| //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Decl subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/Decl.h" |
| #include "Linkage.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/CanonicalType.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DeclarationName.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExternalASTSource.h" |
| #include "clang/AST/ODRHash.h" |
| #include "clang/AST/PrettyDeclStackTrace.h" |
| #include "clang/AST/PrettyPrinter.h" |
| #include "clang/AST/Redeclarable.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/TemplateBase.h" |
| #include "clang/AST/Type.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/Linkage.h" |
| #include "clang/Basic/Module.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SanitizerBlacklist.h" |
| #include "clang/Basic/Sanitizers.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Basic/TargetCXXABI.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/Visibility.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstring> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| |
| using namespace clang; |
| |
| Decl *clang::getPrimaryMergedDecl(Decl *D) { |
| return D->getASTContext().getPrimaryMergedDecl(D); |
| } |
| |
| void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { |
| SourceLocation Loc = this->Loc; |
| if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); |
| if (Loc.isValid()) { |
| Loc.print(OS, Context.getSourceManager()); |
| OS << ": "; |
| } |
| OS << Message; |
| |
| if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { |
| OS << " '"; |
| ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); |
| OS << "'"; |
| } |
| |
| OS << '\n'; |
| } |
| |
| // Defined here so that it can be inlined into its direct callers. |
| bool Decl::isOutOfLine() const { |
| return !getLexicalDeclContext()->Equals(getDeclContext()); |
| } |
| |
| TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) |
| : Decl(TranslationUnit, nullptr, SourceLocation()), |
| DeclContext(TranslationUnit), Ctx(ctx) {} |
| |
| //===----------------------------------------------------------------------===// |
| // NamedDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Visibility rules aren't rigorously externally specified, but here |
| // are the basic principles behind what we implement: |
| // |
| // 1. An explicit visibility attribute is generally a direct expression |
| // of the user's intent and should be honored. Only the innermost |
| // visibility attribute applies. If no visibility attribute applies, |
| // global visibility settings are considered. |
| // |
| // 2. There is one caveat to the above: on or in a template pattern, |
| // an explicit visibility attribute is just a default rule, and |
| // visibility can be decreased by the visibility of template |
| // arguments. But this, too, has an exception: an attribute on an |
| // explicit specialization or instantiation causes all the visibility |
| // restrictions of the template arguments to be ignored. |
| // |
| // 3. A variable that does not otherwise have explicit visibility can |
| // be restricted by the visibility of its type. |
| // |
| // 4. A visibility restriction is explicit if it comes from an |
| // attribute (or something like it), not a global visibility setting. |
| // When emitting a reference to an external symbol, visibility |
| // restrictions are ignored unless they are explicit. |
| // |
| // 5. When computing the visibility of a non-type, including a |
| // non-type member of a class, only non-type visibility restrictions |
| // are considered: the 'visibility' attribute, global value-visibility |
| // settings, and a few special cases like __private_extern. |
| // |
| // 6. When computing the visibility of a type, including a type member |
| // of a class, only type visibility restrictions are considered: |
| // the 'type_visibility' attribute and global type-visibility settings. |
| // However, a 'visibility' attribute counts as a 'type_visibility' |
| // attribute on any declaration that only has the former. |
| // |
| // The visibility of a "secondary" entity, like a template argument, |
| // is computed using the kind of that entity, not the kind of the |
| // primary entity for which we are computing visibility. For example, |
| // the visibility of a specialization of either of these templates: |
| // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); |
| // template <class T, bool (&compare)(T, X)> class matcher; |
| // is restricted according to the type visibility of the argument 'T', |
| // the type visibility of 'bool(&)(T,X)', and the value visibility of |
| // the argument function 'compare'. That 'has_match' is a value |
| // and 'matcher' is a type only matters when looking for attributes |
| // and settings from the immediate context. |
| |
| /// Does this computation kind permit us to consider additional |
| /// visibility settings from attributes and the like? |
| static bool hasExplicitVisibilityAlready(LVComputationKind computation) { |
| return computation.IgnoreExplicitVisibility; |
| } |
| |
| /// Given an LVComputationKind, return one of the same type/value sort |
| /// that records that it already has explicit visibility. |
| static LVComputationKind |
| withExplicitVisibilityAlready(LVComputationKind Kind) { |
| Kind.IgnoreExplicitVisibility = true; |
| return Kind; |
| } |
| |
| static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, |
| LVComputationKind kind) { |
| assert(!kind.IgnoreExplicitVisibility && |
| "asking for explicit visibility when we shouldn't be"); |
| return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); |
| } |
| |
| /// Is the given declaration a "type" or a "value" for the purposes of |
| /// visibility computation? |
| static bool usesTypeVisibility(const NamedDecl *D) { |
| return isa<TypeDecl>(D) || |
| isa<ClassTemplateDecl>(D) || |
| isa<ObjCInterfaceDecl>(D); |
| } |
| |
| /// Does the given declaration have member specialization information, |
| /// and if so, is it an explicit specialization? |
| template <class T> static typename |
| std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type |
| isExplicitMemberSpecialization(const T *D) { |
| if (const MemberSpecializationInfo *member = |
| D->getMemberSpecializationInfo()) { |
| return member->isExplicitSpecialization(); |
| } |
| return false; |
| } |
| |
| /// For templates, this question is easier: a member template can't be |
| /// explicitly instantiated, so there's a single bit indicating whether |
| /// or not this is an explicit member specialization. |
| static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { |
| return D->isMemberSpecialization(); |
| } |
| |
| /// Given a visibility attribute, return the explicit visibility |
| /// associated with it. |
| template <class T> |
| static Visibility getVisibilityFromAttr(const T *attr) { |
| switch (attr->getVisibility()) { |
| case T::Default: |
| return DefaultVisibility; |
| case T::Hidden: |
| return HiddenVisibility; |
| case T::Protected: |
| return ProtectedVisibility; |
| } |
| llvm_unreachable("bad visibility kind"); |
| } |
| |
| /// Return the explicit visibility of the given declaration. |
| static Optional<Visibility> getVisibilityOf(const NamedDecl *D, |
| NamedDecl::ExplicitVisibilityKind kind) { |
| // If we're ultimately computing the visibility of a type, look for |
| // a 'type_visibility' attribute before looking for 'visibility'. |
| if (kind == NamedDecl::VisibilityForType) { |
| if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { |
| return getVisibilityFromAttr(A); |
| } |
| } |
| |
| // If this declaration has an explicit visibility attribute, use it. |
| if (const auto *A = D->getAttr<VisibilityAttr>()) { |
| return getVisibilityFromAttr(A); |
| } |
| |
| return None; |
| } |
| |
| LinkageInfo LinkageComputer::getLVForType(const Type &T, |
| LVComputationKind computation) { |
| if (computation.IgnoreAllVisibility) |
| return LinkageInfo(T.getLinkage(), DefaultVisibility, true); |
| return getTypeLinkageAndVisibility(&T); |
| } |
| |
| /// Get the most restrictive linkage for the types in the given |
| /// template parameter list. For visibility purposes, template |
| /// parameters are part of the signature of a template. |
| LinkageInfo LinkageComputer::getLVForTemplateParameterList( |
| const TemplateParameterList *Params, LVComputationKind computation) { |
| LinkageInfo LV; |
| for (const NamedDecl *P : *Params) { |
| // Template type parameters are the most common and never |
| // contribute to visibility, pack or not. |
| if (isa<TemplateTypeParmDecl>(P)) |
| continue; |
| |
| // Non-type template parameters can be restricted by the value type, e.g. |
| // template <enum X> class A { ... }; |
| // We have to be careful here, though, because we can be dealing with |
| // dependent types. |
| if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { |
| // Handle the non-pack case first. |
| if (!NTTP->isExpandedParameterPack()) { |
| if (!NTTP->getType()->isDependentType()) { |
| LV.merge(getLVForType(*NTTP->getType(), computation)); |
| } |
| continue; |
| } |
| |
| // Look at all the types in an expanded pack. |
| for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { |
| QualType type = NTTP->getExpansionType(i); |
| if (!type->isDependentType()) |
| LV.merge(getTypeLinkageAndVisibility(type)); |
| } |
| continue; |
| } |
| |
| // Template template parameters can be restricted by their |
| // template parameters, recursively. |
| const auto *TTP = cast<TemplateTemplateParmDecl>(P); |
| |
| // Handle the non-pack case first. |
| if (!TTP->isExpandedParameterPack()) { |
| LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), |
| computation)); |
| continue; |
| } |
| |
| // Look at all expansions in an expanded pack. |
| for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); |
| i != n; ++i) { |
| LV.merge(getLVForTemplateParameterList( |
| TTP->getExpansionTemplateParameters(i), computation)); |
| } |
| } |
| |
| return LV; |
| } |
| |
| static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { |
| const Decl *Ret = nullptr; |
| const DeclContext *DC = D->getDeclContext(); |
| while (DC->getDeclKind() != Decl::TranslationUnit) { |
| if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) |
| Ret = cast<Decl>(DC); |
| DC = DC->getParent(); |
| } |
| return Ret; |
| } |
| |
| /// Get the most restrictive linkage for the types and |
| /// declarations in the given template argument list. |
| /// |
| /// Note that we don't take an LVComputationKind because we always |
| /// want to honor the visibility of template arguments in the same way. |
| LinkageInfo |
| LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, |
| LVComputationKind computation) { |
| LinkageInfo LV; |
| |
| for (const TemplateArgument &Arg : Args) { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Expression: |
| continue; |
| |
| case TemplateArgument::Type: |
| LV.merge(getLVForType(*Arg.getAsType(), computation)); |
| continue; |
| |
| case TemplateArgument::Declaration: { |
| const NamedDecl *ND = Arg.getAsDecl(); |
| assert(!usesTypeVisibility(ND)); |
| LV.merge(getLVForDecl(ND, computation)); |
| continue; |
| } |
| |
| case TemplateArgument::NullPtr: |
| LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); |
| continue; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| if (TemplateDecl *Template = |
| Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) |
| LV.merge(getLVForDecl(Template, computation)); |
| continue; |
| |
| case TemplateArgument::Pack: |
| LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); |
| continue; |
| } |
| llvm_unreachable("bad template argument kind"); |
| } |
| |
| return LV; |
| } |
| |
| LinkageInfo |
| LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, |
| LVComputationKind computation) { |
| return getLVForTemplateArgumentList(TArgs.asArray(), computation); |
| } |
| |
| static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, |
| const FunctionTemplateSpecializationInfo *specInfo) { |
| // Include visibility from the template parameters and arguments |
| // only if this is not an explicit instantiation or specialization |
| // with direct explicit visibility. (Implicit instantiations won't |
| // have a direct attribute.) |
| if (!specInfo->isExplicitInstantiationOrSpecialization()) |
| return true; |
| |
| return !fn->hasAttr<VisibilityAttr>(); |
| } |
| |
| /// Merge in template-related linkage and visibility for the given |
| /// function template specialization. |
| /// |
| /// We don't need a computation kind here because we can assume |
| /// LVForValue. |
| /// |
| /// \param[out] LV the computation to use for the parent |
| void LinkageComputer::mergeTemplateLV( |
| LinkageInfo &LV, const FunctionDecl *fn, |
| const FunctionTemplateSpecializationInfo *specInfo, |
| LVComputationKind computation) { |
| bool considerVisibility = |
| shouldConsiderTemplateVisibility(fn, specInfo); |
| |
| // Merge information from the template parameters. |
| FunctionTemplateDecl *temp = specInfo->getTemplate(); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, considerVisibility); |
| |
| // Merge information from the template arguments. |
| const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; |
| LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); |
| LV.mergeMaybeWithVisibility(argsLV, considerVisibility); |
| } |
| |
| /// Does the given declaration have a direct visibility attribute |
| /// that would match the given rules? |
| static bool hasDirectVisibilityAttribute(const NamedDecl *D, |
| LVComputationKind computation) { |
| if (computation.IgnoreAllVisibility) |
| return false; |
| |
| return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || |
| D->hasAttr<VisibilityAttr>(); |
| } |
| |
| /// Should we consider visibility associated with the template |
| /// arguments and parameters of the given class template specialization? |
| static bool shouldConsiderTemplateVisibility( |
| const ClassTemplateSpecializationDecl *spec, |
| LVComputationKind computation) { |
| // Include visibility from the template parameters and arguments |
| // only if this is not an explicit instantiation or specialization |
| // with direct explicit visibility (and note that implicit |
| // instantiations won't have a direct attribute). |
| // |
| // Furthermore, we want to ignore template parameters and arguments |
| // for an explicit specialization when computing the visibility of a |
| // member thereof with explicit visibility. |
| // |
| // This is a bit complex; let's unpack it. |
| // |
| // An explicit class specialization is an independent, top-level |
| // declaration. As such, if it or any of its members has an |
| // explicit visibility attribute, that must directly express the |
| // user's intent, and we should honor it. The same logic applies to |
| // an explicit instantiation of a member of such a thing. |
| |
| // Fast path: if this is not an explicit instantiation or |
| // specialization, we always want to consider template-related |
| // visibility restrictions. |
| if (!spec->isExplicitInstantiationOrSpecialization()) |
| return true; |
| |
| // This is the 'member thereof' check. |
| if (spec->isExplicitSpecialization() && |
| hasExplicitVisibilityAlready(computation)) |
| return false; |
| |
| return !hasDirectVisibilityAttribute(spec, computation); |
| } |
| |
| /// Merge in template-related linkage and visibility for the given |
| /// class template specialization. |
| void LinkageComputer::mergeTemplateLV( |
| LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, |
| LVComputationKind computation) { |
| bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); |
| |
| // Merge information from the template parameters, but ignore |
| // visibility if we're only considering template arguments. |
| |
| ClassTemplateDecl *temp = spec->getSpecializedTemplate(); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, |
| considerVisibility && !hasExplicitVisibilityAlready(computation)); |
| |
| // Merge information from the template arguments. We ignore |
| // template-argument visibility if we've got an explicit |
| // instantiation with a visibility attribute. |
| const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); |
| LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); |
| if (considerVisibility) |
| LV.mergeVisibility(argsLV); |
| LV.mergeExternalVisibility(argsLV); |
| } |
| |
| /// Should we consider visibility associated with the template |
| /// arguments and parameters of the given variable template |
| /// specialization? As usual, follow class template specialization |
| /// logic up to initialization. |
| static bool shouldConsiderTemplateVisibility( |
| const VarTemplateSpecializationDecl *spec, |
| LVComputationKind computation) { |
| // Include visibility from the template parameters and arguments |
| // only if this is not an explicit instantiation or specialization |
| // with direct explicit visibility (and note that implicit |
| // instantiations won't have a direct attribute). |
| if (!spec->isExplicitInstantiationOrSpecialization()) |
| return true; |
| |
| // An explicit variable specialization is an independent, top-level |
| // declaration. As such, if it has an explicit visibility attribute, |
| // that must directly express the user's intent, and we should honor |
| // it. |
| if (spec->isExplicitSpecialization() && |
| hasExplicitVisibilityAlready(computation)) |
| return false; |
| |
| return !hasDirectVisibilityAttribute(spec, computation); |
| } |
| |
| /// Merge in template-related linkage and visibility for the given |
| /// variable template specialization. As usual, follow class template |
| /// specialization logic up to initialization. |
| void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, |
| const VarTemplateSpecializationDecl *spec, |
| LVComputationKind computation) { |
| bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); |
| |
| // Merge information from the template parameters, but ignore |
| // visibility if we're only considering template arguments. |
| |
| VarTemplateDecl *temp = spec->getSpecializedTemplate(); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, |
| considerVisibility && !hasExplicitVisibilityAlready(computation)); |
| |
| // Merge information from the template arguments. We ignore |
| // template-argument visibility if we've got an explicit |
| // instantiation with a visibility attribute. |
| const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); |
| LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); |
| if (considerVisibility) |
| LV.mergeVisibility(argsLV); |
| LV.mergeExternalVisibility(argsLV); |
| } |
| |
| static bool useInlineVisibilityHidden(const NamedDecl *D) { |
| // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. |
| const LangOptions &Opts = D->getASTContext().getLangOpts(); |
| if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) |
| return false; |
| |
| const auto *FD = dyn_cast<FunctionDecl>(D); |
| if (!FD) |
| return false; |
| |
| TemplateSpecializationKind TSK = TSK_Undeclared; |
| if (FunctionTemplateSpecializationInfo *spec |
| = FD->getTemplateSpecializationInfo()) { |
| TSK = spec->getTemplateSpecializationKind(); |
| } else if (MemberSpecializationInfo *MSI = |
| FD->getMemberSpecializationInfo()) { |
| TSK = MSI->getTemplateSpecializationKind(); |
| } |
| |
| const FunctionDecl *Def = nullptr; |
| // InlineVisibilityHidden only applies to definitions, and |
| // isInlined() only gives meaningful answers on definitions |
| // anyway. |
| return TSK != TSK_ExplicitInstantiationDeclaration && |
| TSK != TSK_ExplicitInstantiationDefinition && |
| FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); |
| } |
| |
| template <typename T> static bool isFirstInExternCContext(T *D) { |
| const T *First = D->getFirstDecl(); |
| return First->isInExternCContext(); |
| } |
| |
| static bool isSingleLineLanguageLinkage(const Decl &D) { |
| if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) |
| if (!SD->hasBraces()) |
| return true; |
| return false; |
| } |
| |
| /// Determine whether D is declared in the purview of a named module. |
| static bool isInModulePurview(const NamedDecl *D) { |
| if (auto *M = D->getOwningModule()) |
| return M->isModulePurview(); |
| return false; |
| } |
| |
| static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { |
| // FIXME: Handle isModulePrivate. |
| switch (D->getModuleOwnershipKind()) { |
| case Decl::ModuleOwnershipKind::Unowned: |
| case Decl::ModuleOwnershipKind::ModulePrivate: |
| return false; |
| case Decl::ModuleOwnershipKind::Visible: |
| case Decl::ModuleOwnershipKind::VisibleWhenImported: |
| return isInModulePurview(D); |
| } |
| llvm_unreachable("unexpected module ownership kind"); |
| } |
| |
| static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { |
| // Internal linkage declarations within a module interface unit are modeled |
| // as "module-internal linkage", which means that they have internal linkage |
| // formally but can be indirectly accessed from outside the module via inline |
| // functions and templates defined within the module. |
| if (isInModulePurview(D)) |
| return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); |
| |
| return LinkageInfo::internal(); |
| } |
| |
| static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { |
| // C++ Modules TS [basic.link]/6.8: |
| // - A name declared at namespace scope that does not have internal linkage |
| // by the previous rules and that is introduced by a non-exported |
| // declaration has module linkage. |
| if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit( |
| cast<NamedDecl>(D->getCanonicalDecl()))) |
| return LinkageInfo(ModuleLinkage, DefaultVisibility, false); |
| |
| return LinkageInfo::external(); |
| } |
| |
| static StorageClass getStorageClass(const Decl *D) { |
| if (auto *TD = dyn_cast<TemplateDecl>(D)) |
| D = TD->getTemplatedDecl(); |
| if (D) { |
| if (auto *VD = dyn_cast<VarDecl>(D)) |
| return VD->getStorageClass(); |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) |
| return FD->getStorageClass(); |
| } |
| return SC_None; |
| } |
| |
| LinkageInfo |
| LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, |
| LVComputationKind computation, |
| bool IgnoreVarTypeLinkage) { |
| assert(D->getDeclContext()->getRedeclContext()->isFileContext() && |
| "Not a name having namespace scope"); |
| ASTContext &Context = D->getASTContext(); |
| |
| // C++ [basic.link]p3: |
| // A name having namespace scope (3.3.6) has internal linkage if it |
| // is the name of |
| |
| if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { |
| // - a variable, variable template, function, or function template |
| // that is explicitly declared static; or |
| // (This bullet corresponds to C99 6.2.2p3.) |
| return getInternalLinkageFor(D); |
| } |
| |
| if (const auto *Var = dyn_cast<VarDecl>(D)) { |
| // - a non-template variable of non-volatile const-qualified type, unless |
| // - it is explicitly declared extern, or |
| // - it is inline or exported, or |
| // - it was previously declared and the prior declaration did not have |
| // internal linkage |
| // (There is no equivalent in C99.) |
| if (Context.getLangOpts().CPlusPlus && |
| Var->getType().isConstQualified() && |
| !Var->getType().isVolatileQualified() && |
| !Var->isInline() && |
| !isExportedFromModuleInterfaceUnit(Var) && |
| !isa<VarTemplateSpecializationDecl>(Var) && |
| !Var->getDescribedVarTemplate()) { |
| const VarDecl *PrevVar = Var->getPreviousDecl(); |
| if (PrevVar) |
| return getLVForDecl(PrevVar, computation); |
| |
| if (Var->getStorageClass() != SC_Extern && |
| Var->getStorageClass() != SC_PrivateExtern && |
| !isSingleLineLanguageLinkage(*Var)) |
| return getInternalLinkageFor(Var); |
| } |
| |
| for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; |
| PrevVar = PrevVar->getPreviousDecl()) { |
| if (PrevVar->getStorageClass() == SC_PrivateExtern && |
| Var->getStorageClass() == SC_None) |
| return getDeclLinkageAndVisibility(PrevVar); |
| // Explicitly declared static. |
| if (PrevVar->getStorageClass() == SC_Static) |
| return getInternalLinkageFor(Var); |
| } |
| } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { |
| // - a data member of an anonymous union. |
| const VarDecl *VD = IFD->getVarDecl(); |
| assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); |
| return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); |
| } |
| assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); |
| |
| // FIXME: This gives internal linkage to names that should have no linkage |
| // (those not covered by [basic.link]p6). |
| if (D->isInAnonymousNamespace()) { |
| const auto *Var = dyn_cast<VarDecl>(D); |
| const auto *Func = dyn_cast<FunctionDecl>(D); |
| // FIXME: The check for extern "C" here is not justified by the standard |
| // wording, but we retain it from the pre-DR1113 model to avoid breaking |
| // code. |
| // |
| // C++11 [basic.link]p4: |
| // An unnamed namespace or a namespace declared directly or indirectly |
| // within an unnamed namespace has internal linkage. |
| if ((!Var || !isFirstInExternCContext(Var)) && |
| (!Func || !isFirstInExternCContext(Func))) |
| return getInternalLinkageFor(D); |
| } |
| |
| // Set up the defaults. |
| |
| // C99 6.2.2p5: |
| // If the declaration of an identifier for an object has file |
| // scope and no storage-class specifier, its linkage is |
| // external. |
| LinkageInfo LV = getExternalLinkageFor(D); |
| |
| if (!hasExplicitVisibilityAlready(computation)) { |
| if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { |
| LV.mergeVisibility(*Vis, true); |
| } else { |
| // If we're declared in a namespace with a visibility attribute, |
| // use that namespace's visibility, and it still counts as explicit. |
| for (const DeclContext *DC = D->getDeclContext(); |
| !isa<TranslationUnitDecl>(DC); |
| DC = DC->getParent()) { |
| const auto *ND = dyn_cast<NamespaceDecl>(DC); |
| if (!ND) continue; |
| if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { |
| LV.mergeVisibility(*Vis, true); |
| break; |
| } |
| } |
| } |
| |
| // Add in global settings if the above didn't give us direct visibility. |
| if (!LV.isVisibilityExplicit()) { |
| // Use global type/value visibility as appropriate. |
| Visibility globalVisibility = |
| computation.isValueVisibility() |
| ? Context.getLangOpts().getValueVisibilityMode() |
| : Context.getLangOpts().getTypeVisibilityMode(); |
| LV.mergeVisibility(globalVisibility, /*explicit*/ false); |
| |
| // If we're paying attention to global visibility, apply |
| // -finline-visibility-hidden if this is an inline method. |
| if (useInlineVisibilityHidden(D)) |
| LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); |
| } |
| } |
| |
| // C++ [basic.link]p4: |
| |
| // A name having namespace scope that has not been given internal linkage |
| // above and that is the name of |
| // [...bullets...] |
| // has its linkage determined as follows: |
| // - if the enclosing namespace has internal linkage, the name has |
| // internal linkage; [handled above] |
| // - otherwise, if the declaration of the name is attached to a named |
| // module and is not exported, the name has module linkage; |
| // - otherwise, the name has external linkage. |
| // LV is currently set up to handle the last two bullets. |
| // |
| // The bullets are: |
| |
| // - a variable; or |
| if (const auto *Var = dyn_cast<VarDecl>(D)) { |
| // GCC applies the following optimization to variables and static |
| // data members, but not to functions: |
| // |
| // Modify the variable's LV by the LV of its type unless this is |
| // C or extern "C". This follows from [basic.link]p9: |
| // A type without linkage shall not be used as the type of a |
| // variable or function with external linkage unless |
| // - the entity has C language linkage, or |
| // - the entity is declared within an unnamed namespace, or |
| // - the entity is not used or is defined in the same |
| // translation unit. |
| // and [basic.link]p10: |
| // ...the types specified by all declarations referring to a |
| // given variable or function shall be identical... |
| // C does not have an equivalent rule. |
| // |
| // Ignore this if we've got an explicit attribute; the user |
| // probably knows what they're doing. |
| // |
| // Note that we don't want to make the variable non-external |
| // because of this, but unique-external linkage suits us. |
| if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && |
| !IgnoreVarTypeLinkage) { |
| LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); |
| if (!isExternallyVisible(TypeLV.getLinkage())) |
| return LinkageInfo::uniqueExternal(); |
| if (!LV.isVisibilityExplicit()) |
| LV.mergeVisibility(TypeLV); |
| } |
| |
| if (Var->getStorageClass() == SC_PrivateExtern) |
| LV.mergeVisibility(HiddenVisibility, true); |
| |
| // Note that Sema::MergeVarDecl already takes care of implementing |
| // C99 6.2.2p4 and propagating the visibility attribute, so we don't have |
| // to do it here. |
| |
| // As per function and class template specializations (below), |
| // consider LV for the template and template arguments. We're at file |
| // scope, so we do not need to worry about nested specializations. |
| if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { |
| mergeTemplateLV(LV, spec, computation); |
| } |
| |
| // - a function; or |
| } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { |
| // In theory, we can modify the function's LV by the LV of its |
| // type unless it has C linkage (see comment above about variables |
| // for justification). In practice, GCC doesn't do this, so it's |
| // just too painful to make work. |
| |
| if (Function->getStorageClass() == SC_PrivateExtern) |
| LV.mergeVisibility(HiddenVisibility, true); |
| |
| // Note that Sema::MergeCompatibleFunctionDecls already takes care of |
| // merging storage classes and visibility attributes, so we don't have to |
| // look at previous decls in here. |
| |
| // In C++, then if the type of the function uses a type with |
| // unique-external linkage, it's not legally usable from outside |
| // this translation unit. However, we should use the C linkage |
| // rules instead for extern "C" declarations. |
| if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { |
| // Only look at the type-as-written. Otherwise, deducing the return type |
| // of a function could change its linkage. |
| QualType TypeAsWritten = Function->getType(); |
| if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) |
| TypeAsWritten = TSI->getType(); |
| if (!isExternallyVisible(TypeAsWritten->getLinkage())) |
| return LinkageInfo::uniqueExternal(); |
| } |
| |
| // Consider LV from the template and the template arguments. |
| // We're at file scope, so we do not need to worry about nested |
| // specializations. |
| if (FunctionTemplateSpecializationInfo *specInfo |
| = Function->getTemplateSpecializationInfo()) { |
| mergeTemplateLV(LV, Function, specInfo, computation); |
| } |
| |
| // - a named class (Clause 9), or an unnamed class defined in a |
| // typedef declaration in which the class has the typedef name |
| // for linkage purposes (7.1.3); or |
| // - a named enumeration (7.2), or an unnamed enumeration |
| // defined in a typedef declaration in which the enumeration |
| // has the typedef name for linkage purposes (7.1.3); or |
| } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { |
| // Unnamed tags have no linkage. |
| if (!Tag->hasNameForLinkage()) |
| return LinkageInfo::none(); |
| |
| // If this is a class template specialization, consider the |
| // linkage of the template and template arguments. We're at file |
| // scope, so we do not need to worry about nested specializations. |
| if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { |
| mergeTemplateLV(LV, spec, computation); |
| } |
| |
| // FIXME: This is not part of the C++ standard any more. |
| // - an enumerator belonging to an enumeration with external linkage; or |
| } else if (isa<EnumConstantDecl>(D)) { |
| LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), |
| computation); |
| if (!isExternalFormalLinkage(EnumLV.getLinkage())) |
| return LinkageInfo::none(); |
| LV.merge(EnumLV); |
| |
| // - a template |
| } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { |
| bool considerVisibility = !hasExplicitVisibilityAlready(computation); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, considerVisibility); |
| |
| // An unnamed namespace or a namespace declared directly or indirectly |
| // within an unnamed namespace has internal linkage. All other namespaces |
| // have external linkage. |
| // |
| // We handled names in anonymous namespaces above. |
| } else if (isa<NamespaceDecl>(D)) { |
| return LV; |
| |
| // By extension, we assign external linkage to Objective-C |
| // interfaces. |
| } else if (isa<ObjCInterfaceDecl>(D)) { |
| // fallout |
| |
| } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
| // A typedef declaration has linkage if it gives a type a name for |
| // linkage purposes. |
| if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) |
| return LinkageInfo::none(); |
| |
| // Everything not covered here has no linkage. |
| } else { |
| return LinkageInfo::none(); |
| } |
| |
| // If we ended up with non-externally-visible linkage, visibility should |
| // always be default. |
| if (!isExternallyVisible(LV.getLinkage())) |
| return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); |
| |
| return LV; |
| } |
| |
| LinkageInfo |
| LinkageComputer::getLVForClassMember(const NamedDecl *D, |
| LVComputationKind computation, |
| bool IgnoreVarTypeLinkage) { |
| // Only certain class members have linkage. Note that fields don't |
| // really have linkage, but it's convenient to say they do for the |
| // purposes of calculating linkage of pointer-to-data-member |
| // template arguments. |
| // |
| // Templates also don't officially have linkage, but since we ignore |
| // the C++ standard and look at template arguments when determining |
| // linkage and visibility of a template specialization, we might hit |
| // a template template argument that way. If we do, we need to |
| // consider its linkage. |
| if (!(isa<CXXMethodDecl>(D) || |
| isa<VarDecl>(D) || |
| isa<FieldDecl>(D) || |
| isa<IndirectFieldDecl>(D) || |
| isa<TagDecl>(D) || |
| isa<TemplateDecl>(D))) |
| return LinkageInfo::none(); |
| |
| LinkageInfo LV; |
| |
| // If we have an explicit visibility attribute, merge that in. |
| if (!hasExplicitVisibilityAlready(computation)) { |
| if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) |
| LV.mergeVisibility(*Vis, true); |
| // If we're paying attention to global visibility, apply |
| // -finline-visibility-hidden if this is an inline method. |
| // |
| // Note that we do this before merging information about |
| // the class visibility. |
| if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) |
| LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); |
| } |
| |
| // If this class member has an explicit visibility attribute, the only |
| // thing that can change its visibility is the template arguments, so |
| // only look for them when processing the class. |
| LVComputationKind classComputation = computation; |
| if (LV.isVisibilityExplicit()) |
| classComputation = withExplicitVisibilityAlready(computation); |
| |
| LinkageInfo classLV = |
| getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); |
| // The member has the same linkage as the class. If that's not externally |
| // visible, we don't need to compute anything about the linkage. |
| // FIXME: If we're only computing linkage, can we bail out here? |
| if (!isExternallyVisible(classLV.getLinkage())) |
| return classLV; |
| |
| |
| // Otherwise, don't merge in classLV yet, because in certain cases |
| // we need to completely ignore the visibility from it. |
| |
| // Specifically, if this decl exists and has an explicit attribute. |
| const NamedDecl *explicitSpecSuppressor = nullptr; |
| |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| // Only look at the type-as-written. Otherwise, deducing the return type |
| // of a function could change its linkage. |
| QualType TypeAsWritten = MD->getType(); |
| if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) |
| TypeAsWritten = TSI->getType(); |
| if (!isExternallyVisible(TypeAsWritten->getLinkage())) |
| return LinkageInfo::uniqueExternal(); |
| |
| // If this is a method template specialization, use the linkage for |
| // the template parameters and arguments. |
| if (FunctionTemplateSpecializationInfo *spec |
| = MD->getTemplateSpecializationInfo()) { |
| mergeTemplateLV(LV, MD, spec, computation); |
| if (spec->isExplicitSpecialization()) { |
| explicitSpecSuppressor = MD; |
| } else if (isExplicitMemberSpecialization(spec->getTemplate())) { |
| explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); |
| } |
| } else if (isExplicitMemberSpecialization(MD)) { |
| explicitSpecSuppressor = MD; |
| } |
| |
| } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { |
| if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { |
| mergeTemplateLV(LV, spec, computation); |
| if (spec->isExplicitSpecialization()) { |
| explicitSpecSuppressor = spec; |
| } else { |
| const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); |
| if (isExplicitMemberSpecialization(temp)) { |
| explicitSpecSuppressor = temp->getTemplatedDecl(); |
| } |
| } |
| } else if (isExplicitMemberSpecialization(RD)) { |
| explicitSpecSuppressor = RD; |
| } |
| |
| // Static data members. |
| } else if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) |
| mergeTemplateLV(LV, spec, computation); |
| |
| // Modify the variable's linkage by its type, but ignore the |
| // type's visibility unless it's a definition. |
| if (!IgnoreVarTypeLinkage) { |
| LinkageInfo typeLV = getLVForType(*VD->getType(), computation); |
| // FIXME: If the type's linkage is not externally visible, we can |
| // give this static data member UniqueExternalLinkage. |
| if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) |
| LV.mergeVisibility(typeLV); |
| LV.mergeExternalVisibility(typeLV); |
| } |
| |
| if (isExplicitMemberSpecialization(VD)) { |
| explicitSpecSuppressor = VD; |
| } |
| |
| // Template members. |
| } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { |
| bool considerVisibility = |
| (!LV.isVisibilityExplicit() && |
| !classLV.isVisibilityExplicit() && |
| !hasExplicitVisibilityAlready(computation)); |
| LinkageInfo tempLV = |
| getLVForTemplateParameterList(temp->getTemplateParameters(), computation); |
| LV.mergeMaybeWithVisibility(tempLV, considerVisibility); |
| |
| if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { |
| if (isExplicitMemberSpecialization(redeclTemp)) { |
| explicitSpecSuppressor = temp->getTemplatedDecl(); |
| } |
| } |
| } |
| |
| // We should never be looking for an attribute directly on a template. |
| assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); |
| |
| // If this member is an explicit member specialization, and it has |
| // an explicit attribute, ignore visibility from the parent. |
| bool considerClassVisibility = true; |
| if (explicitSpecSuppressor && |
| // optimization: hasDVA() is true only with explicit visibility. |
| LV.isVisibilityExplicit() && |
| classLV.getVisibility() != DefaultVisibility && |
| hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { |
| considerClassVisibility = false; |
| } |
| |
| // Finally, merge in information from the class. |
| LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); |
| return LV; |
| } |
| |
| void NamedDecl::anchor() {} |
| |
| bool NamedDecl::isLinkageValid() const { |
| if (!hasCachedLinkage()) |
| return true; |
| |
| Linkage L = LinkageComputer{} |
| .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) |
| .getLinkage(); |
| return L == getCachedLinkage(); |
| } |
| |
| ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { |
| StringRef name = getName(); |
| if (name.empty()) return SFF_None; |
| |
| if (name.front() == 'C') |
| if (name == "CFStringCreateWithFormat" || |
| name == "CFStringCreateWithFormatAndArguments" || |
| name == "CFStringAppendFormat" || |
| name == "CFStringAppendFormatAndArguments") |
| return SFF_CFString; |
| return SFF_None; |
| } |
| |
| Linkage NamedDecl::getLinkageInternal() const { |
| // We don't care about visibility here, so ask for the cheapest |
| // possible visibility analysis. |
| return LinkageComputer{} |
| .getLVForDecl(this, LVComputationKind::forLinkageOnly()) |
| .getLinkage(); |
| } |
| |
| LinkageInfo NamedDecl::getLinkageAndVisibility() const { |
| return LinkageComputer{}.getDeclLinkageAndVisibility(this); |
| } |
| |
| static Optional<Visibility> |
| getExplicitVisibilityAux(const NamedDecl *ND, |
| NamedDecl::ExplicitVisibilityKind kind, |
| bool IsMostRecent) { |
| assert(!IsMostRecent || ND == ND->getMostRecentDecl()); |
| |
| // Check the declaration itself first. |
| if (Optional<Visibility> V = getVisibilityOf(ND, kind)) |
| return V; |
| |
| // If this is a member class of a specialization of a class template |
| // and the corresponding decl has explicit visibility, use that. |
| if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { |
| CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); |
| if (InstantiatedFrom) |
| return getVisibilityOf(InstantiatedFrom, kind); |
| } |
| |
| // If there wasn't explicit visibility there, and this is a |
| // specialization of a class template, check for visibility |
| // on the pattern. |
| if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { |
| // Walk all the template decl till this point to see if there are |
| // explicit visibility attributes. |
| const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); |
| while (TD != nullptr) { |
| auto Vis = getVisibilityOf(TD, kind); |
| if (Vis != None) |
| return Vis; |
| TD = TD->getPreviousDecl(); |
| } |
| return None; |
| } |
| |
| // Use the most recent declaration. |
| if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { |
| const NamedDecl *MostRecent = ND->getMostRecentDecl(); |
| if (MostRecent != ND) |
| return getExplicitVisibilityAux(MostRecent, kind, true); |
| } |
| |
| if (const auto *Var = dyn_cast<VarDecl>(ND)) { |
| if (Var->isStaticDataMember()) { |
| VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); |
| if (InstantiatedFrom) |
| return getVisibilityOf(InstantiatedFrom, kind); |
| } |
| |
| if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) |
| return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), |
| kind); |
| |
| return None; |
| } |
| // Also handle function template specializations. |
| if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { |
| // If the function is a specialization of a template with an |
| // explicit visibility attribute, use that. |
| if (FunctionTemplateSpecializationInfo *templateInfo |
| = fn->getTemplateSpecializationInfo()) |
| return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), |
| kind); |
| |
| // If the function is a member of a specialization of a class template |
| // and the corresponding decl has explicit visibility, use that. |
| FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); |
| if (InstantiatedFrom) |
| return getVisibilityOf(InstantiatedFrom, kind); |
| |
| return None; |
| } |
| |
| // The visibility of a template is stored in the templated decl. |
| if (const auto *TD = dyn_cast<TemplateDecl>(ND)) |
| return getVisibilityOf(TD->getTemplatedDecl(), kind); |
| |
| return None; |
| } |
| |
| Optional<Visibility> |
| NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { |
| return getExplicitVisibilityAux(this, kind, false); |
| } |
| |
| LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, |
| Decl *ContextDecl, |
| LVComputationKind computation) { |
| // This lambda has its linkage/visibility determined by its owner. |
| const NamedDecl *Owner; |
| if (!ContextDecl) |
| Owner = dyn_cast<NamedDecl>(DC); |
| else if (isa<ParmVarDecl>(ContextDecl)) |
| Owner = |
| dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); |
| else |
| Owner = cast<NamedDecl>(ContextDecl); |
| |
| if (!Owner) |
| return LinkageInfo::none(); |
| |
| // If the owner has a deduced type, we need to skip querying the linkage and |
| // visibility of that type, because it might involve this closure type. The |
| // only effect of this is that we might give a lambda VisibleNoLinkage rather |
| // than NoLinkage when we don't strictly need to, which is benign. |
| auto *VD = dyn_cast<VarDecl>(Owner); |
| LinkageInfo OwnerLV = |
| VD && VD->getType()->getContainedDeducedType() |
| ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) |
| : getLVForDecl(Owner, computation); |
| |
| // A lambda never formally has linkage. But if the owner is externally |
| // visible, then the lambda is too. We apply the same rules to blocks. |
| if (!isExternallyVisible(OwnerLV.getLinkage())) |
| return LinkageInfo::none(); |
| return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), |
| OwnerLV.isVisibilityExplicit()); |
| } |
| |
| LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, |
| LVComputationKind computation) { |
| if (const auto *Function = dyn_cast<FunctionDecl>(D)) { |
| if (Function->isInAnonymousNamespace() && |
| !isFirstInExternCContext(Function)) |
| return getInternalLinkageFor(Function); |
| |
| // This is a "void f();" which got merged with a file static. |
| if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) |
| return getInternalLinkageFor(Function); |
| |
| LinkageInfo LV; |
| if (!hasExplicitVisibilityAlready(computation)) { |
| if (Optional<Visibility> Vis = |
| getExplicitVisibility(Function, computation)) |
| LV.mergeVisibility(*Vis, true); |
| } |
| |
| // Note that Sema::MergeCompatibleFunctionDecls already takes care of |
| // merging storage classes and visibility attributes, so we don't have to |
| // look at previous decls in here. |
| |
| return LV; |
| } |
| |
| if (const auto *Var = dyn_cast<VarDecl>(D)) { |
| if (Var->hasExternalStorage()) { |
| if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) |
| return getInternalLinkageFor(Var); |
| |
| LinkageInfo LV; |
| if (Var->getStorageClass() == SC_PrivateExtern) |
| LV.mergeVisibility(HiddenVisibility, true); |
| else if (!hasExplicitVisibilityAlready(computation)) { |
| if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) |
| LV.mergeVisibility(*Vis, true); |
| } |
| |
| if (const VarDecl *Prev = Var->getPreviousDecl()) { |
| LinkageInfo PrevLV = getLVForDecl(Prev, computation); |
| if (PrevLV.getLinkage()) |
| LV.setLinkage(PrevLV.getLinkage()); |
| LV.mergeVisibility(PrevLV); |
| } |
| |
| return LV; |
| } |
| |
| if (!Var->isStaticLocal()) |
| return LinkageInfo::none(); |
| } |
| |
| ASTContext &Context = D->getASTContext(); |
| if (!Context.getLangOpts().CPlusPlus) |
| return LinkageInfo::none(); |
| |
| const Decl *OuterD = getOutermostFuncOrBlockContext(D); |
| if (!OuterD || OuterD->isInvalidDecl()) |
| return LinkageInfo::none(); |
| |
| LinkageInfo LV; |
| if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { |
| if (!BD->getBlockManglingNumber()) |
| return LinkageInfo::none(); |
| |
| LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), |
| BD->getBlockManglingContextDecl(), computation); |
| } else { |
| const auto *FD = cast<FunctionDecl>(OuterD); |
| if (!FD->isInlined() && |
| !isTemplateInstantiation(FD->getTemplateSpecializationKind())) |
| return LinkageInfo::none(); |
| |
| // If a function is hidden by -fvisibility-inlines-hidden option and |
| // is not explicitly attributed as a hidden function, |
| // we should not make static local variables in the function hidden. |
| LV = getLVForDecl(FD, computation); |
| if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && |
| !LV.isVisibilityExplicit()) { |
| assert(cast<VarDecl>(D)->isStaticLocal()); |
| // If this was an implicitly hidden inline method, check again for |
| // explicit visibility on the parent class, and use that for static locals |
| // if present. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
| LV = getLVForDecl(MD->getParent(), computation); |
| if (!LV.isVisibilityExplicit()) { |
| Visibility globalVisibility = |
| computation.isValueVisibility() |
| ? Context.getLangOpts().getValueVisibilityMode() |
| : Context.getLangOpts().getTypeVisibilityMode(); |
| return LinkageInfo(VisibleNoLinkage, globalVisibility, |
| /*visibilityExplicit=*/false); |
| } |
| } |
| } |
| if (!isExternallyVisible(LV.getLinkage())) |
| return LinkageInfo::none(); |
| return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), |
| LV.isVisibilityExplicit()); |
| } |
| |
| static inline const CXXRecordDecl* |
| getOutermostEnclosingLambda(const CXXRecordDecl *Record) { |
| const CXXRecordDecl *Ret = Record; |
| while (Record && Record->isLambda()) { |
| Ret = Record; |
| if (!Record->getParent()) break; |
| // Get the Containing Class of this Lambda Class |
| Record = dyn_cast_or_null<CXXRecordDecl>( |
| Record->getParent()->getParent()); |
| } |
| return Ret; |
| } |
| |
| LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, |
| LVComputationKind computation, |
| bool IgnoreVarTypeLinkage) { |
| // Internal_linkage attribute overrides other considerations. |
| if (D->hasAttr<InternalLinkageAttr>()) |
| return getInternalLinkageFor(D); |
| |
| // Objective-C: treat all Objective-C declarations as having external |
| // linkage. |
| switch (D->getKind()) { |
| default: |
| break; |
| |
| // Per C++ [basic.link]p2, only the names of objects, references, |
| // functions, types, templates, namespaces, and values ever have linkage. |
| // |
| // Note that the name of a typedef, namespace alias, using declaration, |
| // and so on are not the name of the corresponding type, namespace, or |
| // declaration, so they do *not* have linkage. |
| case Decl::ImplicitParam: |
| case Decl::Label: |
| case Decl::NamespaceAlias: |
| case Decl::ParmVar: |
| case Decl::Using: |
| case Decl::UsingShadow: |
| case Decl::UsingDirective: |
| return LinkageInfo::none(); |
| |
| case Decl::EnumConstant: |
| // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. |
| if (D->getASTContext().getLangOpts().CPlusPlus) |
| return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); |
| return LinkageInfo::visible_none(); |
| |
| case Decl::Typedef: |
| case Decl::TypeAlias: |
| // A typedef declaration has linkage if it gives a type a name for |
| // linkage purposes. |
| if (!cast<TypedefNameDecl>(D) |
| ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) |
| return LinkageInfo::none(); |
| break; |
| |
| case Decl::TemplateTemplateParm: // count these as external |
| case Decl::NonTypeTemplateParm: |
| case Decl::ObjCAtDefsField: |
| case Decl::ObjCCategory: |
| case Decl::ObjCCategoryImpl: |
| case Decl::ObjCCompatibleAlias: |
| case Decl::ObjCImplementation: |
| case Decl::ObjCMethod: |
| case Decl::ObjCProperty: |
| case Decl::ObjCPropertyImpl: |
| case Decl::ObjCProtocol: |
| return getExternalLinkageFor(D); |
| |
| case Decl::CXXRecord: { |
| const auto *Record = cast<CXXRecordDecl>(D); |
| if (Record->isLambda()) { |
| if (!Record->getLambdaManglingNumber()) { |
| // This lambda has no mangling number, so it's internal. |
| return getInternalLinkageFor(D); |
| } |
| |
| // This lambda has its linkage/visibility determined: |
| // - either by the outermost lambda if that lambda has no mangling |
| // number. |
| // - or by the parent of the outer most lambda |
| // This prevents infinite recursion in settings such as nested lambdas |
| // used in NSDMI's, for e.g. |
| // struct L { |
| // int t{}; |
| // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); |
| // }; |
| const CXXRecordDecl *OuterMostLambda = |
| getOutermostEnclosingLambda(Record); |
| if (!OuterMostLambda->getLambdaManglingNumber()) |
| return getInternalLinkageFor(D); |
| |
| return getLVForClosure( |
| OuterMostLambda->getDeclContext()->getRedeclContext(), |
| OuterMostLambda->getLambdaContextDecl(), computation); |
| } |
| |
| break; |
| } |
| } |
| |
| // Handle linkage for namespace-scope names. |
| if (D->getDeclContext()->getRedeclContext()->isFileContext()) |
| return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); |
| |
| // C++ [basic.link]p5: |
| // In addition, a member function, static data member, a named |
| // class or enumeration of class scope, or an unnamed class or |
| // enumeration defined in a class-scope typedef declaration such |
| // that the class or enumeration has the typedef name for linkage |
| // purposes (7.1.3), has external linkage if the name of the class |
| // has external linkage. |
| if (D->getDeclContext()->isRecord()) |
| return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); |
| |
| // C++ [basic.link]p6: |
| // The name of a function declared in block scope and the name of |
| // an object declared by a block scope extern declaration have |
| // linkage. If there is a visible declaration of an entity with |
| // linkage having the same name and type, ignoring entities |
| // declared outside the innermost enclosing namespace scope, the |
| // block scope declaration declares that same entity and receives |
| // the linkage of the previous declaration. If there is more than |
| // one such matching entity, the program is ill-formed. Otherwise, |
| // if no matching entity is found, the block scope entity receives |
| // external linkage. |
| if (D->getDeclContext()->isFunctionOrMethod()) |
| return getLVForLocalDecl(D, computation); |
| |
| // C++ [basic.link]p6: |
| // Names not covered by these rules have no linkage. |
| return LinkageInfo::none(); |
| } |
| |
| /// getLVForDecl - Get the linkage and visibility for the given declaration. |
| LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, |
| LVComputationKind computation) { |
| // Internal_linkage attribute overrides other considerations. |
| if (D->hasAttr<InternalLinkageAttr>()) |
| return getInternalLinkageFor(D); |
| |
| if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) |
| return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); |
| |
| if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) |
| return *LI; |
| |
| LinkageInfo LV = computeLVForDecl(D, computation); |
| if (D->hasCachedLinkage()) |
| assert(D->getCachedLinkage() == LV.getLinkage()); |
| |
| D->setCachedLinkage(LV.getLinkage()); |
| cache(D, computation, LV); |
| |
| #ifndef NDEBUG |
| // In C (because of gnu inline) and in c++ with microsoft extensions an |
| // static can follow an extern, so we can have two decls with different |
| // linkages. |
| const LangOptions &Opts = D->getASTContext().getLangOpts(); |
| if (!Opts.CPlusPlus || Opts.MicrosoftExt) |
| return LV; |
| |
| // We have just computed the linkage for this decl. By induction we know |
| // that all other computed linkages match, check that the one we just |
| // computed also does. |
| NamedDecl *Old = nullptr; |
| for (auto I : D->redecls()) { |
| auto *T = cast<NamedDecl>(I); |
| if (T == D) |
| continue; |
| if (!T->isInvalidDecl() && T->hasCachedLinkage()) { |
| Old = T; |
| break; |
| } |
| } |
| assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); |
| #endif |
| |
| return LV; |
| } |
| |
| LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { |
| return getLVForDecl(D, |
| LVComputationKind(usesTypeVisibility(D) |
| ? NamedDecl::VisibilityForType |
| : NamedDecl::VisibilityForValue)); |
| } |
| |
| Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { |
| Module *M = getOwningModule(); |
| if (!M) |
| return nullptr; |
| |
| switch (M->Kind) { |
| case Module::ModuleMapModule: |
| // Module map modules have no special linkage semantics. |
| return nullptr; |
| |
| case Module::ModuleInterfaceUnit: |
| return M; |
| |
| case Module::GlobalModuleFragment: { |
| // External linkage declarations in the global module have no owning module |
| // for linkage purposes. But internal linkage declarations in the global |
| // module fragment of a particular module are owned by that module for |
| // linkage purposes. |
| if (IgnoreLinkage) |
| return nullptr; |
| bool InternalLinkage; |
| if (auto *ND = dyn_cast<NamedDecl>(this)) |
| InternalLinkage = !ND->hasExternalFormalLinkage(); |
| else { |
| auto *NSD = dyn_cast<NamespaceDecl>(this); |
| InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || |
| isInAnonymousNamespace(); |
| } |
| return InternalLinkage ? M->Parent : nullptr; |
| } |
| |
| case Module::PrivateModuleFragment: |
| // The private module fragment is part of its containing module for linkage |
| // purposes. |
| return M->Parent; |
| } |
| |
| llvm_unreachable("unknown module kind"); |
| } |
| |
| void NamedDecl::printName(raw_ostream &os) const { |
| os << Name; |
| } |
| |
| std::string NamedDecl::getQualifiedNameAsString() const { |
| std::string QualName; |
| llvm::raw_string_ostream OS(QualName); |
| printQualifiedName(OS, getASTContext().getPrintingPolicy()); |
| return OS.str(); |
| } |
| |
| void NamedDecl::printQualifiedName(raw_ostream &OS) const { |
| printQualifiedName(OS, getASTContext().getPrintingPolicy()); |
| } |
| |
| void NamedDecl::printQualifiedName(raw_ostream &OS, |
| const PrintingPolicy &P) const { |
| if (getDeclContext()->isFunctionOrMethod()) { |
| // We do not print '(anonymous)' for function parameters without name. |
| printName(OS); |
| return; |
| } |
| printNestedNameSpecifier(OS, P); |
| if (getDeclName() || isa<DecompositionDecl>(this)) |
| OS << *this; |
| else |
| OS << "(anonymous)"; |
| } |
| |
| void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { |
| printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); |
| } |
| |
| void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, |
| const PrintingPolicy &P) const { |
| const DeclContext *Ctx = getDeclContext(); |
| |
| // For ObjC methods and properties, look through categories and use the |
| // interface as context. |
| if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) |
| if (auto *ID = MD->getClassInterface()) |
| Ctx = ID; |
| if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { |
| if (auto *MD = PD->getGetterMethodDecl()) |
| if (auto *ID = MD->getClassInterface()) |
| Ctx = ID; |
| } |
| |
| if (Ctx->isFunctionOrMethod()) |
| return; |
| |
| using ContextsTy = SmallVector<const DeclContext *, 8>; |
| ContextsTy Contexts; |
| |
| // Collect named contexts. |
| while (Ctx) { |
| if (isa<NamedDecl>(Ctx)) |
| Contexts.push_back(Ctx); |
| Ctx = Ctx->getParent(); |
| } |
| |
| for (const DeclContext *DC : llvm::reverse(Contexts)) { |
| if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { |
| OS << Spec->getName(); |
| const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| printTemplateArgumentList(OS, TemplateArgs.asArray(), P); |
| } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { |
| if (P.SuppressUnwrittenScope && |
| (ND->isAnonymousNamespace() || ND->isInline())) |
| continue; |
| if (ND->isAnonymousNamespace()) { |
| OS << (P.MSVCFormatting ? "`anonymous namespace\'" |
| : "(anonymous namespace)"); |
| } |
| else |
| OS << *ND; |
| } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { |
| if (!RD->getIdentifier()) |
| OS << "(anonymous " << RD->getKindName() << ')'; |
| else |
| OS << *RD; |
| } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { |
| const FunctionProtoType *FT = nullptr; |
| if (FD->hasWrittenPrototype()) |
| FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); |
| |
| OS << *FD << '('; |
| if (FT) { |
| unsigned NumParams = FD->getNumParams(); |
| for (unsigned i = 0; i < NumParams; ++i) { |
| if (i) |
| OS << ", "; |
| OS << FD->getParamDecl(i)->getType().stream(P); |
| } |
| |
| if (FT->isVariadic()) { |
| if (NumParams > 0) |
| OS << ", "; |
| OS << "..."; |
| } |
| } |
| OS << ')'; |
| } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { |
| // C++ [dcl.enum]p10: Each enum-name and each unscoped |
| // enumerator is declared in the scope that immediately contains |
| // the enum-specifier. Each scoped enumerator is declared in the |
| // scope of the enumeration. |
| // For the case of unscoped enumerator, do not include in the qualified |
| // name any information about its enum enclosing scope, as its visibility |
| // is global. |
| if (ED->isScoped()) |
| OS << *ED; |
| else |
| continue; |
| } else { |
| OS << *cast<NamedDecl>(DC); |
| } |
| OS << "::"; |
| } |
| } |
| |
| void NamedDecl::getNameForDiagnostic(raw_ostream &OS, |
| const PrintingPolicy &Policy, |
| bool Qualified) const { |
| if (Qualified) |
| printQualifiedName(OS, Policy); |
| else |
| printName(OS); |
| } |
| |
| template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { |
| return true; |
| } |
| static bool isRedeclarableImpl(...) { return false; } |
| static bool isRedeclarable(Decl::Kind K) { |
| switch (K) { |
| #define DECL(Type, Base) \ |
| case Decl::Type: \ |
| return isRedeclarableImpl((Type##Decl *)nullptr); |
| #define ABSTRACT_DECL(DECL) |
| #include "clang/AST/DeclNodes.inc" |
| } |
| llvm_unreachable("unknown decl kind"); |
| } |
| |
| bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { |
| assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); |
| |
| // Never replace one imported declaration with another; we need both results |
| // when re-exporting. |
| if (OldD->isFromASTFile() && isFromASTFile()) |
| return false; |
| |
| // A kind mismatch implies that the declaration is not replaced. |
| if (OldD->getKind() != getKind()) |
| return false; |
| |
| // For method declarations, we never replace. (Why?) |
| if (isa<ObjCMethodDecl>(this)) |
| return false; |
| |
| // For parameters, pick the newer one. This is either an error or (in |
| // Objective-C) permitted as an extension. |
| if (isa<ParmVarDecl>(this)) |
| return true; |
| |
| // Inline namespaces can give us two declarations with the same |
| // name and kind in the same scope but different contexts; we should |
| // keep both declarations in this case. |
| if (!this->getDeclContext()->getRedeclContext()->Equals( |
| OldD->getDeclContext()->getRedeclContext())) |
| return false; |
| |
| // Using declarations can be replaced if they import the same name from the |
| // same context. |
| if (auto *UD = dyn_cast<UsingDecl>(this)) { |
| ASTContext &Context = getASTContext(); |
| return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == |
| Context.getCanonicalNestedNameSpecifier( |
| cast<UsingDecl>(OldD)->getQualifier()); |
| } |
| if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { |
| ASTContext &Context = getASTContext(); |
| return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == |
| Context.getCanonicalNestedNameSpecifier( |
| cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); |
| } |
| |
| if (isRedeclarable(getKind())) { |
| if (getCanonicalDecl() != OldD->getCanonicalDecl()) |
| return false; |
| |
| if (IsKnownNewer) |
| return true; |
| |
| // Check whether this is actually newer than OldD. We want to keep the |
| // newer declaration. This loop will usually only iterate once, because |
| // OldD is usually the previous declaration. |
| for (auto D : redecls()) { |
| if (D == OldD) |
| break; |
| |
| // If we reach the canonical declaration, then OldD is not actually older |
| // than this one. |
| // |
| // FIXME: In this case, we should not add this decl to the lookup table. |
| if (D->isCanonicalDecl()) |
| return false; |
| } |
| |
| // It's a newer declaration of the same kind of declaration in the same |
| // scope: we want this decl instead of the existing one. |
| return true; |
| } |
| |
| // In all other cases, we need to keep both declarations in case they have |
| // different visibility. Any attempt to use the name will result in an |
| // ambiguity if more than one is visible. |
| return false; |
| } |
| |
| bool NamedDecl::hasLinkage() const { |
| return getFormalLinkage() != NoLinkage; |
| } |
| |
| NamedDecl *NamedDecl::getUnderlyingDeclImpl() { |
| NamedDecl *ND = this; |
| while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) |
| ND = UD->getTargetDecl(); |
| |
| if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) |
| return AD->getClassInterface(); |
| |
| if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) |
| return AD->getNamespace(); |
| |
| return ND; |
| } |
| |
| bool NamedDecl::isCXXInstanceMember() const { |
| if (!isCXXClassMember()) |
| return false; |
| |
| const NamedDecl *D = this; |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) |
| return true; |
| if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) |
| return MD->isInstance(); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DeclaratorDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| template <typename DeclT> |
| static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { |
| if (decl->getNumTemplateParameterLists() > 0) |
| return decl->getTemplateParameterList(0)->getTemplateLoc(); |
| else |
| return decl->getInnerLocStart(); |
| } |
| |
| SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { |
| TypeSourceInfo *TSI = getTypeSourceInfo(); |
| if (TSI) return TSI->getTypeLoc().getBeginLoc(); |
| return SourceLocation(); |
| } |
| |
| void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { |
| if (QualifierLoc) { |
| // Make sure the extended decl info is allocated. |
| if (!hasExtInfo()) { |
| // Save (non-extended) type source info pointer. |
| auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); |
| // Allocate external info struct. |
| DeclInfo = new (getASTContext()) ExtInfo; |
| // Restore savedTInfo into (extended) decl info. |
| getExtInfo()->TInfo = savedTInfo; |
| } |
| // Set qualifier info. |
| getExtInfo()->QualifierLoc = QualifierLoc; |
| } else { |
| // Here Qualifier == 0, i.e., we are removing the qualifier (if any). |
| if (hasExtInfo()) { |
| if (getExtInfo()->NumTemplParamLists == 0) { |
| // Save type source info pointer. |
| TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; |
| // Deallocate the extended decl info. |
| getASTContext().Deallocate(getExtInfo()); |
| // Restore savedTInfo into (non-extended) decl info. |
| DeclInfo = savedTInfo; |
| } |
| else |
| getExtInfo()->QualifierLoc = QualifierLoc; |
| } |
| } |
| } |
| |
| void DeclaratorDecl::setTemplateParameterListsInfo( |
| ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { |
| assert(!TPLists.empty()); |
| // Make sure the extended decl info is allocated. |
| if (!hasExtInfo()) { |
| // Save (non-extended) type source info pointer. |
| auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); |
| // Allocate external info struct. |
| DeclInfo = new (getASTContext()) ExtInfo; |
| // Restore savedTInfo into (extended) decl info. |
| getExtInfo()->TInfo = savedTInfo; |
| } |
| // Set the template parameter lists info. |
| getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); |
| } |
| |
| SourceLocation DeclaratorDecl::getOuterLocStart() const { |
| return getTemplateOrInnerLocStart(this); |
| } |
| |
| // Helper function: returns true if QT is or contains a type |
| // having a postfix component. |
| static bool typeIsPostfix(QualType QT) { |
| while (true) { |
| const Type* T = QT.getTypePtr(); |
| switch (T->getTypeClass()) { |
| default: |
| return false; |
| case Type::Pointer: |
| QT = cast<PointerType>(T)->getPointeeType(); |
| break; |
| case Type::BlockPointer: |
| QT = cast<BlockPointerType>(T)->getPointeeType(); |
| break; |
| case Type::MemberPointer: |
| QT = cast<MemberPointerType>(T)->getPointeeType(); |
| break; |
| case Type::LValueReference: |
| case Type::RValueReference: |
| QT = cast<ReferenceType>(T)->getPointeeType(); |
| break; |
| case Type::PackExpansion: |
| QT = cast<PackExpansionType>(T)->getPattern(); |
| break; |
| case Type::Paren: |
| case Type::ConstantArray: |
| case Type::DependentSizedArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::FunctionProto: |
| case Type::FunctionNoProto: |
| return true; |
| } |
| } |
| } |
| |
| SourceRange DeclaratorDecl::getSourceRange() const { |
| SourceLocation RangeEnd = getLocation(); |
| if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { |
| // If the declaration has no name or the type extends past the name take the |
| // end location of the type. |
| if (!getDeclName() || typeIsPostfix(TInfo->getType())) |
| RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); |
| } |
| return SourceRange(getOuterLocStart(), RangeEnd); |
| } |
| |
| void QualifierInfo::setTemplateParameterListsInfo( |
| ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { |
| // Free previous template parameters (if any). |
| if (NumTemplParamLists > 0) { |
| Context.Deallocate(TemplParamLists); |
| TemplParamLists = nullptr; |
| NumTemplParamLists = 0; |
| } |
| // Set info on matched template parameter lists (if any). |
| if (!TPLists.empty()) { |
| TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; |
| NumTemplParamLists = TPLists.size(); |
| std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // VarDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { |
| switch (SC) { |
| case SC_None: break; |
| case SC_Auto: return "auto"; |
| case SC_Extern: return "extern"; |
| case SC_PrivateExtern: return "__private_extern__"; |
| case SC_Register: return "register"; |
| case SC_Static: return "static"; |
| } |
| |
| llvm_unreachable("Invalid storage class"); |
| } |
| |
| VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, SourceLocation IdLoc, |
| IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, |
| StorageClass SC) |
| : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), |
| redeclarable_base(C) { |
| static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), |
| "VarDeclBitfields too large!"); |
| static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), |
| "ParmVarDeclBitfields too large!"); |
| static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), |
| "NonParmVarDeclBitfields too large!"); |
| AllBits = 0; |
| VarDeclBits.SClass = SC; |
| // Everything else is implicitly initialized to false. |
| } |
| |
| VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartL, SourceLocation IdL, |
| IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, |
| StorageClass S) { |
| return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); |
| } |
| |
| VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| return new (C, ID) |
| VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, |
| QualType(), nullptr, SC_None); |
| } |
| |
| void VarDecl::setStorageClass(StorageClass SC) { |
| assert(isLegalForVariable(SC)); |
| VarDeclBits.SClass = SC; |
| } |
| |
| VarDecl::TLSKind VarDecl::getTLSKind() const { |
| switch (VarDeclBits.TSCSpec) { |
| case TSCS_unspecified: |
| if (!hasAttr<ThreadAttr>() && |
| !(getASTContext().getLangOpts().OpenMPUseTLS && |
| getASTContext().getTargetInfo().isTLSSupported() && |
| hasAttr<OMPThreadPrivateDeclAttr>())) |
| return TLS_None; |
| return ((getASTContext().getLangOpts().isCompatibleWithMSVC( |
| LangOptions::MSVC2015)) || |
| hasAttr<OMPThreadPrivateDeclAttr>()) |
| ? TLS_Dynamic |
| : TLS_Static; |
| case TSCS___thread: // Fall through. |
| case TSCS__Thread_local: |
| return TLS_Static; |
| case TSCS_thread_local: |
| return TLS_Dynamic; |
| } |
| llvm_unreachable("Unknown thread storage class specifier!"); |
| } |
| |
| SourceRange VarDecl::getSourceRange() const { |
| if (const Expr *Init = getInit()) { |
| SourceLocation InitEnd = Init->getEndLoc(); |
| // If Init is implicit, ignore its source range and fallback on |
| // DeclaratorDecl::getSourceRange() to handle postfix elements. |
| if (InitEnd.isValid() && InitEnd != getLocation()) |
| return SourceRange(getOuterLocStart(), InitEnd); |
| } |
| return DeclaratorDecl::getSourceRange(); |
| } |
| |
| template<typename T> |
| static LanguageLinkage getDeclLanguageLinkage(const T &D) { |
| // C++ [dcl.link]p1: All function types, function names with external linkage, |
| // and variable names with external linkage have a language linkage. |
| if (!D.hasExternalFormalLinkage()) |
| return NoLanguageLinkage; |
| |
| // Language linkage is a C++ concept, but saying that everything else in C has |
| // C language linkage fits the implementation nicely. |
| ASTContext &Context = D.getASTContext(); |
| if (!Context.getLangOpts().CPlusPlus) |
| return CLanguageLinkage; |
| |
| // C++ [dcl.link]p4: A C language linkage is ignored in determining the |
| // language linkage of the names of class members and the function type of |
| // class member functions. |
| const DeclContext *DC = D.getDeclContext(); |
| if (DC->isRecord()) |
| return CXXLanguageLinkage; |
| |
| // If the first decl is in an extern "C" context, any other redeclaration |
| // will have C language linkage. If the first one is not in an extern "C" |
| // context, we would have reported an error for any other decl being in one. |
| if (isFirstInExternCContext(&D)) |
| return CLanguageLinkage; |
| return CXXLanguageLinkage; |
| } |
| |
| template<typename T> |
| static bool isDeclExternC(const T &D) { |
| // Since the context is ignored for class members, they can only have C++ |
| // language linkage or no language linkage. |
| const DeclContext *DC = D.getDeclContext(); |
| if (DC->isRecord()) { |
| assert(D.getASTContext().getLangOpts().CPlusPlus); |
| return false; |
| } |
| |
| return D.getLanguageLinkage() == CLanguageLinkage; |
| } |
| |
| LanguageLinkage VarDecl::getLanguageLinkage() const { |
| return getDeclLanguageLinkage(*this); |
| } |
| |
| bool VarDecl::isExternC() const { |
| return isDeclExternC(*this); |
| } |
| |
| bool VarDecl::isInExternCContext() const { |
| return getLexicalDeclContext()->isExternCContext(); |
| } |
| |
| bool VarDecl::isInExternCXXContext() const { |
| return getLexicalDeclContext()->isExternCXXContext(); |
| } |
| |
| VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } |
| |
| VarDecl::DefinitionKind |
| VarDecl::isThisDeclarationADefinition(ASTContext &C) const { |
| if (isThisDeclarationADemotedDefinition()) |
| return DeclarationOnly; |
| |
| // C++ [basic.def]p2: |
| // A declaration is a definition unless [...] it contains the 'extern' |
| // specifier or a linkage-specification and neither an initializer [...], |
| // it declares a non-inline static data member in a class declaration [...], |
| // it declares a static data member outside a class definition and the variable |
| // was defined within the class with the constexpr specifier [...], |
| // C++1y [temp.expl.spec]p15: |
| // An explicit specialization of a static data member or an explicit |
| // specialization of a static data member template is a definition if the |
| // declaration includes an initializer; otherwise, it is a declaration. |
| // |
| // FIXME: How do you declare (but not define) a partial specialization of |
| // a static data member template outside the containing class? |
| if (isStaticDataMember()) { |
| if (isOutOfLine() && |
| !(getCanonicalDecl()->isInline() && |
| getCanonicalDecl()->isConstexpr()) && |
| (hasInit() || |
| // If the first declaration is out-of-line, this may be an |
| // instantiation of an out-of-line partial specialization of a variable |
| // template for which we have not yet instantiated the initializer. |
| (getFirstDecl()->isOutOfLine() |
| ? getTemplateSpecializationKind() == TSK_Undeclared |
| : getTemplateSpecializationKind() != |
| TSK_ExplicitSpecialization) || |
| isa<VarTemplatePartialSpecializationDecl>(this))) |
| return Definition; |
| else if (!isOutOfLine() && isInline()) |
| return Definition; |
| else |
| return DeclarationOnly; |
| } |
| // C99 6.7p5: |
| // A definition of an identifier is a declaration for that identifier that |
| // [...] causes storage to be reserved for that object. |
| // Note: that applies for all non-file-scope objects. |
| // C99 6.9.2p1: |
| // If the declaration of an identifier for an object has file scope and an |
| // initializer, the declaration is an external definition for the identifier |
| if (hasInit()) |
| return Definition; |
| |
| if (hasDefiningAttr()) |
| return Definition; |
| |
| if (const auto *SAA = getAttr<SelectAnyAttr>()) |
| if (!SAA->isInherited()) |
| return Definition; |
| |
| // A variable template specialization (other than a static data member |
| // template or an explicit specialization) is a declaration until we |
| // instantiate its initializer. |
| if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { |
| if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && |
| !isa<VarTemplatePartialSpecializationDecl>(VTSD) && |
| !VTSD->IsCompleteDefinition) |
| return DeclarationOnly; |
| } |
| |
| if (hasExternalStorage()) |
| return DeclarationOnly; |
| |
| // [dcl.link] p7: |
| // A declaration directly contained in a linkage-specification is treated |
| // as if it contains the extern specifier for the purpose of determining |
| // the linkage of the declared name and whether it is a definition. |
| if (isSingleLineLanguageLinkage(*this)) |
| return DeclarationOnly; |
| |
| // C99 6.9.2p2: |
| // A declaration of an object that has file scope without an initializer, |
| // and without a storage class specifier or the scs 'static', constitutes |
| // a tentative definition. |
| // No such thing in C++. |
| if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) |
| return TentativeDefinition; |
| |
| // What's left is (in C, block-scope) declarations without initializers or |
| // external storage. These are definitions. |
| return Definition; |
| } |
| |
| VarDecl *VarDecl::getActingDefinition() { |
| DefinitionKind Kind = isThisDeclarationADefinition(); |
| if (Kind != TentativeDefinition) |
| return nullptr; |
| |
| VarDecl *LastTentative = nullptr; |
| VarDecl *First = getFirstDecl(); |
| for (auto I : First->redecls()) { |
| Kind = I->isThisDeclarationADefinition(); |
| if (Kind == Definition) |
| return nullptr; |
| else if (Kind == TentativeDefinition) |
| LastTentative = I; |
| } |
| return LastTentative; |
| } |
| |
| VarDecl *VarDecl::getDefinition(ASTContext &C) { |
| VarDecl *First = getFirstDecl(); |
| for (auto I : First->redecls()) { |
| if (I->isThisDeclarationADefinition(C) == Definition) |
| return I; |
| } |
| return nullptr; |
| } |
| |
| VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { |
| DefinitionKind Kind = DeclarationOnly; |
| |
| const VarDecl *First = getFirstDecl(); |
| for (auto I : First->redecls()) { |
| Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); |
| if (Kind == Definition) |
| break; |
| } |
| |
| return Kind; |
| } |
| |
| const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { |
| for (auto I : redecls()) { |
| if (auto Expr = I->getInit()) { |
| D = I; |
| return Expr; |
| } |
| } |
| return nullptr; |
| } |
| |
| bool VarDecl::hasInit() const { |
| if (auto *P = dyn_cast<ParmVarDecl>(this)) |
| if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) |
| return false; |
| |
| return !Init.isNull(); |
| } |
| |
| Expr *VarDecl::getInit() { |
| if (!hasInit()) |
| return nullptr; |
| |
| if (auto *S = Init.dyn_cast<Stmt *>()) |
| return cast<Expr>(S); |
| |
| return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); |
| } |
| |
| Stmt **VarDecl::getInitAddress() { |
| if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) |
| return &ES->Value; |
| |
| return Init.getAddrOfPtr1(); |
| } |
| |
| VarDecl *VarDecl::getInitializingDeclaration() { |
| VarDecl *Def = nullptr; |
| for (auto I : redecls()) { |
| if (I->hasInit()) |
| return I; |
| |
| if (I->isThisDeclarationADefinition()) { |
| if (isStaticDataMember()) |
| return I; |
| else |
| Def = I; |
| } |
| } |
| return Def; |
| } |
| |
| bool VarDecl::isOutOfLine() const { |
| if (Decl::isOutOfLine()) |
| return true; |
| |
| if (!isStaticDataMember()) |
| return false; |
| |
| // If this static data member was instantiated from a static data member of |
| // a class template, check whether that static data member was defined |
| // out-of-line. |
| if (VarDecl *VD = getInstantiatedFromStaticDataMember()) |
| return VD->isOutOfLine(); |
| |
| return false; |
| } |
| |
| void VarDecl::setInit(Expr *I) { |
| if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { |
| Eval->~EvaluatedStmt(); |
| getASTContext().Deallocate(Eval); |
| } |
| |
| Init = I; |
| } |
| |
| bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const { |
| const LangOptions &Lang = C.getLangOpts(); |
| |
| if (!Lang.CPlusPlus) |
| return false; |
| |
| // Function parameters are never usable in constant expressions. |
| if (isa<ParmVarDecl>(this)) |
| return false; |
| |
| // In C++11, any variable of reference type can be used in a constant |
| // expression if it is initialized by a constant expression. |
| if (Lang.CPlusPlus11 && getType()->isReferenceType()) |
| return true; |
| |
| // Only const objects can be used in constant expressions in C++. C++98 does |
| // not require the variable to be non-volatile, but we consider this to be a |
| // defect. |
| if (!getType().isConstQualified() || getType().isVolatileQualified()) |
| return false; |
| |
| // In C++, const, non-volatile variables of integral or enumeration types |
| // can be used in constant expressions. |
| if (getType()->isIntegralOrEnumerationType()) |
| return true; |
| |
| // Additionally, in C++11, non-volatile constexpr variables can be used in |
| // constant expressions. |
| return Lang.CPlusPlus11 && isConstexpr(); |
| } |
| |
| bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const { |
| // C++2a [expr.const]p3: |
| // A variable is usable in constant expressions after its initializing |
| // declaration is encountered... |
| const VarDecl *DefVD = nullptr; |
| const Expr *Init = getAnyInitializer(DefVD); |
| if (!Init || Init->isValueDependent() || getType()->isDependentType()) |
| return false; |
| // ... if it is a constexpr variable, or it is of reference type or of |
| // const-qualified integral or enumeration type, ... |
| if (!DefVD->mightBeUsableInConstantExpressions(Context)) |
| return false; |
| // ... and its initializer is a constant initializer. |
| return DefVD->checkInitIsICE(); |
| } |
| |
| /// Convert the initializer for this declaration to the elaborated EvaluatedStmt |
| /// form, which contains extra information on the evaluated value of the |
| /// initializer. |
| EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { |
| auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); |
| if (!Eval) { |
| // Note: EvaluatedStmt contains an APValue, which usually holds |
| // resources not allocated from the ASTContext. We need to do some |
| // work to avoid leaking those, but we do so in VarDecl::evaluateValue |
| // where we can detect whether there's anything to clean up or not. |
| Eval = new (getASTContext()) EvaluatedStmt; |
| Eval->Value = Init.get<Stmt *>(); |
| Init = Eval; |
| } |
| return Eval; |
| } |
| |
| APValue *VarDecl::evaluateValue() const { |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| return evaluateValue(Notes); |
| } |
| |
| APValue *VarDecl::evaluateValue( |
| SmallVectorImpl<PartialDiagnosticAt> &Notes) const { |
| EvaluatedStmt *Eval = ensureEvaluatedStmt(); |
| |
| // We only produce notes indicating why an initializer is non-constant the |
| // first time it is evaluated. FIXME: The notes won't always be emitted the |
| // first time we try evaluation, so might not be produced at all. |
| if (Eval->WasEvaluated) |
| return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; |
| |
| const auto *Init = cast<Expr>(Eval->Value); |
| assert(!Init->isValueDependent()); |
| |
| if (Eval->IsEvaluating) { |
| // FIXME: Produce a diagnostic for self-initialization. |
| Eval->CheckedICE = true; |
| Eval->IsICE = false; |
| return nullptr; |
| } |
| |
| Eval->IsEvaluating = true; |
| |
| bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), |
| this, Notes); |
| |
| // Ensure the computed APValue is cleaned up later if evaluation succeeded, |
| // or that it's empty (so that there's nothing to clean up) if evaluation |
| // failed. |
| if (!Result) |
| Eval->Evaluated = APValue(); |
| else if (Eval->Evaluated.needsCleanup()) |
| getASTContext().addDestruction(&Eval->Evaluated); |
| |
| Eval->IsEvaluating = false; |
| Eval->WasEvaluated = true; |
| |
| // In C++11, we have determined whether the initializer was a constant |
| // expression as a side-effect. |
| if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { |
| Eval->CheckedICE = true; |
| Eval->IsICE = Result && Notes.empty(); |
| } |
| |
| return Result ? &Eval->Evaluated : nullptr; |
| } |
| |
| APValue *VarDecl::getEvaluatedValue() const { |
| if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) |
| if (Eval->WasEvaluated) |
| return &Eval->Evaluated; |
| |
| return nullptr; |
| } |
| |
| bool VarDecl::isInitKnownICE() const { |
| if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) |
| return Eval->CheckedICE; |
| |
| return false; |
| } |
| |
| bool VarDecl::isInitICE() const { |
| assert(isInitKnownICE() && |
| "Check whether we already know that the initializer is an ICE"); |
| return Init.get<EvaluatedStmt *>()->IsICE; |
| } |
| |
| bool VarDecl::checkInitIsICE() const { |
| // Initializers of weak variables are never ICEs. |
| if (isWeak()) |
| return false; |
| |
| EvaluatedStmt *Eval = ensureEvaluatedStmt(); |
| if (Eval->CheckedICE) |
| // We have already checked whether this subexpression is an |
| // integral constant expression. |
| return Eval->IsICE; |
| |
| const auto *Init = cast<Expr>(Eval->Value); |
| assert(!Init->isValueDependent()); |
| |
| // In C++11, evaluate the initializer to check whether it's a constant |
| // expression. |
| if (getASTContext().getLangOpts().CPlusPlus11) { |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| evaluateValue(Notes); |
| return Eval->IsICE; |
| } |
| |
| // It's an ICE whether or not the definition we found is |
| // out-of-line. See DR 721 and the discussion in Clang PR |
| // 6206 for details. |
| |
| if (Eval->CheckingICE) |
| return false; |
| Eval->CheckingICE = true; |
| |
| Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); |
| Eval->CheckingICE = false; |
| Eval->CheckedICE = true; |
| return Eval->IsICE; |
| } |
| |
| bool VarDecl::isParameterPack() const { |
| return isa<PackExpansionType>(getType()); |
| } |
| |
| template<typename DeclT> |
| static DeclT *getDefinitionOrSelf(DeclT *D) { |
| assert(D); |
| if (auto *Def = D->getDefinition()) |
| return Def; |
| return D; |
| } |
| |
| bool VarDecl::isEscapingByref() const { |
| return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; |
| } |
| |
| bool VarDecl::isNonEscapingByref() const { |
| return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; |
| } |
| |
| VarDecl *VarDecl::getTemplateInstantiationPattern() const { |
| const VarDecl *VD = this; |
| |
| // If this is an instantiated member, walk back to the template from which |
| // it was instantiated. |
| if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { |
| if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { |
| VD = VD->getInstantiatedFromStaticDataMember(); |
| while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) |
| VD = NewVD; |
| } |
| } |
| |
| // If it's an instantiated variable template specialization, find the |
| // template or partial specialization from which it was instantiated. |
| if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { |
| if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { |
| auto From = VDTemplSpec->getInstantiatedFrom(); |
| if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { |
| while (!VTD->isMemberSpecialization()) { |
| auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); |
| if (!NewVTD) |
| break; |
| VTD = NewVTD; |
| } |
| return getDefinitionOrSelf(VTD->getTemplatedDecl()); |
| } |
| if (auto *VTPSD = |
| From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { |
| while (!VTPSD->isMemberSpecialization()) { |
| auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); |
| if (!NewVTPSD) |
| break; |
| VTPSD = NewVTPSD; |
| } |
| return getDefinitionOrSelf<VarDecl>(VTPSD); |
| } |
| } |
| } |
| |
| // If this is the pattern of a variable template, find where it was |
| // instantiated from. FIXME: Is this necessary? |
| if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { |
| while (!VarTemplate->isMemberSpecialization()) { |
| auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); |
| if (!NewVT) |
| break; |
| VarTemplate = NewVT; |
| } |
| |
| return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); |
| } |
| |
| if (VD == this) |
| return nullptr; |
| return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); |
| } |
| |
| VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) |
| return cast<VarDecl>(MSI->getInstantiatedFrom()); |
| |
| return nullptr; |
| } |
| |
| TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { |
| if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) |
| return Spec->getSpecializationKind(); |
| |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) |
| return MSI->getTemplateSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| TemplateSpecializationKind |
| VarDecl::getTemplateSpecializationKindForInstantiation() const { |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) |
| return MSI->getTemplateSpecializationKind(); |
| |
| if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) |
| return Spec->getSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| SourceLocation VarDecl::getPointOfInstantiation() const { |
| if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) |
| return Spec->getPointOfInstantiation(); |
| |
| if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) |
| return MSI->getPointOfInstantiation(); |
| |
| return SourceLocation(); |
| } |
| |
| VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { |
| return getASTContext().getTemplateOrSpecializationInfo(this) |
| .dyn_cast<VarTemplateDecl *>(); |
| } |
| |
| void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { |
| getASTContext().setTemplateOrSpecializationInfo(this, Template); |
| } |
| |
| bool VarDecl::isKnownToBeDefined() const { |
| const auto &LangOpts = getASTContext().getLangOpts(); |
| // In CUDA mode without relocatable device code, variables of form 'extern |
| // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared |
| // memory pool. These are never undefined variables, even if they appear |
| // inside of an anon namespace or static function. |
| // |
| // With CUDA relocatable device code enabled, these variables don't get |
| // special handling; they're treated like regular extern variables. |
| if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && |
| hasExternalStorage() && hasAttr<CUDASharedAttr>() && |
| isa<IncompleteArrayType>(getType())) |
| return true; |
| |
| return hasDefinition(); |
| } |
| |
| bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { |
| return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || |
| (!Ctx.getLangOpts().RegisterStaticDestructors && |
| !hasAttr<AlwaysDestroyAttr>())); |
| } |
| |
| QualType::DestructionKind |
| VarDecl::needsDestruction(const ASTContext &Ctx) const { |
| if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) |
| if (Eval->HasConstantDestruction) |
| return QualType::DK_none; |
| |
| if (isNoDestroy(Ctx)) |
| return QualType::DK_none; |
| |
| return getType().isDestructedType(); |
| } |
| |
| MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { |
| if (isStaticDataMember()) |
| // FIXME: Remove ? |
| // return getASTContext().getInstantiatedFromStaticDataMember(this); |
| return getASTContext().getTemplateOrSpecializationInfo(this) |
| .dyn_cast<MemberSpecializationInfo *>(); |
| return nullptr; |
| } |
| |
| void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, |
| SourceLocation PointOfInstantiation) { |
| assert((isa<VarTemplateSpecializationDecl>(this) || |
| getMemberSpecializationInfo()) && |
| "not a variable or static data member template specialization"); |
| |
| if (VarTemplateSpecializationDecl *Spec = |
| dyn_cast<VarTemplateSpecializationDecl>(this)) { |
| Spec->setSpecializationKind(TSK); |
| if (TSK != TSK_ExplicitSpecialization && |
| PointOfInstantiation.isValid() && |
| Spec->getPointOfInstantiation().isInvalid()) { |
| Spec->setPointOfInstantiation(PointOfInstantiation); |
| if (ASTMutationListener *L = getASTContext().getASTMutationListener()) |
| L->InstantiationRequested(this); |
| } |
| } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { |
| MSI->setTemplateSpecializationKind(TSK); |
| if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && |
| MSI->getPointOfInstantiation().isInvalid()) { |
| MSI->setPointOfInstantiation(PointOfInstantiation); |
| if (ASTMutationListener *L = getASTContext().getASTMutationListener()) |
| L->InstantiationRequested(this); |
| } |
| } |
| } |
| |
| void |
| VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, |
| TemplateSpecializationKind TSK) { |
| assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && |
| "Previous template or instantiation?"); |
| getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ParmVarDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| QualType T, TypeSourceInfo *TInfo, |
| StorageClass S, Expr *DefArg) { |
| return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, |
| S, DefArg); |
| } |
| |
| QualType ParmVarDecl::getOriginalType() const { |
| TypeSourceInfo *TSI = getTypeSourceInfo(); |
| QualType T = TSI ? TSI->getType() : getType(); |
| if (const auto *DT = dyn_cast<DecayedType>(T)) |
| return DT->getOriginalType(); |
| return T; |
| } |
| |
| ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| return new (C, ID) |
| ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), |
| nullptr, QualType(), nullptr, SC_None, nullptr); |
| } |
| |
| SourceRange ParmVarDecl::getSourceRange() const { |
| if (!hasInheritedDefaultArg()) { |
| SourceRange ArgRange = getDefaultArgRange(); |
| if (ArgRange.isValid()) |
| return SourceRange(getOuterLocStart(), ArgRange.getEnd()); |
| } |
| |
| // DeclaratorDecl considers the range of postfix types as overlapping with the |
| // declaration name, but this is not the case with parameters in ObjC methods. |
| if (isa<ObjCMethodDecl>(getDeclContext())) |
| return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); |
| |
| return DeclaratorDecl::getSourceRange(); |
| } |
| |
| Expr *ParmVarDecl::getDefaultArg() { |
| assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); |
| assert(!hasUninstantiatedDefaultArg() && |
| "Default argument is not yet instantiated!"); |
| |
| Expr *Arg = getInit(); |
| if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) |
| return E->getSubExpr(); |
| |
| return Arg; |
| } |
| |
| void ParmVarDecl::setDefaultArg(Expr *defarg) { |
| ParmVarDeclBits.DefaultArgKind = DAK_Normal; |
| Init = defarg; |
| } |
| |
| SourceRange ParmVarDecl::getDefaultArgRange() const { |
| switch (ParmVarDeclBits.DefaultArgKind) { |
| case DAK_None: |
| case DAK_Unparsed: |
| // Nothing we can do here. |
| return SourceRange(); |
| |
| case DAK_Uninstantiated: |
| return getUninstantiatedDefaultArg()->getSourceRange(); |
| |
| case DAK_Normal: |
| if (const Expr *E = getInit()) |
| return E->getSourceRange(); |
| |
| // Missing an actual expression, may be invalid. |
| return SourceRange(); |
| } |
| llvm_unreachable("Invalid default argument kind."); |
| } |
| |
| void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { |
| ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; |
| Init = arg; |
| } |
| |
| Expr *ParmVarDecl::getUninstantiatedDefaultArg() { |
| assert(hasUninstantiatedDefaultArg() && |
| "Wrong kind of initialization expression!"); |
| return cast_or_null<Expr>(Init.get<Stmt *>()); |
| } |
| |
| bool ParmVarDecl::hasDefaultArg() const { |
| // FIXME: We should just return false for DAK_None here once callers are |
| // prepared for the case that we encountered an invalid default argument and |
| // were unable to even build an invalid expression. |
| return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || |
| !Init.isNull(); |
| } |
| |
| void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { |
| getASTContext().setParameterIndex(this, parameterIndex); |
| ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; |
| } |
| |
| unsigned ParmVarDecl::getParameterIndexLarge() const { |
| return getASTContext().getParameterIndex(this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FunctionDecl Implementation |
| //===----------------------------------------------------------------------===// |
| |
| FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, |
| SourceLocation StartLoc, |
| const DeclarationNameInfo &NameInfo, QualType T, |
| TypeSourceInfo *TInfo, StorageClass S, |
| bool isInlineSpecified, |
| ConstexprSpecKind ConstexprKind) |
| : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, |
| StartLoc), |
| DeclContext(DK), redeclarable_base(C), ODRHash(0), |
| EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { |
| assert(T.isNull() || T->isFunctionType()); |
| FunctionDeclBits.SClass = S; |
| FunctionDeclBits.IsInline = isInlineSpecified; |
| FunctionDeclBits.IsInlineSpecified = isInlineSpecified; |
| FunctionDeclBits.IsVirtualAsWritten = false; |
| FunctionDeclBits.IsPure = false; |
| FunctionDeclBits.HasInheritedPrototype = false; |
| FunctionDeclBits.HasWrittenPrototype = true; |
| FunctionDeclBits.IsDeleted = false; |
| FunctionDeclBits.IsTrivial = false; |
| FunctionDeclBits.IsTrivialForCall = false; |
| FunctionDeclBits.IsDefaulted = false; |
| FunctionDeclBits.IsExplicitlyDefaulted = false; |
| FunctionDeclBits.HasImplicitReturnZero = false; |
| FunctionDeclBits.IsLateTemplateParsed = false; |
| FunctionDeclBits.ConstexprKind = ConstexprKind; |
| FunctionDeclBits.InstantiationIsPending = false; |
| FunctionDeclBits.UsesSEHTry = false; |
| FunctionDeclBits.HasSkippedBody = false; |
| FunctionDeclBits.WillHaveBody = false; |
| FunctionDeclBits.IsMultiVersion = false; |
| FunctionDeclBits.IsCopyDeductionCandidate = false; |
| FunctionDeclBits.HasODRHash = false; |
| } |
| |
| void FunctionDecl::getNameForDiagnostic( |
| raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { |
| NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); |
| const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); |
| if (TemplateArgs) |
| printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); |
| } |
| |
| bool FunctionDecl::isVariadic() const { |
| if (const auto *FT = getType()->getAs<FunctionProtoType>()) |
| return FT->isVariadic(); |
| return false; |
| } |
| |
| bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { |
| for (auto I : redecls()) { |
| if (I->doesThisDeclarationHaveABody()) { |
| Definition = I; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool FunctionDecl::hasTrivialBody() const |
| { |
| Stmt *S = getBody(); |
| if (!S) { |
| // Since we don't have a body for this function, we don't know if it's |
| // trivial or not. |
| return false; |
| } |
| |
| if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) |
| return true; |
| return false; |
| } |
| |
| bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { |
| for (auto I : redecls()) { |
| if (I->isThisDeclarationADefinition()) { |
| Definition = I; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { |
| if (!hasBody(Definition)) |
| return nullptr; |
| |
| if (Definition->Body) |
| return Definition->Body.get(getASTContext().getExternalSource()); |
| |
| return nullptr; |
| } |
| |
| void FunctionDecl::setBody(Stmt *B) { |
| Body = B; |
| if (B) |
| EndRangeLoc = B->getEndLoc(); |
| } |
| |
| void FunctionDecl::setPure(bool P) { |
| FunctionDeclBits.IsPure = P; |
| if (P) |
| if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) |
| Parent->markedVirtualFunctionPure(); |
| } |
| |
| template<std::size_t Len> |
| static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { |
| IdentifierInfo *II = ND->getIdentifier(); |
| return II && II->isStr(Str); |
| } |
| |
| bool FunctionDecl::isMain() const { |
| const TranslationUnitDecl *tunit = |
| dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); |
| return tunit && |
| !tunit->getASTContext().getLangOpts().Freestanding && |
| isNamed(this, "main"); |
| } |
| |
| bool FunctionDecl::isMSVCRTEntryPoint() const { |
| const TranslationUnitDecl *TUnit = |
| dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); |
| if (!TUnit) |
| return false; |
| |
| // Even though we aren't really targeting MSVCRT if we are freestanding, |
| // semantic analysis for these functions remains the same. |
| |
| // MSVCRT entry points only exist on MSVCRT targets. |
| if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) |
| return |