| //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit OpenMP nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCleanup.h" |
| #include "CGOpenMPRuntime.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/StmtOpenMP.h" |
| #include "clang/AST/DeclOpenMP.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| /// Lexical scope for OpenMP executable constructs, that handles correct codegen |
| /// for captured expressions. |
| class OMPLexicalScope : public CodeGenFunction::LexicalScope { |
| void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { |
| for (const auto *C : S.clauses()) { |
| if (const auto *CPI = OMPClauseWithPreInit::get(C)) { |
| if (const auto *PreInit = |
| cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { |
| for (const auto *I : PreInit->decls()) { |
| if (!I->hasAttr<OMPCaptureNoInitAttr>()) { |
| CGF.EmitVarDecl(cast<VarDecl>(*I)); |
| } else { |
| CodeGenFunction::AutoVarEmission Emission = |
| CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); |
| CGF.EmitAutoVarCleanups(Emission); |
| } |
| } |
| } |
| } |
| } |
| } |
| CodeGenFunction::OMPPrivateScope InlinedShareds; |
| |
| static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { |
| return CGF.LambdaCaptureFields.lookup(VD) || |
| (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || |
| (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl)); |
| } |
| |
| public: |
| OMPLexicalScope( |
| CodeGenFunction &CGF, const OMPExecutableDirective &S, |
| const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, |
| const bool EmitPreInitStmt = true) |
| : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), |
| InlinedShareds(CGF) { |
| if (EmitPreInitStmt) |
| emitPreInitStmt(CGF, S); |
| if (!CapturedRegion.hasValue()) |
| return; |
| assert(S.hasAssociatedStmt() && |
| "Expected associated statement for inlined directive."); |
| const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); |
| for (const auto &C : CS->captures()) { |
| if (C.capturesVariable() || C.capturesVariableByCopy()) { |
| auto *VD = C.getCapturedVar(); |
| assert(VD == VD->getCanonicalDecl() && |
| "Canonical decl must be captured."); |
| DeclRefExpr DRE( |
| CGF.getContext(), const_cast<VarDecl *>(VD), |
| isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && |
| InlinedShareds.isGlobalVarCaptured(VD)), |
| VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); |
| InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { |
| return CGF.EmitLValue(&DRE).getAddress(); |
| }); |
| } |
| } |
| (void)InlinedShareds.Privatize(); |
| } |
| }; |
| |
| /// Lexical scope for OpenMP parallel construct, that handles correct codegen |
| /// for captured expressions. |
| class OMPParallelScope final : public OMPLexicalScope { |
| bool EmitPreInitStmt(const OMPExecutableDirective &S) { |
| OpenMPDirectiveKind Kind = S.getDirectiveKind(); |
| return !(isOpenMPTargetExecutionDirective(Kind) || |
| isOpenMPLoopBoundSharingDirective(Kind)) && |
| isOpenMPParallelDirective(Kind); |
| } |
| |
| public: |
| OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) |
| : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, |
| EmitPreInitStmt(S)) {} |
| }; |
| |
| /// Lexical scope for OpenMP teams construct, that handles correct codegen |
| /// for captured expressions. |
| class OMPTeamsScope final : public OMPLexicalScope { |
| bool EmitPreInitStmt(const OMPExecutableDirective &S) { |
| OpenMPDirectiveKind Kind = S.getDirectiveKind(); |
| return !isOpenMPTargetExecutionDirective(Kind) && |
| isOpenMPTeamsDirective(Kind); |
| } |
| |
| public: |
| OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) |
| : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, |
| EmitPreInitStmt(S)) {} |
| }; |
| |
| /// Private scope for OpenMP loop-based directives, that supports capturing |
| /// of used expression from loop statement. |
| class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { |
| void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopDirective &S) { |
| CodeGenFunction::OMPMapVars PreCondVars; |
| llvm::DenseSet<const VarDecl *> EmittedAsPrivate; |
| for (const auto *E : S.counters()) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| EmittedAsPrivate.insert(VD->getCanonicalDecl()); |
| (void)PreCondVars.setVarAddr( |
| CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); |
| } |
| // Mark private vars as undefs. |
| for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { |
| for (const Expr *IRef : C->varlists()) { |
| const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); |
| if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { |
| (void)PreCondVars.setVarAddr( |
| CGF, OrigVD, |
| Address(llvm::UndefValue::get( |
| CGF.ConvertTypeForMem(CGF.getContext().getPointerType( |
| OrigVD->getType().getNonReferenceType()))), |
| CGF.getContext().getDeclAlign(OrigVD))); |
| } |
| } |
| } |
| (void)PreCondVars.apply(CGF); |
| // Emit init, __range and __end variables for C++ range loops. |
| const Stmt *Body = |
| S.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); |
| for (unsigned Cnt = 0; Cnt < S.getCollapsedNumber(); ++Cnt) { |
| Body = Body->IgnoreContainers(); |
| if (auto *For = dyn_cast<ForStmt>(Body)) { |
| Body = For->getBody(); |
| } else { |
| assert(isa<CXXForRangeStmt>(Body) && |
| "Expected canonical for loop or range-based for loop."); |
| auto *CXXFor = cast<CXXForRangeStmt>(Body); |
| if (const Stmt *Init = CXXFor->getInit()) |
| CGF.EmitStmt(Init); |
| CGF.EmitStmt(CXXFor->getRangeStmt()); |
| CGF.EmitStmt(CXXFor->getEndStmt()); |
| Body = CXXFor->getBody(); |
| } |
| } |
| if (const auto *PreInits = cast_or_null<DeclStmt>(S.getPreInits())) { |
| for (const auto *I : PreInits->decls()) |
| CGF.EmitVarDecl(cast<VarDecl>(*I)); |
| } |
| PreCondVars.restore(CGF); |
| } |
| |
| public: |
| OMPLoopScope(CodeGenFunction &CGF, const OMPLoopDirective &S) |
| : CodeGenFunction::RunCleanupsScope(CGF) { |
| emitPreInitStmt(CGF, S); |
| } |
| }; |
| |
| class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { |
| CodeGenFunction::OMPPrivateScope InlinedShareds; |
| |
| static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { |
| return CGF.LambdaCaptureFields.lookup(VD) || |
| (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || |
| (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && |
| cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); |
| } |
| |
| public: |
| OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) |
| : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), |
| InlinedShareds(CGF) { |
| for (const auto *C : S.clauses()) { |
| if (const auto *CPI = OMPClauseWithPreInit::get(C)) { |
| if (const auto *PreInit = |
| cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { |
| for (const auto *I : PreInit->decls()) { |
| if (!I->hasAttr<OMPCaptureNoInitAttr>()) { |
| CGF.EmitVarDecl(cast<VarDecl>(*I)); |
| } else { |
| CodeGenFunction::AutoVarEmission Emission = |
| CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); |
| CGF.EmitAutoVarCleanups(Emission); |
| } |
| } |
| } |
| } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { |
| for (const Expr *E : UDP->varlists()) { |
| const Decl *D = cast<DeclRefExpr>(E)->getDecl(); |
| if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) |
| CGF.EmitVarDecl(*OED); |
| } |
| } |
| } |
| if (!isOpenMPSimdDirective(S.getDirectiveKind())) |
| CGF.EmitOMPPrivateClause(S, InlinedShareds); |
| if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { |
| if (const Expr *E = TG->getReductionRef()) |
| CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); |
| } |
| const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); |
| while (CS) { |
| for (auto &C : CS->captures()) { |
| if (C.capturesVariable() || C.capturesVariableByCopy()) { |
| auto *VD = C.getCapturedVar(); |
| assert(VD == VD->getCanonicalDecl() && |
| "Canonical decl must be captured."); |
| DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), |
| isCapturedVar(CGF, VD) || |
| (CGF.CapturedStmtInfo && |
| InlinedShareds.isGlobalVarCaptured(VD)), |
| VD->getType().getNonReferenceType(), VK_LValue, |
| C.getLocation()); |
| InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { |
| return CGF.EmitLValue(&DRE).getAddress(); |
| }); |
| } |
| } |
| CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); |
| } |
| (void)InlinedShareds.Privatize(); |
| } |
| }; |
| |
| } // namespace |
| |
| static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, |
| const OMPExecutableDirective &S, |
| const RegionCodeGenTy &CodeGen); |
| |
| LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { |
| if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { |
| if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { |
| OrigVD = OrigVD->getCanonicalDecl(); |
| bool IsCaptured = |
| LambdaCaptureFields.lookup(OrigVD) || |
| (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || |
| (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); |
| DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, |
| OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); |
| return EmitLValue(&DRE); |
| } |
| } |
| return EmitLValue(E); |
| } |
| |
| llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { |
| ASTContext &C = getContext(); |
| llvm::Value *Size = nullptr; |
| auto SizeInChars = C.getTypeSizeInChars(Ty); |
| if (SizeInChars.isZero()) { |
| // getTypeSizeInChars() returns 0 for a VLA. |
| while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { |
| VlaSizePair VlaSize = getVLASize(VAT); |
| Ty = VlaSize.Type; |
| Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) |
| : VlaSize.NumElts; |
| } |
| SizeInChars = C.getTypeSizeInChars(Ty); |
| if (SizeInChars.isZero()) |
| return llvm::ConstantInt::get(SizeTy, /*V=*/0); |
| return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); |
| } |
| return CGM.getSize(SizeInChars); |
| } |
| |
| void CodeGenFunction::GenerateOpenMPCapturedVars( |
| const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { |
| const RecordDecl *RD = S.getCapturedRecordDecl(); |
| auto CurField = RD->field_begin(); |
| auto CurCap = S.captures().begin(); |
| for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), |
| E = S.capture_init_end(); |
| I != E; ++I, ++CurField, ++CurCap) { |
| if (CurField->hasCapturedVLAType()) { |
| const VariableArrayType *VAT = CurField->getCapturedVLAType(); |
| llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; |
| CapturedVars.push_back(Val); |
| } else if (CurCap->capturesThis()) { |
| CapturedVars.push_back(CXXThisValue); |
| } else if (CurCap->capturesVariableByCopy()) { |
| llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); |
| |
| // If the field is not a pointer, we need to save the actual value |
| // and load it as a void pointer. |
| if (!CurField->getType()->isAnyPointerType()) { |
| ASTContext &Ctx = getContext(); |
| Address DstAddr = CreateMemTemp( |
| Ctx.getUIntPtrType(), |
| Twine(CurCap->getCapturedVar()->getName(), ".casted")); |
| LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); |
| |
| llvm::Value *SrcAddrVal = EmitScalarConversion( |
| DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), |
| Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); |
| LValue SrcLV = |
| MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); |
| |
| // Store the value using the source type pointer. |
| EmitStoreThroughLValue(RValue::get(CV), SrcLV); |
| |
| // Load the value using the destination type pointer. |
| CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); |
| } |
| CapturedVars.push_back(CV); |
| } else { |
| assert(CurCap->capturesVariable() && "Expected capture by reference."); |
| CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); |
| } |
| } |
| } |
| |
| static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, |
| QualType DstType, StringRef Name, |
| LValue AddrLV) { |
| ASTContext &Ctx = CGF.getContext(); |
| |
| llvm::Value *CastedPtr = CGF.EmitScalarConversion( |
| AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), |
| Ctx.getPointerType(DstType), Loc); |
| Address TmpAddr = |
| CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) |
| .getAddress(); |
| return TmpAddr; |
| } |
| |
| static QualType getCanonicalParamType(ASTContext &C, QualType T) { |
| if (T->isLValueReferenceType()) |
| return C.getLValueReferenceType( |
| getCanonicalParamType(C, T.getNonReferenceType()), |
| /*SpelledAsLValue=*/false); |
| if (T->isPointerType()) |
| return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); |
| if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { |
| if (const auto *VLA = dyn_cast<VariableArrayType>(A)) |
| return getCanonicalParamType(C, VLA->getElementType()); |
| if (!A->isVariablyModifiedType()) |
| return C.getCanonicalType(T); |
| } |
| return C.getCanonicalParamType(T); |
| } |
| |
| namespace { |
| /// Contains required data for proper outlined function codegen. |
| struct FunctionOptions { |
| /// Captured statement for which the function is generated. |
| const CapturedStmt *S = nullptr; |
| /// true if cast to/from UIntPtr is required for variables captured by |
| /// value. |
| const bool UIntPtrCastRequired = true; |
| /// true if only casted arguments must be registered as local args or VLA |
| /// sizes. |
| const bool RegisterCastedArgsOnly = false; |
| /// Name of the generated function. |
| const StringRef FunctionName; |
| explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, |
| bool RegisterCastedArgsOnly, |
| StringRef FunctionName) |
| : S(S), UIntPtrCastRequired(UIntPtrCastRequired), |
| RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), |
| FunctionName(FunctionName) {} |
| }; |
| } |
| |
| static llvm::Function *emitOutlinedFunctionPrologue( |
| CodeGenFunction &CGF, FunctionArgList &Args, |
| llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> |
| &LocalAddrs, |
| llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> |
| &VLASizes, |
| llvm::Value *&CXXThisValue, const FunctionOptions &FO) { |
| const CapturedDecl *CD = FO.S->getCapturedDecl(); |
| const RecordDecl *RD = FO.S->getCapturedRecordDecl(); |
| assert(CD->hasBody() && "missing CapturedDecl body"); |
| |
| CXXThisValue = nullptr; |
| // Build the argument list. |
| CodeGenModule &CGM = CGF.CGM; |
| ASTContext &Ctx = CGM.getContext(); |
| FunctionArgList TargetArgs; |
| Args.append(CD->param_begin(), |
| std::next(CD->param_begin(), CD->getContextParamPosition())); |
| TargetArgs.append( |
| CD->param_begin(), |
| std::next(CD->param_begin(), CD->getContextParamPosition())); |
| auto I = FO.S->captures().begin(); |
| FunctionDecl *DebugFunctionDecl = nullptr; |
| if (!FO.UIntPtrCastRequired) { |
| FunctionProtoType::ExtProtoInfo EPI; |
| QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); |
| DebugFunctionDecl = FunctionDecl::Create( |
| Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), |
| SourceLocation(), DeclarationName(), FunctionTy, |
| Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, |
| /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); |
| } |
| for (const FieldDecl *FD : RD->fields()) { |
| QualType ArgType = FD->getType(); |
| IdentifierInfo *II = nullptr; |
| VarDecl *CapVar = nullptr; |
| |
| // If this is a capture by copy and the type is not a pointer, the outlined |
| // function argument type should be uintptr and the value properly casted to |
| // uintptr. This is necessary given that the runtime library is only able to |
| // deal with pointers. We can pass in the same way the VLA type sizes to the |
| // outlined function. |
| if (FO.UIntPtrCastRequired && |
| ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || |
| I->capturesVariableArrayType())) |
| ArgType = Ctx.getUIntPtrType(); |
| |
| if (I->capturesVariable() || I->capturesVariableByCopy()) { |
| CapVar = I->getCapturedVar(); |
| II = CapVar->getIdentifier(); |
| } else if (I->capturesThis()) { |
| II = &Ctx.Idents.get("this"); |
| } else { |
| assert(I->capturesVariableArrayType()); |
| II = &Ctx.Idents.get("vla"); |
| } |
| if (ArgType->isVariablyModifiedType()) |
| ArgType = getCanonicalParamType(Ctx, ArgType); |
| VarDecl *Arg; |
| if (DebugFunctionDecl && (CapVar || I->capturesThis())) { |
| Arg = ParmVarDecl::Create( |
| Ctx, DebugFunctionDecl, |
| CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), |
| CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, |
| /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); |
| } else { |
| Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), |
| II, ArgType, ImplicitParamDecl::Other); |
| } |
| Args.emplace_back(Arg); |
| // Do not cast arguments if we emit function with non-original types. |
| TargetArgs.emplace_back( |
| FO.UIntPtrCastRequired |
| ? Arg |
| : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); |
| ++I; |
| } |
| Args.append( |
| std::next(CD->param_begin(), CD->getContextParamPosition() + 1), |
| CD->param_end()); |
| TargetArgs.append( |
| std::next(CD->param_begin(), CD->getContextParamPosition() + 1), |
| CD->param_end()); |
| |
| // Create the function declaration. |
| const CGFunctionInfo &FuncInfo = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); |
| llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); |
| |
| auto *F = |
| llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, |
| FO.FunctionName, &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); |
| if (CD->isNothrow()) |
| F->setDoesNotThrow(); |
| F->setDoesNotRecurse(); |
| |
| // Generate the function. |
| CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, |
| FO.S->getBeginLoc(), CD->getBody()->getBeginLoc()); |
| unsigned Cnt = CD->getContextParamPosition(); |
| I = FO.S->captures().begin(); |
| for (const FieldDecl *FD : RD->fields()) { |
| // Do not map arguments if we emit function with non-original types. |
| Address LocalAddr(Address::invalid()); |
| if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { |
| LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], |
| TargetArgs[Cnt]); |
| } else { |
| LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); |
| } |
| // If we are capturing a pointer by copy we don't need to do anything, just |
| // use the value that we get from the arguments. |
| if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { |
| const VarDecl *CurVD = I->getCapturedVar(); |
| if (!FO.RegisterCastedArgsOnly) |
| LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); |
| ++Cnt; |
| ++I; |
| continue; |
| } |
| |
| LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), |
| AlignmentSource::Decl); |
| if (FD->hasCapturedVLAType()) { |
| if (FO.UIntPtrCastRequired) { |
| ArgLVal = CGF.MakeAddrLValue( |
| castValueFromUintptr(CGF, I->getLocation(), FD->getType(), |
| Args[Cnt]->getName(), ArgLVal), |
| FD->getType(), AlignmentSource::Decl); |
| } |
| llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); |
| const VariableArrayType *VAT = FD->getCapturedVLAType(); |
| VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); |
| } else if (I->capturesVariable()) { |
| const VarDecl *Var = I->getCapturedVar(); |
| QualType VarTy = Var->getType(); |
| Address ArgAddr = ArgLVal.getAddress(); |
| if (ArgLVal.getType()->isLValueReferenceType()) { |
| ArgAddr = CGF.EmitLoadOfReference(ArgLVal); |
| } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { |
| assert(ArgLVal.getType()->isPointerType()); |
| ArgAddr = CGF.EmitLoadOfPointer( |
| ArgAddr, ArgLVal.getType()->castAs<PointerType>()); |
| } |
| if (!FO.RegisterCastedArgsOnly) { |
| LocalAddrs.insert( |
| {Args[Cnt], |
| {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); |
| } |
| } else if (I->capturesVariableByCopy()) { |
| assert(!FD->getType()->isAnyPointerType() && |
| "Not expecting a captured pointer."); |
| const VarDecl *Var = I->getCapturedVar(); |
| LocalAddrs.insert({Args[Cnt], |
| {Var, FO.UIntPtrCastRequired |
| ? castValueFromUintptr( |
| CGF, I->getLocation(), FD->getType(), |
| Args[Cnt]->getName(), ArgLVal) |
| : ArgLVal.getAddress()}}); |
| } else { |
| // If 'this' is captured, load it into CXXThisValue. |
| assert(I->capturesThis()); |
| CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); |
| LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress()}}); |
| } |
| ++Cnt; |
| ++I; |
| } |
| |
| return F; |
| } |
| |
| llvm::Function * |
| CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { |
| assert( |
| CapturedStmtInfo && |
| "CapturedStmtInfo should be set when generating the captured function"); |
| const CapturedDecl *CD = S.getCapturedDecl(); |
| // Build the argument list. |
| bool NeedWrapperFunction = |
| getDebugInfo() && |
| CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo; |
| FunctionArgList Args; |
| llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; |
| llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| Out << CapturedStmtInfo->getHelperName(); |
| if (NeedWrapperFunction) |
| Out << "_debug__"; |
| FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, |
| Out.str()); |
| llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, |
| VLASizes, CXXThisValue, FO); |
| CodeGenFunction::OMPPrivateScope LocalScope(*this); |
| for (const auto &LocalAddrPair : LocalAddrs) { |
| if (LocalAddrPair.second.first) { |
| LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { |
| return LocalAddrPair.second.second; |
| }); |
| } |
| } |
| (void)LocalScope.Privatize(); |
| for (const auto &VLASizePair : VLASizes) |
| VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; |
| PGO.assignRegionCounters(GlobalDecl(CD), F); |
| CapturedStmtInfo->EmitBody(*this, CD->getBody()); |
| (void)LocalScope.ForceCleanup(); |
| FinishFunction(CD->getBodyRBrace()); |
| if (!NeedWrapperFunction) |
| return F; |
| |
| FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, |
| /*RegisterCastedArgsOnly=*/true, |
| CapturedStmtInfo->getHelperName()); |
| CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); |
| WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; |
| Args.clear(); |
| LocalAddrs.clear(); |
| VLASizes.clear(); |
| llvm::Function *WrapperF = |
| emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, |
| WrapperCGF.CXXThisValue, WrapperFO); |
| llvm::SmallVector<llvm::Value *, 4> CallArgs; |
| for (const auto *Arg : Args) { |
| llvm::Value *CallArg; |
| auto I = LocalAddrs.find(Arg); |
| if (I != LocalAddrs.end()) { |
| LValue LV = WrapperCGF.MakeAddrLValue( |
| I->second.second, |
| I->second.first ? I->second.first->getType() : Arg->getType(), |
| AlignmentSource::Decl); |
| CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); |
| } else { |
| auto EI = VLASizes.find(Arg); |
| if (EI != VLASizes.end()) { |
| CallArg = EI->second.second; |
| } else { |
| LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), |
| Arg->getType(), |
| AlignmentSource::Decl); |
| CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); |
| } |
| } |
| CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); |
| } |
| CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, S.getBeginLoc(), |
| F, CallArgs); |
| WrapperCGF.FinishFunction(); |
| return WrapperF; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // OpenMP Directive Emission |
| //===----------------------------------------------------------------------===// |
| void CodeGenFunction::EmitOMPAggregateAssign( |
| Address DestAddr, Address SrcAddr, QualType OriginalType, |
| const llvm::function_ref<void(Address, Address)> CopyGen) { |
| // Perform element-by-element initialization. |
| QualType ElementTy; |
| |
| // Drill down to the base element type on both arrays. |
| const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); |
| llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); |
| SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); |
| |
| llvm::Value *SrcBegin = SrcAddr.getPointer(); |
| llvm::Value *DestBegin = DestAddr.getPointer(); |
| // Cast from pointer to array type to pointer to single element. |
| llvm::Value *DestEnd = Builder.CreateGEP(DestBegin, NumElements); |
| // The basic structure here is a while-do loop. |
| llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); |
| llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); |
| llvm::Value *IsEmpty = |
| Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); |
| Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); |
| |
| // Enter the loop body, making that address the current address. |
| llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); |
| EmitBlock(BodyBB); |
| |
| CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); |
| |
| llvm::PHINode *SrcElementPHI = |
| Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); |
| SrcElementPHI->addIncoming(SrcBegin, EntryBB); |
| Address SrcElementCurrent = |
| Address(SrcElementPHI, |
| SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); |
| |
| llvm::PHINode *DestElementPHI = |
| Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); |
| DestElementPHI->addIncoming(DestBegin, EntryBB); |
| Address DestElementCurrent = |
| Address(DestElementPHI, |
| DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); |
| |
| // Emit copy. |
| CopyGen(DestElementCurrent, SrcElementCurrent); |
| |
| // Shift the address forward by one element. |
| llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( |
| DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); |
| llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( |
| SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); |
| // Check whether we've reached the end. |
| llvm::Value *Done = |
| Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); |
| Builder.CreateCondBr(Done, DoneBB, BodyBB); |
| DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); |
| SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); |
| |
| // Done. |
| EmitBlock(DoneBB, /*IsFinished=*/true); |
| } |
| |
| void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, |
| Address SrcAddr, const VarDecl *DestVD, |
| const VarDecl *SrcVD, const Expr *Copy) { |
| if (OriginalType->isArrayType()) { |
| const auto *BO = dyn_cast<BinaryOperator>(Copy); |
| if (BO && BO->getOpcode() == BO_Assign) { |
| // Perform simple memcpy for simple copying. |
| LValue Dest = MakeAddrLValue(DestAddr, OriginalType); |
| LValue Src = MakeAddrLValue(SrcAddr, OriginalType); |
| EmitAggregateAssign(Dest, Src, OriginalType); |
| } else { |
| // For arrays with complex element types perform element by element |
| // copying. |
| EmitOMPAggregateAssign( |
| DestAddr, SrcAddr, OriginalType, |
| [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { |
| // Working with the single array element, so have to remap |
| // destination and source variables to corresponding array |
| // elements. |
| CodeGenFunction::OMPPrivateScope Remap(*this); |
| Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); |
| Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); |
| (void)Remap.Privatize(); |
| EmitIgnoredExpr(Copy); |
| }); |
| } |
| } else { |
| // Remap pseudo source variable to private copy. |
| CodeGenFunction::OMPPrivateScope Remap(*this); |
| Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); |
| Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); |
| (void)Remap.Privatize(); |
| // Emit copying of the whole variable. |
| EmitIgnoredExpr(Copy); |
| } |
| } |
| |
| bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, |
| OMPPrivateScope &PrivateScope) { |
| if (!HaveInsertPoint()) |
| return false; |
| bool DeviceConstTarget = |
| getLangOpts().OpenMPIsDevice && |
| isOpenMPTargetExecutionDirective(D.getDirectiveKind()); |
| bool FirstprivateIsLastprivate = false; |
| llvm::DenseSet<const VarDecl *> Lastprivates; |
| for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { |
| for (const auto *D : C->varlists()) |
| Lastprivates.insert( |
| cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); |
| } |
| llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; |
| llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
| getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); |
| // Force emission of the firstprivate copy if the directive does not emit |
| // outlined function, like omp for, omp simd, omp distribute etc. |
| bool MustEmitFirstprivateCopy = |
| CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; |
| for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { |
| auto IRef = C->varlist_begin(); |
| auto InitsRef = C->inits().begin(); |
| for (const Expr *IInit : C->private_copies()) { |
| const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); |
| bool ThisFirstprivateIsLastprivate = |
| Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; |
| const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); |
| if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && |
| !FD->getType()->isReferenceType() && |
| (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { |
| EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); |
| ++IRef; |
| ++InitsRef; |
| continue; |
| } |
| // Do not emit copy for firstprivate constant variables in target regions, |
| // captured by reference. |
| if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && |
| FD && FD->getType()->isReferenceType() && |
| (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { |
| (void)CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(*this, |
| OrigVD); |
| ++IRef; |
| ++InitsRef; |
| continue; |
| } |
| FirstprivateIsLastprivate = |
| FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; |
| if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { |
| const auto *VDInit = |
| cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); |
| bool IsRegistered; |
| DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), |
| /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, |
| (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); |
| LValue OriginalLVal; |
| if (!FD) { |
| // Check if the firstprivate variable is just a constant value. |
| ConstantEmission CE = tryEmitAsConstant(&DRE); |
| if (CE && !CE.isReference()) { |
| // Constant value, no need to create a copy. |
| ++IRef; |
| ++InitsRef; |
| continue; |
| } |
| if (CE && CE.isReference()) { |
| OriginalLVal = CE.getReferenceLValue(*this, &DRE); |
| } else { |
| assert(!CE && "Expected non-constant firstprivate."); |
| OriginalLVal = EmitLValue(&DRE); |
| } |
| } else { |
| OriginalLVal = EmitLValue(&DRE); |
| } |
| QualType Type = VD->getType(); |
| if (Type->isArrayType()) { |
| // Emit VarDecl with copy init for arrays. |
| // Get the address of the original variable captured in current |
| // captured region. |
| IsRegistered = PrivateScope.addPrivate( |
| OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { |
| AutoVarEmission Emission = EmitAutoVarAlloca(*VD); |
| const Expr *Init = VD->getInit(); |
| if (!isa<CXXConstructExpr>(Init) || |
| isTrivialInitializer(Init)) { |
| // Perform simple memcpy. |
| LValue Dest = |
| MakeAddrLValue(Emission.getAllocatedAddress(), Type); |
| EmitAggregateAssign(Dest, OriginalLVal, Type); |
| } else { |
| EmitOMPAggregateAssign( |
| Emission.getAllocatedAddress(), OriginalLVal.getAddress(), |
| Type, |
| [this, VDInit, Init](Address DestElement, |
| Address SrcElement) { |
| // Clean up any temporaries needed by the |
| // initialization. |
| RunCleanupsScope InitScope(*this); |
| // Emit initialization for single element. |
| setAddrOfLocalVar(VDInit, SrcElement); |
| EmitAnyExprToMem(Init, DestElement, |
| Init->getType().getQualifiers(), |
| /*IsInitializer*/ false); |
| LocalDeclMap.erase(VDInit); |
| }); |
| } |
| EmitAutoVarCleanups(Emission); |
| return Emission.getAllocatedAddress(); |
| }); |
| } else { |
| Address OriginalAddr = OriginalLVal.getAddress(); |
| IsRegistered = PrivateScope.addPrivate( |
| OrigVD, [this, VDInit, OriginalAddr, VD]() { |
| // Emit private VarDecl with copy init. |
| // Remap temp VDInit variable to the address of the original |
| // variable (for proper handling of captured global variables). |
| setAddrOfLocalVar(VDInit, OriginalAddr); |
| EmitDecl(*VD); |
| LocalDeclMap.erase(VDInit); |
| return GetAddrOfLocalVar(VD); |
| }); |
| } |
| assert(IsRegistered && |
| "firstprivate var already registered as private"); |
| // Silence the warning about unused variable. |
| (void)IsRegistered; |
| } |
| ++IRef; |
| ++InitsRef; |
| } |
| } |
| return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); |
| } |
| |
| void CodeGenFunction::EmitOMPPrivateClause( |
| const OMPExecutableDirective &D, |
| CodeGenFunction::OMPPrivateScope &PrivateScope) { |
| if (!HaveInsertPoint()) |
| return; |
| llvm::DenseSet<const VarDecl *> EmittedAsPrivate; |
| for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { |
| auto IRef = C->varlist_begin(); |
| for (const Expr *IInit : C->private_copies()) { |
| const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); |
| if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); |
| bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { |
| // Emit private VarDecl with copy init. |
| EmitDecl(*VD); |
| return GetAddrOfLocalVar(VD); |
| }); |
| assert(IsRegistered && "private var already registered as private"); |
| // Silence the warning about unused variable. |
| (void)IsRegistered; |
| } |
| ++IRef; |
| } |
| } |
| } |
| |
| bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { |
| if (!HaveInsertPoint()) |
| return false; |
| // threadprivate_var1 = master_threadprivate_var1; |
| // operator=(threadprivate_var2, master_threadprivate_var2); |
| // ... |
| // __kmpc_barrier(&loc, global_tid); |
| llvm::DenseSet<const VarDecl *> CopiedVars; |
| llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; |
| for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { |
| auto IRef = C->varlist_begin(); |
| auto ISrcRef = C->source_exprs().begin(); |
| auto IDestRef = C->destination_exprs().begin(); |
| for (const Expr *AssignOp : C->assignment_ops()) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); |
| QualType Type = VD->getType(); |
| if (CopiedVars.insert(VD->getCanonicalDecl()).second) { |
| // Get the address of the master variable. If we are emitting code with |
| // TLS support, the address is passed from the master as field in the |
| // captured declaration. |
| Address MasterAddr = Address::invalid(); |
| if (getLangOpts().OpenMPUseTLS && |
| getContext().getTargetInfo().isTLSSupported()) { |
| assert(CapturedStmtInfo->lookup(VD) && |
| "Copyin threadprivates should have been captured!"); |
| DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, |
| (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); |
| MasterAddr = EmitLValue(&DRE).getAddress(); |
| LocalDeclMap.erase(VD); |
| } else { |
| MasterAddr = |
| Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) |
| : CGM.GetAddrOfGlobal(VD), |
| getContext().getDeclAlign(VD)); |
| } |
| // Get the address of the threadprivate variable. |
| Address PrivateAddr = EmitLValue(*IRef).getAddress(); |
| if (CopiedVars.size() == 1) { |
| // At first check if current thread is a master thread. If it is, no |
| // need to copy data. |
| CopyBegin = createBasicBlock("copyin.not.master"); |
| CopyEnd = createBasicBlock("copyin.not.master.end"); |
| Builder.CreateCondBr( |
| Builder.CreateICmpNE( |
| Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), |
| Builder.CreatePtrToInt(PrivateAddr.getPointer(), |
| CGM.IntPtrTy)), |
| CopyBegin, CopyEnd); |
| EmitBlock(CopyBegin); |
| } |
| const auto *SrcVD = |
| cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); |
| const auto *DestVD = |
| cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); |
| EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); |
| } |
| ++IRef; |
| ++ISrcRef; |
| ++IDestRef; |
| } |
| } |
| if (CopyEnd) { |
| // Exit out of copying procedure for non-master thread. |
| EmitBlock(CopyEnd, /*IsFinished=*/true); |
| return true; |
| } |
| return false; |
| } |
| |
| bool CodeGenFunction::EmitOMPLastprivateClauseInit( |
| const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { |
| if (!HaveInsertPoint()) |
| return false; |
| bool HasAtLeastOneLastprivate = false; |
| llvm::DenseSet<const VarDecl *> SIMDLCVs; |
| if (isOpenMPSimdDirective(D.getDirectiveKind())) { |
| const auto *LoopDirective = cast<OMPLoopDirective>(&D); |
| for (const Expr *C : LoopDirective->counters()) { |
| SIMDLCVs.insert( |
| cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); |
| } |
| } |
| llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; |
| for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { |
| HasAtLeastOneLastprivate = true; |
| if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && |
| !getLangOpts().OpenMPSimd) |
| break; |
| auto IRef = C->varlist_begin(); |
| auto IDestRef = C->destination_exprs().begin(); |
| for (const Expr *IInit : C->private_copies()) { |
| // Keep the address of the original variable for future update at the end |
| // of the loop. |
| const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); |
| // Taskloops do not require additional initialization, it is done in |
| // runtime support library. |
| if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { |
| const auto *DestVD = |
| cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); |
| PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { |
| DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), |
| /*RefersToEnclosingVariableOrCapture=*/ |
| CapturedStmtInfo->lookup(OrigVD) != nullptr, |
| (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); |
| return EmitLValue(&DRE).getAddress(); |
| }); |
| // Check if the variable is also a firstprivate: in this case IInit is |
| // not generated. Initialization of this variable will happen in codegen |
| // for 'firstprivate' clause. |
| if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); |
| bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { |
| // Emit private VarDecl with copy init. |
| EmitDecl(*VD); |
| return GetAddrOfLocalVar(VD); |
| }); |
| assert(IsRegistered && |
| "lastprivate var already registered as private"); |
| (void)IsRegistered; |
| } |
| } |
| ++IRef; |
| ++IDestRef; |
| } |
| } |
| return HasAtLeastOneLastprivate; |
| } |
| |
| void CodeGenFunction::EmitOMPLastprivateClauseFinal( |
| const OMPExecutableDirective &D, bool NoFinals, |
| llvm::Value *IsLastIterCond) { |
| if (!HaveInsertPoint()) |
| return; |
| // Emit following code: |
| // if (<IsLastIterCond>) { |
| // orig_var1 = private_orig_var1; |
| // ... |
| // orig_varn = private_orig_varn; |
| // } |
| llvm::BasicBlock *ThenBB = nullptr; |
| llvm::BasicBlock *DoneBB = nullptr; |
| if (IsLastIterCond) { |
| ThenBB = createBasicBlock(".omp.lastprivate.then"); |
| DoneBB = createBasicBlock(".omp.lastprivate.done"); |
| Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); |
| EmitBlock(ThenBB); |
| } |
| llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; |
| llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; |
| if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { |
| auto IC = LoopDirective->counters().begin(); |
| for (const Expr *F : LoopDirective->finals()) { |
| const auto *D = |
| cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); |
| if (NoFinals) |
| AlreadyEmittedVars.insert(D); |
| else |
| LoopCountersAndUpdates[D] = F; |
| ++IC; |
| } |
| } |
| for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { |
| auto IRef = C->varlist_begin(); |
| auto ISrcRef = C->source_exprs().begin(); |
| auto IDestRef = C->destination_exprs().begin(); |
| for (const Expr *AssignOp : C->assignment_ops()) { |
| const auto *PrivateVD = |
| cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); |
| QualType Type = PrivateVD->getType(); |
| const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); |
| if (AlreadyEmittedVars.insert(CanonicalVD).second) { |
| // If lastprivate variable is a loop control variable for loop-based |
| // directive, update its value before copyin back to original |
| // variable. |
| if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) |
| EmitIgnoredExpr(FinalExpr); |
| const auto *SrcVD = |
| cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); |
| const auto *DestVD = |
| cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); |
| // Get the address of the original variable. |
| Address OriginalAddr = GetAddrOfLocalVar(DestVD); |
| // Get the address of the private variable. |
| Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); |
| if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) |
| PrivateAddr = |
| Address(Builder.CreateLoad(PrivateAddr), |
| getNaturalTypeAlignment(RefTy->getPointeeType())); |
| EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); |
| } |
| ++IRef; |
| ++ISrcRef; |
| ++IDestRef; |
| } |
| if (const Expr *PostUpdate = C->getPostUpdateExpr()) |
| EmitIgnoredExpr(PostUpdate); |
| } |
| if (IsLastIterCond) |
| EmitBlock(DoneBB, /*IsFinished=*/true); |
| } |
| |
| void CodeGenFunction::EmitOMPReductionClauseInit( |
| const OMPExecutableDirective &D, |
| CodeGenFunction::OMPPrivateScope &PrivateScope) { |
| if (!HaveInsertPoint()) |
| return; |
| SmallVector<const Expr *, 4> Shareds; |
| SmallVector<const Expr *, 4> Privates; |
| SmallVector<const Expr *, 4> ReductionOps; |
| SmallVector<const Expr *, 4> LHSs; |
| SmallVector<const Expr *, 4> RHSs; |
| for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { |
| auto IPriv = C->privates().begin(); |
| auto IRed = C->reduction_ops().begin(); |
| auto ILHS = C->lhs_exprs().begin(); |
| auto IRHS = C->rhs_exprs().begin(); |
| for (const Expr *Ref : C->varlists()) { |
| Shareds.emplace_back(Ref); |
| Privates.emplace_back(*IPriv); |
| ReductionOps.emplace_back(*IRed); |
| LHSs.emplace_back(*ILHS); |
| RHSs.emplace_back(*IRHS); |
| std::advance(IPriv, 1); |
| std::advance(IRed, 1); |
| std::advance(ILHS, 1); |
| std::advance(IRHS, 1); |
| } |
| } |
| ReductionCodeGen RedCG(Shareds, Privates, ReductionOps); |
| unsigned Count = 0; |
| auto ILHS = LHSs.begin(); |
| auto IRHS = RHSs.begin(); |
| auto IPriv = Privates.begin(); |
| for (const Expr *IRef : Shareds) { |
| const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); |
| // Emit private VarDecl with reduction init. |
| RedCG.emitSharedLValue(*this, Count); |
| RedCG.emitAggregateType(*this, Count); |
| AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); |
| RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), |
| RedCG.getSharedLValue(Count), |
| [&Emission](CodeGenFunction &CGF) { |
| CGF.EmitAutoVarInit(Emission); |
| return true; |
| }); |
| EmitAutoVarCleanups(Emission); |
| Address BaseAddr = RedCG.adjustPrivateAddress( |
| *this, Count, Emission.getAllocatedAddress()); |
| bool IsRegistered = PrivateScope.addPrivate( |
| RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); |
| assert(IsRegistered && "private var already registered as private"); |
| // Silence the warning about unused variable. |
| (void)IsRegistered; |
| |
| const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); |
| const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); |
| QualType Type = PrivateVD->getType(); |
| bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); |
| if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { |
| // Store the address of the original variable associated with the LHS |
| // implicit variable. |
| PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { |
| return RedCG.getSharedLValue(Count).getAddress(); |
| }); |
| PrivateScope.addPrivate( |
| RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); |
| } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || |
| isa<ArraySubscriptExpr>(IRef)) { |
| // Store the address of the original variable associated with the LHS |
| // implicit variable. |
| PrivateScope.addPrivate(LHSVD, [&RedCG, Count]() { |
| return RedCG.getSharedLValue(Count).getAddress(); |
| }); |
| PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { |
| return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), |
| ConvertTypeForMem(RHSVD->getType()), |
| "rhs.begin"); |
| }); |
| } else { |
| QualType Type = PrivateVD->getType(); |
| bool IsArray = getContext().getAsArrayType(Type) != nullptr; |
| Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(); |
| // Store the address of the original variable associated with the LHS |
| // implicit variable. |
| if (IsArray) { |
| OriginalAddr = Builder.CreateElementBitCast( |
| OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); |
| } |
| PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); |
| PrivateScope.addPrivate( |
| RHSVD, [this, PrivateVD, RHSVD, IsArray]() { |
| return IsArray |
| ? Builder.CreateElementBitCast( |
| GetAddrOfLocalVar(PrivateVD), |
| ConvertTypeForMem(RHSVD->getType()), "rhs.begin") |
| : GetAddrOfLocalVar(PrivateVD); |
| }); |
| } |
| ++ILHS; |
| ++IRHS; |
| ++IPriv; |
| ++Count; |
| } |
| } |
| |
| void CodeGenFunction::EmitOMPReductionClauseFinal( |
| const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { |
| if (!HaveInsertPoint()) |
| return; |
| llvm::SmallVector<const Expr *, 8> Privates; |
| llvm::SmallVector<const Expr *, 8> LHSExprs; |
| llvm::SmallVector<const Expr *, 8> RHSExprs; |
| llvm::SmallVector<const Expr *, 8> ReductionOps; |
| bool HasAtLeastOneReduction = false; |
| for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { |
| HasAtLeastOneReduction = true; |
| Privates.append(C->privates().begin(), C->privates().end()); |
| LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); |
| RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); |
| ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); |
| } |
| if (HasAtLeastOneReduction) { |
| bool WithNowait = D.getSingleClause<OMPNowaitClause>() || |
| isOpenMPParallelDirective(D.getDirectiveKind()) || |
| ReductionKind == OMPD_simd; |
| bool SimpleReduction = ReductionKind == OMPD_simd; |
| // Emit nowait reduction if nowait clause is present or directive is a |
| // parallel directive (it always has implicit barrier). |
| CGM.getOpenMPRuntime().emitReduction( |
| *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, |
| {WithNowait, SimpleReduction, ReductionKind}); |
| } |
| } |
| |
| static void emitPostUpdateForReductionClause( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D, |
| const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| llvm::BasicBlock *DoneBB = nullptr; |
| for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { |
| if (const Expr *PostUpdate = C->getPostUpdateExpr()) { |
| if (!DoneBB) { |
| if (llvm::Value *Cond = CondGen(CGF)) { |
| // If the first post-update expression is found, emit conditional |
| // block if it was requested. |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); |
| DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); |
| CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); |
| CGF.EmitBlock(ThenBB); |
| } |
| } |
| CGF.EmitIgnoredExpr(PostUpdate); |
| } |
| } |
| if (DoneBB) |
| CGF.EmitBlock(DoneBB, /*IsFinished=*/true); |
| } |
| |
| namespace { |
| /// Codegen lambda for appending distribute lower and upper bounds to outlined |
| /// parallel function. This is necessary for combined constructs such as |
| /// 'distribute parallel for' |
| typedef llvm::function_ref<void(CodeGenFunction &, |
| const OMPExecutableDirective &, |
| llvm::SmallVectorImpl<llvm::Value *> &)> |
| CodeGenBoundParametersTy; |
| } // anonymous namespace |
| |
| static void emitCommonOMPParallelDirective( |
| CodeGenFunction &CGF, const OMPExecutableDirective &S, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, |
| const CodeGenBoundParametersTy &CodeGenBoundParameters) { |
| const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); |
| llvm::Function *OutlinedFn = |
| CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( |
| S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); |
| if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { |
| CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); |
| llvm::Value *NumThreads = |
| CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), |
| /*IgnoreResultAssign=*/true); |
| CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( |
| CGF, NumThreads, NumThreadsClause->getBeginLoc()); |
| } |
| if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { |
| CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); |
| CGF.CGM.getOpenMPRuntime().emitProcBindClause( |
| CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); |
| } |
| const Expr *IfCond = nullptr; |
| for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { |
| if (C->getNameModifier() == OMPD_unknown || |
| C->getNameModifier() == OMPD_parallel) { |
| IfCond = C->getCondition(); |
| break; |
| } |
| } |
| |
| OMPParallelScope Scope(CGF, S); |
| llvm::SmallVector<llvm::Value *, 16> CapturedVars; |
| // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk |
| // lower and upper bounds with the pragma 'for' chunking mechanism. |
| // The following lambda takes care of appending the lower and upper bound |
| // parameters when necessary |
| CodeGenBoundParameters(CGF, S, CapturedVars); |
| CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); |
| CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, |
| CapturedVars, IfCond); |
| } |
| |
| static void emitEmptyBoundParameters(CodeGenFunction &, |
| const OMPExecutableDirective &, |
| llvm::SmallVectorImpl<llvm::Value *> &) {} |
| |
| void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { |
| // Emit parallel region as a standalone region. |
| auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| Action.Enter(CGF); |
| OMPPrivateScope PrivateScope(CGF); |
| bool Copyins = CGF.EmitOMPCopyinClause(S); |
| (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); |
| if (Copyins) { |
| // Emit implicit barrier to synchronize threads and avoid data races on |
| // propagation master's thread values of threadprivate variables to local |
| // instances of that variables of all other implicit threads. |
| CGF.CGM.getOpenMPRuntime().emitBarrierCall( |
| CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, |
| /*ForceSimpleCall=*/true); |
| } |
| CGF.EmitOMPPrivateClause(S, PrivateScope); |
| CGF.EmitOMPReductionClauseInit(S, PrivateScope); |
| (void)PrivateScope.Privatize(); |
| CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); |
| CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); |
| }; |
| emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, |
| emitEmptyBoundParameters); |
| emitPostUpdateForReductionClause(*this, S, |
| [](CodeGenFunction &) { return nullptr; }); |
| } |
| |
| void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, |
| JumpDest LoopExit) { |
| RunCleanupsScope BodyScope(*this); |
| // Update counters values on current iteration. |
| for (const Expr *UE : D.updates()) |
| EmitIgnoredExpr(UE); |
| // Update the linear variables. |
| // In distribute directives only loop counters may be marked as linear, no |
| // need to generate the code for them. |
| if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { |
| for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { |
| for (const Expr *UE : C->updates()) |
| EmitIgnoredExpr(UE); |
| } |
| } |
| |
| // On a continue in the body, jump to the end. |
| JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); |
| BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); |
| for (const Expr *E : D.finals_conditions()) { |
| if (!E) |
| continue; |
| // Check that loop counter in non-rectangular nest fits into the iteration |
| // space. |
| llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); |
| EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), |
| getProfileCount(D.getBody())); |
| EmitBlock(NextBB); |
| } |
| // Emit loop variables for C++ range loops. |
| const Stmt *Body = |
| D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); |
| for (unsigned Cnt = 0; Cnt < D.getCollapsedNumber(); ++Cnt) { |
| Body = Body->IgnoreContainers(); |
| if (auto *For = dyn_cast<ForStmt>(Body)) { |
| Body = For->getBody(); |
| } else { |
| assert(isa<CXXForRangeStmt>(Body) && |
| "Expected canonical for loop or range-based for loop."); |
| auto *CXXFor = cast<CXXForRangeStmt>(Body); |
| EmitStmt(CXXFor->getLoopVarStmt()); |
| Body = CXXFor->getBody(); |
| } |
| } |
| // Emit loop body. |
| EmitStmt(D.getBody()); |
| // The end (updates/cleanups). |
| EmitBlock(Continue.getBlock()); |
| BreakContinueStack.pop_back(); |
| } |
| |
| void CodeGenFunction::EmitOMPInnerLoop( |
| const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, |
| const Expr *IncExpr, |
| const llvm::function_ref<void(CodeGenFunction &)> BodyGen, |
| const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { |
| auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); |
| |
| // Start the loop with a block that tests the condition. |
| auto CondBlock = createBasicBlock("omp.inner.for.cond"); |
| EmitBlock(CondBlock); |
| const SourceRange R = S.getSourceRange(); |
| LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), |
| SourceLocToDebugLoc(R.getEnd())); |
| |
| // If there are any cleanups between here and the loop-exit scope, |
| // create a block to stage a loop exit along. |
| llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); |
| if (RequiresCleanup) |
| ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); |
| |
| llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); |
| |
| // Emit condition. |
| EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); |
| if (ExitBlock != LoopExit.getBlock()) { |
| EmitBlock(ExitBlock); |
| EmitBranchThroughCleanup(LoopExit); |
| } |
| |
| EmitBlock(LoopBody); |
| incrementProfileCounter(&S); |
| |
| // Create a block for the increment. |
| JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); |
| BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); |
| |
| BodyGen(*this); |
| |
| // Emit "IV = IV + 1" and a back-edge to the condition block. |
| EmitBlock(Continue.getBlock()); |
| EmitIgnoredExpr(IncExpr); |
| PostIncGen(*this); |
| BreakContinueStack.pop_back(); |
| EmitBranch(CondBlock); |
| LoopStack.pop(); |
| // Emit the fall-through block. |
| EmitBlock(LoopExit.getBlock()); |
| } |
| |
| bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { |
| if (!HaveInsertPoint()) |
| return false; |
| // Emit inits for the linear variables. |
| bool HasLinears = false; |
| for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { |
| for (const Expr *Init : C->inits()) { |
| HasLinears = true; |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); |
| if (const auto *Ref = |
| dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { |
| AutoVarEmission Emission = EmitAutoVarAlloca(*VD); |
| const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); |
| DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), |
| CapturedStmtInfo->lookup(OrigVD) != nullptr, |
| VD->getInit()->getType(), VK_LValue, |
| VD->getInit()->getExprLoc()); |
| EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), |
| VD->getType()), |
| /*capturedByInit=*/false); |
| EmitAutoVarCleanups(Emission); |
| } else { |
| EmitVarDecl(*VD); |
| } |
| } |
| // Emit the linear steps for the linear clauses. |
| // If a step is not constant, it is pre-calculated before the loop. |
| if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) |
| if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { |
| EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); |
| // Emit calculation of the linear step. |
| EmitIgnoredExpr(CS); |
| } |
| } |
| return HasLinears; |
| } |
| |
| void CodeGenFunction::EmitOMPLinearClauseFinal( |
| const OMPLoopDirective &D, |
| const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { |
| if (!HaveInsertPoint()) |
| return; |
| llvm::BasicBlock *DoneBB = nullptr; |
| // Emit the final values of the linear variables. |
| for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { |
| auto IC = C->varlist_begin(); |
| for (const Expr *F : C->finals()) { |
| if (!DoneBB) { |
| if (llvm::Value *Cond = CondGen(*this)) { |
| // If the first post-update expression is found, emit conditional |
| // block if it was requested. |
| llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); |
| DoneBB = createBasicBlock(".omp.linear.pu.done"); |
| Builder.CreateCondBr(Cond, ThenBB, DoneBB); |
| EmitBlock(ThenBB); |
| } |
| } |
| const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); |
| DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), |
| CapturedStmtInfo->lookup(OrigVD) != nullptr, |
| (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); |
| Address OrigAddr = EmitLValue(&DRE).getAddress(); |
| CodeGenFunction::OMPPrivateScope VarScope(*this); |
| VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); |
| (void)VarScope.Privatize(); |
| EmitIgnoredExpr(F); |
| ++IC; |
| } |
| if (const Expr *PostUpdate = C->getPostUpdateExpr()) |
| EmitIgnoredExpr(PostUpdate); |
| } |
| if (DoneBB) |
| EmitBlock(DoneBB, /*IsFinished=*/true); |
| } |
| |
| static void emitAlignedClause(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { |
| llvm::APInt ClauseAlignment(64, 0); |
| if (const Expr *AlignmentExpr = Clause->getAlignment()) { |
| auto *AlignmentCI = |
| cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); |
| ClauseAlignment = AlignmentCI->getValue(); |
| } |
| for (const Expr *E : Clause->varlists()) { |
| llvm::APInt Alignment(ClauseAlignment); |
| if (Alignment == 0) { |
| // OpenMP [2.8.1, Description] |
| // If no optional parameter is specified, implementation-defined default |
| // alignments for SIMD instructions on the target platforms are assumed. |
| Alignment = |
| CGF.getContext() |
| .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( |
| E->getType()->getPointeeType())) |
| .getQuantity(); |
| } |
| assert((Alignment == 0 || Alignment.isPowerOf2()) && |
| "alignment is not power of 2"); |
| if (Alignment != 0) { |
| llvm::Value *PtrValue = CGF.EmitScalarExpr(E); |
| CGF.EmitAlignmentAssumption( |
| PtrValue, E, /*No second loc needed*/ SourceLocation(), |
| llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); |
| } |
| } |
| } |
| } |
| |
| void CodeGenFunction::EmitOMPPrivateLoopCounters( |
| const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { |
| if (!HaveInsertPoint()) |
| return; |
| auto I = S.private_counters().begin(); |
| for (const Expr *E : S.counters()) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); |
| // Emit var without initialization. |
| AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); |
| EmitAutoVarCleanups(VarEmission); |
| LocalDeclMap.erase(PrivateVD); |
| (void)LoopScope.addPrivate(VD, [&VarEmission]() { |
| return VarEmission.getAllocatedAddress(); |
| }); |
| if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || |
| VD->hasGlobalStorage()) { |
| (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { |
| DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), |
| LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), |
| E->getType(), VK_LValue, E->getExprLoc()); |
| return EmitLValue(&DRE).getAddress(); |
| }); |
| } else { |
| (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { |
| return VarEmission.getAllocatedAddress(); |
| }); |
| } |
| ++I; |
| } |
| // Privatize extra loop counters used in loops for ordered(n) clauses. |
| for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { |
| if (!C->getNumForLoops()) |
| continue; |
| for (unsigned I = S.getCollapsedNumber(), |
| E = C->getLoopNumIterations().size(); |
| I < E; ++I) { |
| const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); |
| const auto *VD = cast<VarDecl>(DRE->getDecl()); |
| // Override only those variables that can be captured to avoid re-emission |
| // of the variables declared within the loops. |
| if (DRE->refersToEnclosingVariableOrCapture()) { |
| (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { |
| return CreateMemTemp(DRE->getType(), VD->getName()); |
| }); |
| } |
| } |
| } |
| } |
| |
| static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, |
| const Expr *Cond, llvm::BasicBlock *TrueBlock, |
| llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| { |
| CodeGenFunction::OMPPrivateScope PreCondScope(CGF); |
| CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); |
| (void)PreCondScope.Privatize(); |
| // Get initial values of real counters. |
| for (const Expr *I : S.inits()) { |
| CGF.EmitIgnoredExpr(I); |
| } |
| } |
| // Create temp loop control variables with their init values to support |
| // non-rectangular loops. |
| CodeGenFunction::OMPMapVars PreCondVars; |
| for (const Expr * E: S.dependent_counters()) { |
| if (!E) |
| continue; |
| assert(!E->getType().getNonReferenceType()->isRecordType() && |
| "dependent counter must not be an iterator."); |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| Address CounterAddr = |
| CGF.CreateMemTemp(VD->getType().getNonReferenceType()); |
| (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); |
| } |
| (void)PreCondVars.apply(CGF); |
| for (const Expr *E : S.dependent_inits()) { |
| if (!E) |
| continue; |
| CGF.EmitIgnoredExpr(E); |
| } |
| // Check that loop is executed at least one time. |
| CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); |
| PreCondVars.restore(CGF); |
| } |
| |
| void CodeGenFunction::EmitOMPLinearClause( |
| const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { |
| if (!HaveInsertPoint()) |
| return; |
| llvm::DenseSet<const VarDecl *> SIMDLCVs; |
| if (isOpenMPSimdDirective(D.getDirectiveKind())) { |
| const auto *LoopDirective = cast<OMPLoopDirective>(&D); |
| for (const Expr *C : LoopDirective->counters()) { |
| SIMDLCVs.insert( |
| cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); |
| } |
| } |
| for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { |
| auto CurPrivate = C->privates().begin(); |
| for (const Expr *E : C->varlists()) { |
| const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); |
| const auto *PrivateVD = |
| cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); |
| if (!SIMDLCVs.count(VD->getCanonicalDecl())) { |
| bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { |
| // Emit private VarDecl with copy init. |
| EmitVarDecl(*PrivateVD); |
| return GetAddrOfLocalVar(PrivateVD); |
| }); |
| assert(IsRegistered && "linear var already registered as private"); |
| // Silence the warning about unused variable. |
| (void)IsRegistered; |
| } else { |
| EmitVarDecl(*PrivateVD); |
| } |
| ++CurPrivate; |
| } |
| } |
| } |
| |
| static void emitSimdlenSafelenClause(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D, |
| bool IsMonotonic) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { |
| RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), |
| /*ignoreResult=*/true); |
| auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); |
| CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); |
| // In presence of finite 'safelen', it may be unsafe to mark all |
| // the memory instructions parallel, because loop-carried |
| // dependences of 'safelen' iterations are possible. |
| if (!IsMonotonic) |
| CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); |
| } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { |
| RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), |
| /*ignoreResult=*/true); |
| auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); |
| CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); |
| // In presence of finite 'safelen', it may be unsafe to mark all |
| // the memory instructions parallel, because loop-carried |
| // dependences of 'safelen' iterations are possible. |
| CGF.LoopStack.setParallel(/*Enable=*/false); |
| } |
| } |
| |
| void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D, |
| bool IsMonotonic) { |
| // Walk clauses and process safelen/lastprivate. |
| LoopStack.setParallel(!IsMonotonic); |
| LoopStack.setVectorizeEnable(); |
| emitSimdlenSafelenClause(*this, D, IsMonotonic); |
| } |
| |
| void CodeGenFunction::EmitOMPSimdFinal( |
| const OMPLoopDirective &D, |
| const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { |
| if (!HaveInsertPoint()) |
| return; |
| llvm::BasicBlock *DoneBB = nullptr; |
| auto IC = D.counters().begin(); |
| auto IPC = D.private_counters().begin(); |
| for (const Expr *F : D.finals()) { |
| const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); |
| const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); |
| const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); |
| if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || |
| OrigVD->hasGlobalStorage() || CED) { |
| if (!DoneBB) { |
| if (llvm::Value *Cond = CondGen(*this)) { |
| // If the first post-update expression is found, emit conditional |
| // block if it was requested. |
| llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); |
| DoneBB = createBasicBlock(".omp.final.done"); |
| Builder.CreateCondBr(Cond, ThenBB, DoneBB); |
| EmitBlock(ThenBB); |
| } |
| } |
| Address OrigAddr = Address::invalid(); |
| if (CED) { |
| OrigAddr = EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(); |
| } else { |
| DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), |
| /*RefersToEnclosingVariableOrCapture=*/false, |
| (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); |
| OrigAddr = EmitLValue(&DRE).getAddress(); |
| } |
| OMPPrivateScope VarScope(*this); |
| VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); |
| (void)VarScope.Privatize(); |
| EmitIgnoredExpr(F); |
| } |
| ++IC; |
| ++IPC; |
| } |
| if (DoneBB) |
| EmitBlock(DoneBB, /*IsFinished=*/true); |
| } |
| |
| static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, |
| const OMPLoopDirective &S, |
| CodeGenFunction::JumpDest LoopExit) { |
| CGF.EmitOMPLoopBody(S, LoopExit); |
| CGF.EmitStopPoint(&S); |
| } |
| |
| /// Emit a helper variable and return corresponding lvalue. |
| static LValue EmitOMPHelperVar(CodeGenFunction &CGF, |
| const DeclRefExpr *Helper) { |
| auto VDecl = cast<VarDecl>(Helper->getDecl()); |
| CGF.EmitVarDecl(*VDecl); |
| return CGF.EmitLValue(Helper); |
| } |
| |
| static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, |
| PrePostActionTy &Action) { |
| Action.Enter(CGF); |
| assert(isOpenMPSimdDirective(S.getDirectiveKind()) && |
| "Expected simd directive"); |
| OMPLoopScope PreInitScope(CGF, S); |
| // if (PreCond) { |
| // for (IV in 0..LastIteration) BODY; |
| // <Final counter/linear vars updates>; |
| // } |
| // |
| if (isOpenMPDistributeDirective(S.getDirectiveKind()) || |
| isOpenMPWorksharingDirective(S.getDirectiveKind()) || |
| isOpenMPTaskLoopDirective(S.getDirectiveKind())) { |
| (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); |
| (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); |
| } |
| |
| // Emit: if (PreCond) - begin. |
| // If the condition constant folds and can be elided, avoid emitting the |
| // whole loop. |
| bool CondConstant; |
| llvm::BasicBlock *ContBlock = nullptr; |
| if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { |
| if (!CondConstant) |
| return; |
| } else { |
| llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); |
| ContBlock = CGF.createBasicBlock("simd.if.end"); |
| emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, |
| CGF.getProfileCount(&S)); |
| CGF.EmitBlock(ThenBlock); |
| CGF.incrementProfileCounter(&S); |
| } |
| |
| // Emit the loop iteration variable. |
| const Expr *IVExpr = S.getIterationVariable(); |
| const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); |
| CGF.EmitVarDecl(*IVDecl); |
| CGF.EmitIgnoredExpr(S.getInit()); |
| |
| // Emit the iterations count variable. |
| // If it is not a variable, Sema decided to calculate iterations count on |
| // each iteration (e.g., it is foldable into a constant). |
| if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { |
| CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); |
| // Emit calculation of the iterations count. |
| CGF.EmitIgnoredExpr(S.getCalcLastIteration()); |
| } |
| |
| CGF.EmitOMPSimdInit(S); |
| |
| emitAlignedClause(CGF, S); |
| (void)CGF.EmitOMPLinearClauseInit(S); |
| { |
| CodeGenFunction::OMPPrivateScope LoopScope(CGF); |
| CGF.EmitOMPPrivateLoopCounters(S, LoopScope); |
| CGF.EmitOMPLinearClause(S, LoopScope); |
| CGF.EmitOMPPrivateClause(S, LoopScope); |
| CGF.EmitOMPReductionClauseInit(S, LoopScope); |
| bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); |
| (void)LoopScope.Privatize(); |
| if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) |
| CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); |
| CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), |
| S.getInc(), |
| [&S](CodeGenFunction &CGF) { |
| CGF.EmitOMPLoopBody(S, CodeGenFunction::JumpDest()); |
| CGF.EmitStopPoint(&S); |
| }, |
| [](CodeGenFunction &) {}); |
| CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); |
| // Emit final copy of the lastprivate variables at the end of loops. |
| if (HasLastprivateClause) |
| CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); |
| CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); |
| emitPostUpdateForReductionClause(CGF, S, |
| [](CodeGenFunction &) { return nullptr; }); |
| } |
| CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); |
| // Emit: if (PreCond) - end. |
| if (ContBlock) { |
| CGF.EmitBranch(ContBlock); |
| CGF.EmitBlock(ContBlock, true); |
| } |
| } |
| |
| void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { |
| auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| emitOMPSimdRegion(CGF, S, Action); |
| }; |
| OMPLexicalScope Scope(*this, S, OMPD_unknown); |
| CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); |
| } |
| |
| void CodeGenFunction::EmitOMPOuterLoop( |
| bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, |
| CodeGenFunction::OMPPrivateScope &LoopScope, |
| const CodeGenFunction::OMPLoopArguments &LoopArgs, |
| const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, |
| const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { |
| CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); |
| |
| const Expr *IVExpr = S.getIterationVariable(); |
| const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); |
| const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); |
| |
| JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); |
| |
| // Start the loop with a block that tests the condition. |
| llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); |
| EmitBlock(CondBlock); |
| const SourceRange R = S.getSourceRange(); |
| LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), |
| SourceLocToDebugLoc(R.getEnd())); |
| |
| llvm::Value *BoolCondVal = nullptr; |
| if (!DynamicOrOrdered) { |
| // UB = min(UB, GlobalUB) or |
| // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. |
| // 'distribute parallel for') |
| EmitIgnoredExpr(LoopArgs.EUB); |
| // IV = LB |
| EmitIgnoredExpr(LoopArgs.Init); |
| // IV < UB |
| BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); |
| } else { |
| BoolCondVal = |
| RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, |
| LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); |
| } |
| |
| // If there are any cleanups between here and the loop-exit scope, |
| // create a block to stage a loop exit along. |
| llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); |
| if (LoopScope.requiresCleanups()) |
| ExitBlock = createBasicBlock("omp.dispatch.cleanup"); |
| |
| llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); |
| Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); |
| if (ExitBlock != LoopExit.getBlock()) { |
| EmitBlock(ExitBlock); |
| EmitBranchThroughCleanup(LoopExit); |
| } |
| EmitBlock(LoopBody); |
| |
| // Emit "IV = LB" (in case of static schedule, we have already calculated new |
| // LB for loop condition and emitted it above). |
| if (DynamicOrOrdered) |
| EmitIgnoredExpr(LoopArgs.Init); |
| |
| // Create a block for the increment. |
| JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); |
| BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); |
| |
| // Generate !llvm.loop.parallel metadata for loads and stores for loops |
| // with dynamic/guided scheduling and without ordered clause. |
| if (!isOpenMPSimdDirective(S.getDirectiveKind())) |
| LoopStack.setParallel(!IsMonotonic); |
| else |
| EmitOMPSimdInit(S, IsMonotonic); |
| |
| SourceLocation Loc = S.getBeginLoc(); |
| |
| // when 'distribute' is not combined with a 'for': |
| // while (idx <= UB) { BODY; ++idx; } |
| // when 'distribute' is combined with a 'for' |
| // (e.g. 'distribute parallel for') |
| // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } |
| EmitOMPInnerLoop( |
| S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, |
| [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { |
| CodeGenLoop(CGF, S, LoopExit); |
| }, |
| [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { |
| CodeGenOrdered(CGF, Loc, IVSize, IVSigned); |
| }); |
| |
| EmitBlock(Continue.getBlock()); |
| BreakContinueStack.pop_back(); |
| if (!DynamicOrOrdered) { |
| // Emit "LB = LB + Stride", "UB = UB + Stride". |
| EmitIgnoredExpr(LoopArgs.NextLB); |
| EmitIgnoredExpr(LoopArgs.NextUB); |
| } |
| |
| EmitBranch(CondBlock); |
| LoopStack.pop(); |
| // Emit the fall-through block. |
| EmitBlock(LoopExit.getBlock()); |
| |
| // Tell the runtime we are done. |
| auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { |
| if (!DynamicOrOrdered) |
| CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), |
| S.getDirectiveKind()); |
| }; |
| OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); |
| } |
| |
| void CodeGenFunction::EmitOMPForOuterLoop( |
| const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, |
| const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, |
| const OMPLoopArguments &LoopArgs, |
| const CodeGenDispatchBoundsTy &CGDispatchBounds) { |
| CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); |
| |
| // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). |
| const bool DynamicOrOrdered = |
| Ordered || RT.isDynamic(ScheduleKind.Schedule); |
| |
| assert((Ordered || |
| !RT.isStaticNonchunked(ScheduleKind.Schedule, |
| LoopArgs.Chunk != nullptr)) && |
| "static non-chunked schedule does not need outer loop"); |
| |
| // Emit outer loop. |
| // |
| // OpenMP [2.7.1, Loop Construct, Description, table 2-1] |
| // When schedule(dynamic,chunk_size) is specified, the iterations are |
| // distributed to threads in the team in chunks as the threads request them. |
| // Each thread executes a chunk of iterations, then requests another chunk, |
| // until no chunks remain to be distributed. Each chunk contains chunk_size |
| // iterations, except for the last chunk to be distributed, which may have |
| // fewer iterations. When no chunk_size is specified, it defaults to 1. |
| // |
| // When schedule(guided,chunk_size) is specified, the iterations are assigned |
| // to threads in the team in chunks as the executing threads request them. |
| // Each thread executes a chunk of iterations, then requests another chunk, |
| // until no chunks remain to be assigned. For a chunk_size of 1, the size of |
| // each chunk is proportional to the number of unassigned iterations divided |
| // by the number of threads in the team, decreasing to 1. For a chunk_size |
| // with value k (greater than 1), the size of each chunk is determined in the |
| // same way, with the restriction that the chunks do not contain fewer than k |
| // iterations (except for the last chunk to be assigned, which may have fewer |
| // than k iterations). |
| // |
| // When schedule(auto) is specified, the decision regarding scheduling is |
| // delegated to the compiler and/or runtime system. The programmer gives the |
| // implementation the freedom to choose any possible mapping of iterations to |
| // threads in the team. |
| // |
| // When schedule(runtime) is specified, the decision regarding scheduling is |
| // deferred until run time, and the schedule and chunk size are taken from the |
| // run-sched-var ICV. If the ICV is set to auto, the schedule is |
| // implementation defined |
| // |
| // while(__kmpc_dispatch_next(&LB, &UB)) { |
| // idx = LB; |
| // while (idx <= UB) { BODY; ++idx; |
| // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. |
| // } // inner loop |
| // } |
| // |
| // OpenMP [2.7.1, Loop Construct, Description, table 2-1] |
| // When schedule(static, chunk_size) is specified, iterations are divided into |
| // chunks of size chunk_size, and the chunks are assigned to the threads in |
| // the team in a round-robin fashion in the order of the thread number. |
| // |
| // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { |
| // while (idx <= UB) { BODY; ++idx; } // inner loop |
| // LB = LB + ST; |
| // UB = UB + ST; |
| // } |
| // |
| |
| const Expr *IVExpr = S.getIterationVariable(); |
| const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); |
| const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); |
| |
| if (DynamicOrOrdered) { |
| const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = |
| CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); |
| llvm::Value *LBVal = DispatchBounds.first; |
| llvm::Value *UBVal = DispatchBounds.second; |
| CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, |
| LoopArgs.Chunk}; |
| RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, |
| IVSigned, Ordered, DipatchRTInputValues); |
| } else { |
| CGOpenMPRuntime::StaticRTInput StaticInit( |
| IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, |
| LoopArgs.ST, LoopArgs.Chunk); |
| RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), |
| ScheduleKind, StaticInit); |
| } |
| |
| auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, |
| const unsigned IVSize, |
| const bool IVSigned) { |
| if (Ordered) { |
| CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, |
| IVSigned); |
| } |
| }; |
| |
| OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, |
| LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); |
| OuterLoopArgs.IncExpr = S.getInc(); |
| OuterLoopArgs.Init = S.getInit(); |
| OuterLoopArgs.Cond = S.getCond(); |
| OuterLoopArgs.NextLB = S.getNextLowerBound(); |
| OuterLoopArgs.NextUB = S.getNextUpperBound(); |
| EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, |
| emitOMPLoopBodyWithStopPoint, CodeGenOrdered); |
| } |
| |
| static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, |
| const unsigned IVSize, const bool IVSigned) {} |
| |
| void CodeGenFunction::EmitOMPDistributeOuterLoop( |
| OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, |
| OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, |
| const CodeGenLoopTy &CodeGenLoopContent) { |
| |
| CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); |
| |
| // Emit outer loop. |
| // Same behavior as a OMPForOuterLoop, except that schedule cannot be |
| // dynamic |
| // |
| |
| const Expr *IVExpr = S.getIterationVariable(); |
| const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); |
| const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); |
| |
| CGOpenMPRuntime::StaticRTInput StaticInit( |
| IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, |
| LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); |
| RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); |
| |
| // for combined 'distribute' and 'for' the increment expression of distribute |
| // is stored in DistInc. For 'distribute' alone, it is in Inc. |
| Expr *IncExpr; |
| if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) |
| IncExpr = S.getDistInc(); |
| else |
| IncExpr = S.getInc(); |
| |
| // this routine is shared by 'omp distribute parallel for' and |
| // 'omp distribute': select the right EUB expression depending on the |
| // directive |
| OMPLoopArguments OuterLoopArgs; |
| OuterLoopArgs.LB = LoopArgs.LB; |
| OuterLoopArgs.UB = LoopArgs.UB; |
| OuterLoopArgs.ST = LoopArgs.ST; |
| OuterLoopArgs.IL = LoopArgs.IL; |
| OuterLoopArgs.Chunk = LoopArgs.Chunk; |
| OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) |
| ? S.getCombinedEnsureUpperBound() |
| : S.getEnsureUpperBound(); |
| OuterLoopArgs.IncExpr = IncExpr; |
| OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) |
| ? S.getCombinedInit() |
| : S.getInit(); |
| OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) |
| ? S.getCombinedCond() |
| : S.getCond(); |
| OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) |
| ? S.getCombinedNextLowerBound() |
| : S.getNextLowerBound(); |
| OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) |
| ? S.getCombinedNextUpperBound() |
| : S.getNextUpperBound(); |
| |
| EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, |
| LoopScope, OuterLoopArgs, CodeGenLoopContent, |
| emitEmptyOrdered); |
| } |
| |
| static std::pair<LValue, LValue> |
| emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, |
| const OMPExecutableDirective &S) { |
| const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); |
| LValue LB = |
| EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); |
| LValue UB = |
| EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); |
| |
| // When composing 'distribute' with 'for' (e.g. as in 'distribute |
| // parallel for') we need to use the 'distribute' |
| // chunk lower and upper bounds rather than the whole loop iteration |
| // space. These are parameters to the outlined function for 'parallel' |
| // and we copy the bounds of the previous schedule into the |
| // the current ones. |
| LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); |
| LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); |
| llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( |
| PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); |
| PrevLBVal = CGF.EmitScalarConversion( |
| PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), |
| LS.getIterationVariable()->getType(), |
| LS.getPrevLowerBoundVariable()->getExprLoc()); |
| llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( |
| PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); |
| PrevUBVal = CGF.EmitScalarConversion( |
| PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), |
| LS.getIterationVariable()->getType(), |
| LS.getPrevUpperBoundVariable()->getExprLoc()); |
| |
| CGF.EmitStoreOfScalar(PrevLBVal, LB); |
| CGF.EmitStoreOfScalar(PrevUBVal, UB); |
| |
| return {LB, UB}; |
| } |
| |
| /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then |
| /// we need to use the LB and UB expressions generated by the worksharing |
| /// code generation support, whereas in non combined situations we would |
| /// just emit 0 and the LastIteration expression |
| /// This function is necessary due to the difference of the LB and UB |
| /// types for the RT emission routines for 'for_static_init' and |
| /// 'for_dispatch_init' |
| static std::pair<llvm::Value *, llvm::Value *> |
| emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, |
| const OMPExecutableDirective &S, |
| Address LB, Address UB) { |
| const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); |
| const Expr *IVExpr = LS.getIterationVariable(); |
| // when implementing a dynamic schedule for a 'for' combined with a |
| // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop |
| // is not normalized as each team only executes its own assigned |
| // distribute chunk |
| QualType IteratorTy = IVExpr->getType(); |
| llvm::Value *LBVal = |
| CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); |
| llvm::Value *UBVal = |
| CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); |
| return {LBVal, UBVal}; |
| } |
| |
| static void emitDistributeParallelForDistributeInnerBoundParams( |
| CodeGenFunction &CGF, const OMPExecutableDirective &S, |
| llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { |
| const auto &Dir = cast<OMPLoopDirective>(S); |
| LValue LB = |
| CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); |
| llvm::Value *LBCast = CGF.Builder.CreateIntCast( |
| CGF.Builder.CreateLoad(LB.getAddress()), CGF.SizeTy, /*isSigned=*/false); |
| CapturedVars.push_back(LBCast); |
| LValue UB = |
| CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); |
| |
| llvm::Value *UBCast = CGF.Builder.CreateIntCast( |
| CGF.Builder.CreateLoad(UB.getAddress()), CGF.SizeTy, /*isSigned=*/false); |
| CapturedVars.push_back(UBCast); |
| } |
| |
| static void |
| emitInnerParallelForWhenCombined(CodeGenFunction &CGF, |
| const OMPLoopDirective &S, |
| CodeGenFunction::JumpDest LoopExit) { |
| auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, |
| PrePostActionTy &Action) { |
| Action.Enter(CGF); |
| bool HasCancel = false; |
| if (!isOpenMPSimdDirective(S.getDirectiveKind())) { |
| if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) |
| HasCancel = D->hasCancel(); |
| else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) |
| HasCancel = D->hasCancel(); |
| else if (const auto *D = |
| dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) |
| HasCancel = D->hasCancel(); |
| } |
| CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), |
| HasCancel); |
| CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), |
| emitDistributeParallelForInnerBounds, |
| emitDistributeParallelForDispatchBounds); |
| }; |
| |
| emitCommonOMPParallelDirective( |
| CGF, S, |
| isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, |
| CGInlinedWorksharingLoop, |
| emitDistributeParallelForDistributeInnerBoundParams); |
| } |
| |
| void CodeGenFunction::EmitOMPDistributeParallelForDirective( |
| const OMPDistributeParallelForDirective &S) { |
| auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { |
| CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, |
| S.getDistInc()); |
| }; |
| OMPLexicalScope Scope(*this, S, OMPD_parallel); |
| CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); |
| } |
| |
| void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( |
| const OMPDistributeParallelForSimdDirective &S) { |
| auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { |
| CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, |
| S.getDistInc()); |
| }; |
| OMPLexicalScope Scope(*this, S, OMPD_parallel); |
| CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); |
| } |
| |
| void CodeGenFunction::EmitOMPDistributeSimdDirective( |
| const OMPDistributeSimdDirective &S) { |
| auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { |
| CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); |
| }; |
| OMPLexicalScope Scope(*this, S, OMPD_unknown); |
| CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); |
| } |
| |
| void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( |
| CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { |
| // Emit SPMD target parallel for region as a standalone region. |
| auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| emitOMPSimdRegion(CGF, S, Action); |
| }; |
| llvm::Function *Fn; |
| llvm::Constant *Addr; |
| // Emit target region as a standalone region. |
| CGM.getOpenMPRuntime().emitTargetOutlinedFunction( |
| S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); |
| assert(Fn && Addr && "Target device function emission failed."); |
| } |
| |
| void CodeGenFunction::EmitOMPTargetSimdDirective( |
| const OMPTargetSimdDirective &S) { |
| auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| emitOMPSimdRegion(CGF, S, Action); |
| }; |
| emitCommonOMPTargetDirective(*this, S, CodeGen); |
| } |
| |
| namespace { |
| struct ScheduleKindModifiersTy { |
| OpenMPScheduleClauseKind Kind; |
| OpenMPScheduleClauseModifier M1; |
| OpenMPScheduleClauseModifier M2; |
| ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, |
| OpenMPScheduleClauseModifier M1, |
| OpenMPScheduleClauseModifier M2) |
| : Kind(Kind), M1(M1), M2(M2) {} |
| }; |
| } // namespace |
| |
| bool CodeGenFunction::EmitOMPWorksharingLoop( |
| const OMPLoopDirective &S, Expr *EUB, |
| const CodeGenLoopBoundsTy &CodeGenLoopBounds, |
| const CodeGenDispatchBoundsTy &CGDispatchBounds) { |
| // Emit the loop iteration variable. |
| const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); |
| const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); |
| EmitVarDecl(*IVDecl); |
| |
| // Emit the iterations count variable. |
| // If it is not a variable, Sema decided to calculate iterations count on each |
| // iteration (e.g., it is foldable into a constant). |
| if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { |
| EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); |
| // Emit calculation of the iterations count. |
| EmitIgnoredExpr(S.getCalcLastIteration()); |
| } |
| |
| CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); |
| |
| bool HasLastprivateClause; |
| // Check pre-condition. |
| { |
| OMPLoopScope PreInitScope(*this, S); |
| // Skip the entire loop if we don't meet the precondition. |
| // If the condition constant folds and can be elided, avoid emitting the |
| // whole loop. |
| bool CondConstant; |
| llvm::BasicBlock *ContBlock = nullptr; |
| if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { |
| if (!CondConstant) |
| return false; |
| } else { |
| llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); |
| ContBlock = createBasicBlock("omp.precond.end"); |
| emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, |
| getProfileCount(&S)); |
| EmitBlock(ThenBlock); |
| incrementProfileCounter(&S); |
| } |
| |
| RunCleanupsScope DoacrossCleanupScope(*this); |
| bool Ordered = false; |
| if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { |
| if (OrderedClause->getNumForLoops()) |
| RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); |
| else |
| Ordered = true; |
| } |
| |
| llvm::DenseSet<const Expr *> EmittedFinals; |
| emitAlignedClause(*this, S); |
| bool HasLinears = EmitOMPLinearClauseInit(S); |
| // Emit helper vars inits. |
| |
| std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); |
| LValue LB = Bounds.first; |
| LValue UB = Bounds.second; |
| LValue ST = |
| EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); |
| LValue IL = |
| EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); |
| |
| // Emit 'then' code. |
| { |
| OMPPrivateScope LoopScope(*this); |
| if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { |
| // Emit implicit barrier to synchronize threads and avoid data races on |
| // initialization of firstprivate variables and post-update of |
| // lastprivate variables. |
| CGM.getOpenMPRuntime().emitBarrierCall( |
| *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, |
| /*ForceSimpleCall=*/true); |
| } |
| EmitOMPPrivateClause(S, LoopScope); |
| HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); |
| EmitOMPReductionClauseInit(S, LoopScope); |
| EmitOMPPrivateLoopCounters(S, LoopScope); |
| EmitOMPLinearClause(S, LoopScope); |
| (void)LoopScope.Privatize(); |
| if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) |
| CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); |
| |
| // Detect the loop schedule kind and chunk. |
| const Expr *ChunkExpr = nullptr; |
| OpenMPScheduleTy ScheduleKind; |
| if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { |
| ScheduleKind.Schedule = C->getScheduleKind(); |
| ScheduleKind.M1 = C->getFirstScheduleModifier(); |
| ScheduleKind.M2 = C->getSecondScheduleModifier(); |
| ChunkExpr = C->getChunkSize(); |
| } else { |
| // Default behaviour for schedule clause. |
| CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( |
| *this, S, ScheduleKind.Schedule, ChunkExpr); |
| } |
| bool HasChunkSizeOne = false; |
| llvm::Value *Chunk = nullptr; |
| if (ChunkExpr) { |
| Chunk = EmitScalarExpr(ChunkExpr); |
| Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), |
| S.getIterationVariable()->getType(), |
| S.getBeginLoc()); |
| Expr::EvalResult Result; |
| if (ChunkExpr->EvaluateAsInt(Result, getContext())) { |
| llvm::APSInt EvaluatedChunk = Result.Val.getInt(); |
| HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); |
| } |
| } |
| const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); |
| const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); |
| // OpenMP 4.5, 2.7.1 Loop Construct, Description. |
| // If the static schedule kind is specified or if the ordered clause is |
| // specified, and if no monotonic modifier is specified, the effect will |
| // be as if the monotonic modifier was specified. |
| bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, |
| /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && |
| isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); |
| if ((RT.isStaticNonchunked(ScheduleKind.Schedule, |
| /* Chunked */ Chunk != nullptr) || |
| StaticChunkedOne) && |
| !Ordered) { |
| if (isOpenMPSimdDirective(S.getDirectiveKind())) |
| EmitOMPSimdInit(S, /*IsMonotonic=*/true); |
| // OpenMP [2.7.1, Loop Construct, Description, table 2-1] |
| // When no chunk_size is specified, the iteration space is divided into |
| // chunks that are approximately equal in size, and at most one chunk is |
| // distributed to each thread. Note that the size of the chunks is |
| // unspecified in this case. |
| CGOpenMPRuntime::StaticRTInput StaticInit( |
| IVSize, IVSigned, Ordered, IL.getAddress(), LB.getAddress(), |
| UB.getAddress(), ST.getAddress(), |
| StaticChunkedOne ? Chunk : nullptr); |
| RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), |
| ScheduleKind, StaticInit); |
| JumpDest LoopExit = |
| getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); |
| // UB = min(UB, GlobalUB); |
| if (!StaticChunkedOne) |
| EmitIgnoredExpr(S.getEnsureUpperBound()); |
| // IV = LB; |
| EmitIgnoredExpr(S.getInit()); |
| // For unchunked static schedule generate: |
| // |
| // while (idx <= UB) { |
| // BODY; |
| // ++idx; |
| // } |
| // |
| // For static schedule with chunk one: |
| // |
| // while (IV <= PrevUB) { |
| // BODY; |
| // IV += ST; |
| // } |
| EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), |
| StaticChunkedOne ? S.getCombinedParForInDistCond() : S.getCond(), |
| StaticChunkedOne ? S.getDistInc() : S.getInc(), |
| [&S, LoopExit](CodeGenFunction &CGF) { |
| CGF.EmitOMPLoopBody(S, LoopExit); |
| CGF.EmitStopPoint(&S |