->getArg(0); |
| ProgramStateRef state = C.getState(); |
| |
| evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); |
| } |
| |
| void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { |
| // void *memmove(void *dst, const void *src, size_t n); |
| // The return value is the address of the destination buffer. |
| const Expr *Dest = CE->getArg(0); |
| ProgramStateRef state = C.getState(); |
| |
| evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); |
| } |
| |
| void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { |
| // void bcopy(const void *src, void *dst, size_t n); |
| evalCopyCommon(C, CE, C.getState(), |
| CE->getArg(2), CE->getArg(1), CE->getArg(0)); |
| } |
| |
| void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { |
| // int memcmp(const void *s1, const void *s2, size_t n); |
| CurrentFunctionDescription = "memory comparison function"; |
| |
| const Expr *Left = CE->getArg(0); |
| const Expr *Right = CE->getArg(1); |
| const Expr *Size = CE->getArg(2); |
| |
| ProgramStateRef state = C.getState(); |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| |
| // See if the size argument is zero. |
| const LocationContext *LCtx = C.getLocationContext(); |
| SVal sizeVal = state->getSVal(Size, LCtx); |
| QualType sizeTy = Size->getType(); |
| |
| ProgramStateRef stateZeroSize, stateNonZeroSize; |
| std::tie(stateZeroSize, stateNonZeroSize) = |
| assumeZero(C, state, sizeVal, sizeTy); |
| |
| // If the size can be zero, the result will be 0 in that case, and we don't |
| // have to check either of the buffers. |
| if (stateZeroSize) { |
| state = stateZeroSize; |
| state = state->BindExpr(CE, LCtx, |
| svalBuilder.makeZeroVal(CE->getType())); |
| C.addTransition(state); |
| } |
| |
| // If the size can be nonzero, we have to check the other arguments. |
| if (stateNonZeroSize) { |
| state = stateNonZeroSize; |
| // If we know the two buffers are the same, we know the result is 0. |
| // First, get the two buffers' addresses. Another checker will have already |
| // made sure they're not undefined. |
| DefinedOrUnknownSVal LV = |
| state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); |
| DefinedOrUnknownSVal RV = |
| state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); |
| |
| // See if they are the same. |
| DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); |
| ProgramStateRef StSameBuf, StNotSameBuf; |
| std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); |
| |
| // If the two arguments might be the same buffer, we know the result is 0, |
| // and we only need to check one size. |
| if (StSameBuf) { |
| state = StSameBuf; |
| state = CheckBufferAccess(C, state, Size, Left); |
| if (state) { |
| state = StSameBuf->BindExpr(CE, LCtx, |
| svalBuilder.makeZeroVal(CE->getType())); |
| C.addTransition(state); |
| } |
| } |
| |
| // If the two arguments might be different buffers, we have to check the |
| // size of both of them. |
| if (StNotSameBuf) { |
| state = StNotSameBuf; |
| state = CheckBufferAccess(C, state, Size, Left, Right); |
| if (state) { |
| // The return value is the comparison result, which we don't know. |
| SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, |
| C.blockCount()); |
| state = state->BindExpr(CE, LCtx, CmpV); |
| C.addTransition(state); |
| } |
| } |
| } |
| } |
| |
| void CStringChecker::evalstrLength(CheckerContext &C, |
| const CallExpr *CE) const { |
| // size_t strlen(const char *s); |
| evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); |
| } |
| |
| void CStringChecker::evalstrnLength(CheckerContext &C, |
| const CallExpr *CE) const { |
| // size_t strnlen(const char *s, size_t maxlen); |
| evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); |
| } |
| |
| void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, |
| bool IsStrnlen) const { |
| CurrentFunctionDescription = "string length function"; |
| ProgramStateRef state = C.getState(); |
| const LocationContext *LCtx = C.getLocationContext(); |
| |
| if (IsStrnlen) { |
| const Expr *maxlenExpr = CE->getArg(1); |
| SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); |
| |
| ProgramStateRef stateZeroSize, stateNonZeroSize; |
| std::tie(stateZeroSize, stateNonZeroSize) = |
| assumeZero(C, state, maxlenVal, maxlenExpr->getType()); |
| |
| // If the size can be zero, the result will be 0 in that case, and we don't |
| // have to check the string itself. |
| if (stateZeroSize) { |
| SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); |
| stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); |
| C.addTransition(stateZeroSize); |
| } |
| |
| // If the size is GUARANTEED to be zero, we're done! |
| if (!stateNonZeroSize) |
| return; |
| |
| // Otherwise, record the assumption that the size is nonzero. |
| state = stateNonZeroSize; |
| } |
| |
| // Check that the string argument is non-null. |
| const Expr *Arg = CE->getArg(0); |
| SVal ArgVal = state->getSVal(Arg, LCtx); |
| |
| state = checkNonNull(C, state, Arg, ArgVal, 1); |
| |
| if (!state) |
| return; |
| |
| SVal strLength = getCStringLength(C, state, Arg, ArgVal); |
| |
| // If the argument isn't a valid C string, there's no valid state to |
| // transition to. |
| if (strLength.isUndef()) |
| return; |
| |
| DefinedOrUnknownSVal result = UnknownVal(); |
| |
| // If the check is for strnlen() then bind the return value to no more than |
| // the maxlen value. |
| if (IsStrnlen) { |
| QualType cmpTy = C.getSValBuilder().getConditionType(); |
| |
| // It's a little unfortunate to be getting this again, |
| // but it's not that expensive... |
| const Expr *maxlenExpr = CE->getArg(1); |
| SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); |
| |
| Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); |
| Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); |
| |
| if (strLengthNL && maxlenValNL) { |
| ProgramStateRef stateStringTooLong, stateStringNotTooLong; |
| |
| // Check if the strLength is greater than the maxlen. |
| std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( |
| C.getSValBuilder() |
| .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) |
| .castAs<DefinedOrUnknownSVal>()); |
| |
| if (stateStringTooLong && !stateStringNotTooLong) { |
| // If the string is longer than maxlen, return maxlen. |
| result = *maxlenValNL; |
| } else if (stateStringNotTooLong && !stateStringTooLong) { |
| // If the string is shorter than maxlen, return its length. |
| result = *strLengthNL; |
| } |
| } |
| |
| if (result.isUnknown()) { |
| // If we don't have enough information for a comparison, there's |
| // no guarantee the full string length will actually be returned. |
| // All we know is the return value is the min of the string length |
| // and the limit. This is better than nothing. |
| result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, |
| C.blockCount()); |
| NonLoc resultNL = result.castAs<NonLoc>(); |
| |
| if (strLengthNL) { |
| state = state->assume(C.getSValBuilder().evalBinOpNN( |
| state, BO_LE, resultNL, *strLengthNL, cmpTy) |
| .castAs<DefinedOrUnknownSVal>(), true); |
| } |
| |
| if (maxlenValNL) { |
| state = state->assume(C.getSValBuilder().evalBinOpNN( |
| state, BO_LE, resultNL, *maxlenValNL, cmpTy) |
| .castAs<DefinedOrUnknownSVal>(), true); |
| } |
| } |
| |
| } else { |
| // This is a plain strlen(), not strnlen(). |
| result = strLength.castAs<DefinedOrUnknownSVal>(); |
| |
| // If we don't know the length of the string, conjure a return |
| // value, so it can be used in constraints, at least. |
| if (result.isUnknown()) { |
| result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, |
| C.blockCount()); |
| } |
| } |
| |
| // Bind the return value. |
| assert(!result.isUnknown() && "Should have conjured a value by now"); |
| state = state->BindExpr(CE, LCtx, result); |
| C.addTransition(state); |
| } |
| |
| void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { |
| // char *strcpy(char *restrict dst, const char *restrict src); |
| evalStrcpyCommon(C, CE, |
| /* returnEnd = */ false, |
| /* isBounded = */ false, |
| /* isAppending = */ false); |
| } |
| |
| void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { |
| // char *strncpy(char *restrict dst, const char *restrict src, size_t n); |
| evalStrcpyCommon(C, CE, |
| /* returnEnd = */ false, |
| /* isBounded = */ true, |
| /* isAppending = */ false); |
| } |
| |
| void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { |
| // char *stpcpy(char *restrict dst, const char *restrict src); |
| evalStrcpyCommon(C, CE, |
| /* returnEnd = */ true, |
| /* isBounded = */ false, |
| /* isAppending = */ false); |
| } |
| |
| void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { |
| // char *strlcpy(char *dst, const char *src, size_t n); |
| evalStrcpyCommon(C, CE, |
| /* returnEnd = */ true, |
| /* isBounded = */ true, |
| /* isAppending = */ false, |
| /* returnPtr = */ false); |
| } |
| |
| void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { |
| //char *strcat(char *restrict s1, const char *restrict s2); |
| evalStrcpyCommon(C, CE, |
| /* returnEnd = */ false, |
| /* isBounded = */ false, |
| /* isAppending = */ true); |
| } |
| |
| void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { |
| //char *strncat(char *restrict s1, const char *restrict s2, size_t n); |
| evalStrcpyCommon(C, CE, |
| /* returnEnd = */ false, |
| /* isBounded = */ true, |
| /* isAppending = */ true); |
| } |
| |
| void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { |
| // FIXME: strlcat() uses a different rule for bound checking, i.e. 'n' means |
| // a different thing as compared to strncat(). This currently causes |
| // false positives in the alpha string bound checker. |
| |
| //char *strlcat(char *s1, const char *s2, size_t n); |
| evalStrcpyCommon(C, CE, |
| /* returnEnd = */ false, |
| /* isBounded = */ true, |
| /* isAppending = */ true, |
| /* returnPtr = */ false); |
| } |
| |
| void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, |
| bool returnEnd, bool isBounded, |
| bool isAppending, bool returnPtr) const { |
| CurrentFunctionDescription = "string copy function"; |
| ProgramStateRef state = C.getState(); |
| const LocationContext *LCtx = C.getLocationContext(); |
| |
| // Check that the destination is non-null. |
| const Expr *Dst = CE->getArg(0); |
| SVal DstVal = state->getSVal(Dst, LCtx); |
| |
| state = checkNonNull(C, state, Dst, DstVal, 1); |
| if (!state) |
| return; |
| |
| // Check that the source is non-null. |
| const Expr *srcExpr = CE->getArg(1); |
| SVal srcVal = state->getSVal(srcExpr, LCtx); |
| state = checkNonNull(C, state, srcExpr, srcVal, 2); |
| if (!state) |
| return; |
| |
| // Get the string length of the source. |
| SVal strLength = getCStringLength(C, state, srcExpr, srcVal); |
| |
| // If the source isn't a valid C string, give up. |
| if (strLength.isUndef()) |
| return; |
| |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| QualType cmpTy = svalBuilder.getConditionType(); |
| QualType sizeTy = svalBuilder.getContext().getSizeType(); |
| |
| // These two values allow checking two kinds of errors: |
| // - actual overflows caused by a source that doesn't fit in the destination |
| // - potential overflows caused by a bound that could exceed the destination |
| SVal amountCopied = UnknownVal(); |
| SVal maxLastElementIndex = UnknownVal(); |
| const char *boundWarning = nullptr; |
| |
| state = CheckOverlap(C, state, isBounded ? CE->getArg(2) : CE->getArg(1), Dst, srcExpr); |
| |
| if (!state) |
| return; |
| |
| // If the function is strncpy, strncat, etc... it is bounded. |
| if (isBounded) { |
| // Get the max number of characters to copy. |
| const Expr *lenExpr = CE->getArg(2); |
| SVal lenVal = state->getSVal(lenExpr, LCtx); |
| |
| // Protect against misdeclared strncpy(). |
| lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); |
| |
| Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); |
| Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); |
| |
| // If we know both values, we might be able to figure out how much |
| // we're copying. |
| if (strLengthNL && lenValNL) { |
| ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; |
| |
| // Check if the max number to copy is less than the length of the src. |
| // If the bound is equal to the source length, strncpy won't null- |
| // terminate the result! |
| std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( |
| svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) |
| .castAs<DefinedOrUnknownSVal>()); |
| |
| if (stateSourceTooLong && !stateSourceNotTooLong) { |
| // Max number to copy is less than the length of the src, so the actual |
| // strLength copied is the max number arg. |
| state = stateSourceTooLong; |
| amountCopied = lenVal; |
| |
| } else if (!stateSourceTooLong && stateSourceNotTooLong) { |
| // The source buffer entirely fits in the bound. |
| state = stateSourceNotTooLong; |
| amountCopied = strLength; |
| } |
| } |
| |
| // We still want to know if the bound is known to be too large. |
| if (lenValNL) { |
| if (isAppending) { |
| // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) |
| |
| // Get the string length of the destination. If the destination is |
| // memory that can't have a string length, we shouldn't be copying |
| // into it anyway. |
| SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); |
| if (dstStrLength.isUndef()) |
| return; |
| |
| if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { |
| maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, |
| *lenValNL, |
| *dstStrLengthNL, |
| sizeTy); |
| boundWarning = "Size argument is greater than the free space in the " |
| "destination buffer"; |
| } |
| |
| } else { |
| // For strncpy, this is just checking that lenVal <= sizeof(dst) |
| // (Yes, strncpy and strncat differ in how they treat termination. |
| // strncat ALWAYS terminates, but strncpy doesn't.) |
| |
| // We need a special case for when the copy size is zero, in which |
| // case strncpy will do no work at all. Our bounds check uses n-1 |
| // as the last element accessed, so n == 0 is problematic. |
| ProgramStateRef StateZeroSize, StateNonZeroSize; |
| std::tie(StateZeroSize, StateNonZeroSize) = |
| assumeZero(C, state, *lenValNL, sizeTy); |
| |
| // If the size is known to be zero, we're done. |
| if (StateZeroSize && !StateNonZeroSize) { |
| if (returnPtr) { |
| StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); |
| } else { |
| StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, *lenValNL); |
| } |
| C.addTransition(StateZeroSize); |
| return; |
| } |
| |
| // Otherwise, go ahead and figure out the last element we'll touch. |
| // We don't record the non-zero assumption here because we can't |
| // be sure. We won't warn on a possible zero. |
| NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); |
| maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, |
| one, sizeTy); |
| boundWarning = "Size argument is greater than the length of the " |
| "destination buffer"; |
| } |
| } |
| |
| // If we couldn't pin down the copy length, at least bound it. |
| // FIXME: We should actually run this code path for append as well, but |
| // right now it creates problems with constraints (since we can end up |
| // trying to pass constraints from symbol to symbol). |
| if (amountCopied.isUnknown() && !isAppending) { |
| // Try to get a "hypothetical" string length symbol, which we can later |
| // set as a real value if that turns out to be the case. |
| amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); |
| assert(!amountCopied.isUndef()); |
| |
| if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { |
| if (lenValNL) { |
| // amountCopied <= lenVal |
| SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, |
| *amountCopiedNL, |
| *lenValNL, |
| cmpTy); |
| state = state->assume( |
| copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); |
| if (!state) |
| return; |
| } |
| |
| if (strLengthNL) { |
| // amountCopied <= strlen(source) |
| SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, |
| *amountCopiedNL, |
| *strLengthNL, |
| cmpTy); |
| state = state->assume( |
| copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); |
| if (!state) |
| return; |
| } |
| } |
| } |
| |
| } else { |
| // The function isn't bounded. The amount copied should match the length |
| // of the source buffer. |
| amountCopied = strLength; |
| } |
| |
| assert(state); |
| |
| // This represents the number of characters copied into the destination |
| // buffer. (It may not actually be the strlen if the destination buffer |
| // is not terminated.) |
| SVal finalStrLength = UnknownVal(); |
| |
| // If this is an appending function (strcat, strncat...) then set the |
| // string length to strlen(src) + strlen(dst) since the buffer will |
| // ultimately contain both. |
| if (isAppending) { |
| // Get the string length of the destination. If the destination is memory |
| // that can't have a string length, we shouldn't be copying into it anyway. |
| SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); |
| if (dstStrLength.isUndef()) |
| return; |
| |
| Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); |
| Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); |
| |
| // If we know both string lengths, we might know the final string length. |
| if (srcStrLengthNL && dstStrLengthNL) { |
| // Make sure the two lengths together don't overflow a size_t. |
| state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); |
| if (!state) |
| return; |
| |
| finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, |
| *dstStrLengthNL, sizeTy); |
| } |
| |
| // If we couldn't get a single value for the final string length, |
| // we can at least bound it by the individual lengths. |
| if (finalStrLength.isUnknown()) { |
| // Try to get a "hypothetical" string length symbol, which we can later |
| // set as a real value if that turns out to be the case. |
| finalStrLength = getCStringLength(C, state, CE, DstVal, true); |
| assert(!finalStrLength.isUndef()); |
| |
| if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { |
| if (srcStrLengthNL) { |
| // finalStrLength >= srcStrLength |
| SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, |
| *finalStrLengthNL, |
| *srcStrLengthNL, |
| cmpTy); |
| state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), |
| true); |
| if (!state) |
| return; |
| } |
| |
| if (dstStrLengthNL) { |
| // finalStrLength >= dstStrLength |
| SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, |
| *finalStrLengthNL, |
| *dstStrLengthNL, |
| cmpTy); |
| state = |
| state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); |
| if (!state) |
| return; |
| } |
| } |
| } |
| |
| } else { |
| // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and |
| // the final string length will match the input string length. |
| finalStrLength = amountCopied; |
| } |
| |
| SVal Result; |
| |
| if (returnPtr) { |
| // The final result of the function will either be a pointer past the last |
| // copied element, or a pointer to the start of the destination buffer. |
| Result = (returnEnd ? UnknownVal() : DstVal); |
| } else { |
| Result = finalStrLength; |
| } |
| |
| assert(state); |
| |
| // If the destination is a MemRegion, try to check for a buffer overflow and |
| // record the new string length. |
| if (Optional<loc::MemRegionVal> dstRegVal = |
| DstVal.getAs<loc::MemRegionVal>()) { |
| QualType ptrTy = Dst->getType(); |
| |
| // If we have an exact value on a bounded copy, use that to check for |
| // overflows, rather than our estimate about how much is actually copied. |
| if (boundWarning) { |
| if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { |
| SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, |
| *maxLastNL, ptrTy); |
| state = CheckLocation(C, state, CE->getArg(2), maxLastElement, |
| boundWarning); |
| if (!state) |
| return; |
| } |
| } |
| |
| // Then, if the final length is known... |
| if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { |
| SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, |
| *knownStrLength, ptrTy); |
| |
| // ...and we haven't checked the bound, we'll check the actual copy. |
| if (!boundWarning) { |
| const char * const warningMsg = |
| "String copy function overflows destination buffer"; |
| state = CheckLocation(C, state, Dst, lastElement, warningMsg); |
| if (!state) |
| return; |
| } |
| |
| // If this is a stpcpy-style copy, the last element is the return value. |
| if (returnPtr && returnEnd) |
| Result = lastElement; |
| } |
| |
| // Invalidate the destination (regular invalidation without pointer-escaping |
| // the address of the top-level region). This must happen before we set the |
| // C string length because invalidation will clear the length. |
| // FIXME: Even if we can't perfectly model the copy, we should see if we |
| // can use LazyCompoundVals to copy the source values into the destination. |
| // This would probably remove any existing bindings past the end of the |
| // string, but that's still an improvement over blank invalidation. |
| state = InvalidateBuffer(C, state, Dst, *dstRegVal, |
| /*IsSourceBuffer*/false, nullptr); |
| |
| // Invalidate the source (const-invalidation without const-pointer-escaping |
| // the address of the top-level region). |
| state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, |
| nullptr); |
| |
| // Set the C string length of the destination, if we know it. |
| if (isBounded && !isAppending) { |
| // strncpy is annoying in that it doesn't guarantee to null-terminate |
| // the result string. If the original string didn't fit entirely inside |
| // the bound (including the null-terminator), we don't know how long the |
| // result is. |
| if (amountCopied != strLength) |
| finalStrLength = UnknownVal(); |
| } |
| state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); |
| } |
| |
| assert(state); |
| |
| if (returnPtr) { |
| // If this is a stpcpy-style copy, but we were unable to check for a buffer |
| // overflow, we still need a result. Conjure a return value. |
| if (returnEnd && Result.isUnknown()) { |
| Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); |
| } |
| } |
| // Set the return value. |
| state = state->BindExpr(CE, LCtx, Result); |
| C.addTransition(state); |
| } |
| |
| void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { |
| //int strcmp(const char *s1, const char *s2); |
| evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); |
| } |
| |
| void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { |
| //int strncmp(const char *s1, const char *s2, size_t n); |
| evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); |
| } |
| |
| void CStringChecker::evalStrcasecmp(CheckerContext &C, |
| const CallExpr *CE) const { |
| //int strcasecmp(const char *s1, const char *s2); |
| evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); |
| } |
| |
| void CStringChecker::evalStrncasecmp(CheckerContext &C, |
| const CallExpr *CE) const { |
| //int strncasecmp(const char *s1, const char *s2, size_t n); |
| evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); |
| } |
| |
| void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, |
| bool isBounded, bool ignoreCase) const { |
| CurrentFunctionDescription = "string comparison function"; |
| ProgramStateRef state = C.getState(); |
| const LocationContext *LCtx = C.getLocationContext(); |
| |
| // Check that the first string is non-null |
| const Expr *s1 = CE->getArg(0); |
| SVal s1Val = state->getSVal(s1, LCtx); |
| state = checkNonNull(C, state, s1, s1Val, 1); |
| if (!state) |
| return; |
| |
| // Check that the second string is non-null. |
| const Expr *s2 = CE->getArg(1); |
| SVal s2Val = state->getSVal(s2, LCtx); |
| state = checkNonNull(C, state, s2, s2Val, 2); |
| if (!state) |
| return; |
| |
| // Get the string length of the first string or give up. |
| SVal s1Length = getCStringLength(C, state, s1, s1Val); |
| if (s1Length.isUndef()) |
| return; |
| |
| // Get the string length of the second string or give up. |
| SVal s2Length = getCStringLength(C, state, s2, s2Val); |
| if (s2Length.isUndef()) |
| return; |
| |
| // If we know the two buffers are the same, we know the result is 0. |
| // First, get the two buffers' addresses. Another checker will have already |
| // made sure they're not undefined. |
| DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); |
| DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); |
| |
| // See if they are the same. |
| SValBuilder &svalBuilder = C.getSValBuilder(); |
| DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); |
| ProgramStateRef StSameBuf, StNotSameBuf; |
| std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); |
| |
| // If the two arguments might be the same buffer, we know the result is 0, |
| // and we only need to check one size. |
| if (StSameBuf) { |
| StSameBuf = StSameBuf->BindExpr(CE, LCtx, |
| svalBuilder.makeZeroVal(CE->getType())); |
| C.addTransition(StSameBuf); |
| |
| // If the two arguments are GUARANTEED to be the same, we're done! |
| if (!StNotSameBuf) |
| return; |
| } |
| |
| assert(StNotSameBuf); |
| state = StNotSameBuf; |
| |
| // At this point we can go about comparing the two buffers. |
| // For now, we only do this if they're both known string literals. |
| |
| // Attempt to extract string literals from both expressions. |
| const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); |
| const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); |
| bool canComputeResult = false; |
| SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, |
| C.blockCount()); |
| |
| if (s1StrLiteral && s2StrLiteral) { |
| StringRef s1StrRef = s1StrLiteral->getString(); |
| StringRef s2StrRef = s2StrLiteral->getString(); |
| |
| if (isBounded) { |
| // Get the max number of characters to compare. |
| const Expr *lenExpr = CE->getArg(2); |
| SVal lenVal = state->getSVal(lenExpr, LCtx); |
| |
| // If the length is known, we can get the right substrings. |
| if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { |
| // Create substrings of each to compare the prefix. |
| s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); |
| s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); |
| canComputeResult = true; |
| } |
| } else { |
| // This is a normal, unbounded strcmp. |
| canComputeResult = true; |
| } |
| |
| if (canComputeResult) { |
| // Real strcmp stops at null characters. |
| size_t s1Term = s1StrRef.find('\0'); |
| if (s1Term != StringRef::npos) |
| s1StrRef = s1StrRef.substr(0, s1Term); |
| |
| size_t s2Term = s2StrRef.find('\0'); |
| if (s2Term != StringRef::npos) |
| s2StrRef = s2StrRef.substr(0, s2Term); |
| |
| // Use StringRef's comparison methods to compute the actual result. |
| int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) |
| : s1StrRef.compare(s2StrRef); |
| |
| // The strcmp function returns an integer greater than, equal to, or less |
| // than zero, [c11, p7.24.4.2]. |
| if (compareRes == 0) { |
| resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); |
| } |
| else { |
| DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); |
| // Constrain strcmp's result range based on the result of StringRef's |
| // comparison methods. |
| BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; |
| SVal compareWithZero = |
| svalBuilder.evalBinOp(state, op, resultVal, zeroVal, |
| svalBuilder.getConditionType()); |
| DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); |
| state = state->assume(compareWithZeroVal, true); |
| } |
| } |
| } |
| |
| state = state->BindExpr(CE, LCtx, resultVal); |
| |
| // Record this as a possible path. |
| C.addTransition(state); |
| } |
| |
| void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { |
| //char *strsep(char **stringp, const char *delim); |
| // Sanity: does the search string parameter match the return type? |
| const Expr *SearchStrPtr = CE->getArg(0); |
| QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); |
| if (CharPtrTy.isNull() || |
| CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) |
| return; |
| |
| CurrentFunctionDescription = "strsep()"; |
| ProgramStateRef State = C.getState(); |
| const LocationContext *LCtx = C.getLocationContext(); |
| |
| // Check that the search string pointer is non-null (though it may point to |
| // a null string). |
| SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); |
| State = checkNonNull(C, State, SearchStrPtr, SearchStrVal, 1); |
| if (!State) |
| return; |
| |
| // Check that the delimiter string is non-null. |
| const Expr *DelimStr = CE->getArg(1); |
| SVal DelimStrVal = State->getSVal(DelimStr, LCtx); |
| State = checkNonNull(C, State, DelimStr, DelimStrVal, 2); |
| if (!State) |
| return; |
| |
| SValBuilder &SVB = C.getSValBuilder(); |
| SVal Result; |
| if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { |
| // Get the current value of the search string pointer, as a char*. |
| Result = State->getSVal(*SearchStrLoc, CharPtrTy); |
| |
| // Invalidate the search string, representing the change of one delimiter |
| // character to NUL. |
| State = InvalidateBuffer(C, State, SearchStrPtr, Result, |
| /*IsSourceBuffer*/false, nullptr); |
| |
| // Overwrite the search string pointer. The new value is either an address |
| // further along in the same string, or NULL if there are no more tokens. |
| State = State->bindLoc(*SearchStrLoc, |
| SVB.conjureSymbolVal(getTag(), |
| CE, |
| LCtx, |
| CharPtrTy, |
| C.blockCount()), |
| LCtx); |
| } else { |
| assert(SearchStrVal.isUnknown()); |
| // Conjure a symbolic value. It's the best we can do. |
| Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); |
| } |
| |
| // Set the return value, and finish. |
| State = State->BindExpr(CE, LCtx, Result); |
| C.addTransition(State); |
| } |
| |
| // These should probably be moved into a C++ standard library checker. |
| void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { |
| evalStdCopyCommon(C, CE); |
| } |
| |
| void CStringChecker::evalStdCopyBackward(CheckerContext &C, |
| const CallExpr *CE) const { |
| evalStdCopyCommon(C, CE); |
| } |
| |
| void CStringChecker::evalStdCopyCommon(CheckerContext &C, |
| const CallExpr *CE) const { |
| if (!CE->getArg(2)->getType()->isPointerType()) |
| return; |
| |
| ProgramStateRef State = C.getState(); |
| |
| const LocationContext *LCtx = C.getLocationContext(); |
| |
| // template <class _InputIterator, class _OutputIterator> |
| // _OutputIterator |
| // copy(_InputIterator __first, _InputIterator __last, |
| // _OutputIterator __result) |
| |
| // Invalidate the destination buffer |
| const Expr *Dst = CE->getArg(2); |
| SVal DstVal = State->getSVal(Dst, LCtx); |
| State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, |
| /*Size=*/nullptr); |
| |
| SValBuilder &SVB = C.getSValBuilder(); |
| |
| SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); |
| State = State->BindExpr(CE, LCtx, ResultVal); |
| |
| C.addTransition(State); |
| } |
| |
| void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { |
| CurrentFunctionDescription = "memory set function"; |
| |
| const Expr *Mem = CE->getArg(0); |
| const Expr *CharE = CE->getArg(1); |
| const Expr *Size = CE->getArg(2); |
| ProgramStateRef State = C.getState(); |
| |
| // See if the size argument is zero. |
| const LocationContext *LCtx = C.getLocationContext(); |
| SVal SizeVal = State->getSVal(Size, LCtx); |
| QualType SizeTy = Size->getType(); |
| |
| ProgramStateRef StateZeroSize, StateNonZeroSize; |
| std::tie(StateZeroSize, StateNonZeroSize) = |
| assumeZero(C, State, SizeVal, SizeTy); |
| |
| // Get the value of the memory area. |
| SVal MemVal = State->getSVal(Mem, LCtx); |
| |
| // If the size is zero, there won't be any actual memory access, so |
| // just bind the return value to the Mem buffer and return. |
| if (StateZeroSize && !StateNonZeroSize) { |
| StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); |
| C.addTransition(StateZeroSize); |
| return; |
| } |
| |
| // Ensure the memory area is not null. |
| // If it is NULL there will be a NULL pointer dereference. |
| State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); |
| if (!State) |
| return; |
| |
| State = CheckBufferAccess(C, State, Size, Mem); |
| if (!State) |
| return; |
| |
| // According to the values of the arguments, bind the value of the second |
| // argument to the destination buffer and set string length, or just |
| // invalidate the destination buffer. |
| if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State)) |
| return; |
| |
| State = State->BindExpr(CE, LCtx, MemVal); |
| C.addTransition(State); |
| } |
| |
| void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { |
| CurrentFunctionDescription = "memory clearance function"; |
| |
| const Expr *Mem = CE->getArg(0); |
| const Expr *Size = CE->getArg(1); |
| SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); |
| |
| ProgramStateRef State = C.getState(); |
| |
| // See if the size argument is zero. |
| SVal SizeVal = C.getSVal(Size); |
| QualType SizeTy = Size->getType(); |
| |
| ProgramStateRef StateZeroSize, StateNonZeroSize; |
| std::tie(StateZeroSize, StateNonZeroSize) = |
| assumeZero(C, State, SizeVal, SizeTy); |
| |
| // If the size is zero, there won't be any actual memory access, |
| // In this case we just return. |
| if (StateZeroSize && !StateNonZeroSize) { |
| C.addTransition(StateZeroSize); |
| return; |
| } |
| |
| // Get the value of the memory area. |
| SVal MemVal = C.getSVal(Mem); |
| |
| // Ensure the memory area is not null. |
| // If it is NULL there will be a NULL pointer dereference. |
| State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); |
| if (!State) |
| return; |
| |
| State = CheckBufferAccess(C, State, Size, Mem); |
| if (!State) |
| return; |
| |
| if (!memsetAux(Mem, Zero, Size, C, State)) |
| return; |
| |
| C.addTransition(State); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // The driver method, and other Checker callbacks. |
| //===----------------------------------------------------------------------===// |
| |
| CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, |
| CheckerContext &C) const { |
| const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); |
| if (!CE) |
| return nullptr; |
| |
| const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); |
| if (!FD) |
| return nullptr; |
| |
| if (Call.isCalled(StdCopy)) { |
| return &CStringChecker::evalStdCopy; |
| } else if (Call.isCalled(StdCopyBackward)) { |
| return &CStringChecker::evalStdCopyBackward; |
| } |
| |
| // Pro-actively check that argument types are safe to do arithmetic upon. |
| // We do not want to crash if someone accidentally passes a structure |
| // into, say, a C++ overload of any of these functions. We could not check |
| // that for std::copy because they may have arguments of other types. |
| for (auto I : CE->arguments()) { |
| QualType T = I->getType(); |
| if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) |
| return nullptr; |
| } |
| |
| const FnCheck *Callback = Callbacks.lookup(Call); |
| if (Callback) |
| return *Callback; |
| |
| return nullptr; |
| } |
| |
| bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { |
| FnCheck Callback = identifyCall(Call, C); |
| |
| // If the callee isn't a string function, let another checker handle it. |
| if (!Callback) |
| return false; |
| |
| // Check and evaluate the call. |
| const auto *CE = cast<CallExpr>(Call.getOriginExpr()); |
| (this->*Callback)(C, CE); |
| |
| // If the evaluate call resulted in no change, chain to the next eval call |
| // handler. |
| // Note, the custom CString evaluation calls assume that basic safety |
| // properties are held. However, if the user chooses to turn off some of these |
| // checks, we ignore the issues and leave the call evaluation to a generic |
| // handler. |
| return C.isDifferent(); |
| } |
| |
| void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { |
| // Record string length for char a[] = "abc"; |
| ProgramStateRef state = C.getState(); |
| |
| for (const auto *I : DS->decls()) { |
| const VarDecl *D = dyn_cast<VarDecl>(I); |
| if (!D) |
| continue; |
| |
| // FIXME: Handle array fields of structs. |
| if (!D->getType()->isArrayType()) |
| continue; |
| |
| const Expr *Init = D->getInit(); |
| if (!Init) |
| continue; |
| if (!isa<StringLiteral>(Init)) |
| continue; |
| |
| Loc VarLoc = state->getLValue(D, C.getLocationContext()); |
| const MemRegion *MR = VarLoc.getAsRegion(); |
| if (!MR) |
| continue; |
| |
| SVal StrVal = C.getSVal(Init); |
| assert(StrVal.isValid() && "Initializer string is unknown or undefined"); |
| DefinedOrUnknownSVal strLength = |
| getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); |
| |
| state = state->set<CStringLength>(MR, strLength); |
| } |
| |
| C.addTransition(state); |
| } |
| |
| ProgramStateRef |
| CStringChecker::checkRegionChanges(ProgramStateRef state, |
| const InvalidatedSymbols *, |
| ArrayRef<const MemRegion *> ExplicitRegions, |
| ArrayRef<const MemRegion *> Regions, |
| const LocationContext *LCtx, |
| const CallEvent *Call) const { |
| CStringLengthTy Entries = state->get<CStringLength>(); |
| if (Entries.isEmpty()) |
| return state; |
| |
| llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; |
| llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; |
| |
| // First build sets for the changed regions and their super-regions. |
| for (ArrayRef<const MemRegion *>::iterator |
| I = Regions.begin(), E = Regions.end(); I != E; ++I) { |
| const MemRegion *MR = *I; |
| Invalidated.insert(MR); |
| |
| SuperRegions.insert(MR); |
| while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { |
| MR = SR->getSuperRegion(); |
| SuperRegions.insert(MR); |
| } |
| } |
| |
| CStringLengthTy::Factory &F = state->get_context<CStringLength>(); |
| |
| // Then loop over the entries in the current state. |
| for (CStringLengthTy::iterator I = Entries.begin(), |
| E = Entries.end(); I != E; ++I) { |
| const MemRegion *MR = I.getKey(); |
| |
| // Is this entry for a super-region of a changed region? |
| if (SuperRegions.count(MR)) { |
| Entries = F.remove(Entries, MR); |
| continue; |
| } |
| |
| // Is this entry for a sub-region of a changed region? |
| const MemRegion *Super = MR; |
| while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { |
| Super = SR->getSuperRegion(); |
| if (Invalidated.count(Super)) { |
| Entries = F.remove(Entries, MR); |
| break; |
| } |
| } |
| } |
| |
| return state->set<CStringLength>(Entries); |
| } |
| |
| void CStringChecker::checkLiveSymbols(ProgramStateRef state, |
| SymbolReaper &SR) const { |
| // Mark all symbols in our string length map as valid. |
| CStringLengthTy Entries = state->get<CStringLength>(); |
| |
| for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); |
| I != E; ++I) { |
| SVal Len = I.getData(); |
| |
| for (SymExpr::symbol_iterator si = Len.symbol_begin(), |
| se = Len.symbol_end(); si != se; ++si) |
| SR.markInUse(*si); |
| } |
| } |
| |
| void CStringChecker::checkDeadSymbols(SymbolReaper &SR, |
| CheckerContext &C) const { |
| ProgramStateRef state = C.getState(); |
| CStringLengthTy Entries = state->get<CStringLength>(); |
| if (Entries.isEmpty()) |
| return; |
| |
| CStringLengthTy::Factory &F = state->get_context<CStringLength>(); |
| for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); |
| I != E; ++I) { |
| SVal Len = I.getData(); |
| if (SymbolRef Sym = Len.getAsSymbol()) { |
| if (SR.isDead(Sym)) |
| Entries = F.remove(Entries, I.getKey()); |
| } |
| } |
| |
| state = state->set<CStringLength>(Entries); |
| C.addTransition(state); |
| } |
| |
| void ento::registerCStringModeling(CheckerManager &Mgr) { |
| Mgr.registerChecker<CStringChecker>(); |
| } |
| |
| bool ento::shouldRegisterCStringModeling(const LangOptions &LO) { |
| return true; |
| } |
| |
| #define REGISTER_CHECKER(name) \ |
| void ento::register##name(CheckerManager &mgr) { \ |
| CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ |
| checker->Filter.Check##name = true; \ |
| checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ |
| } \ |
| \ |
| bool ento::shouldRegister##name(const LangOptions &LO) { return true; } |
| |
| REGISTER_CHECKER(CStringNullArg) |
| REGISTER_CHECKER(CStringOutOfBounds) |
| REGISTER_CHECKER(CStringBufferOverlap) |
| REGISTER_CHECKER(CStringNotNullTerm) |