blob: f2854024da1acfaccc7b1588db342ad74be91327 [file] [log] [blame]
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
// rdar://13784901
struct S0 {
int x;
static const int test0 = __alignof__(x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
static const int test1 = __alignof__(S0::x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
auto test2() -> char(&)[__alignof__(x)]; // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
};
struct S1; // expected-note 6 {{forward declaration}}
extern S1 s1;
const int test3 = __alignof__(s1); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
struct S2 {
S2();
S1 &s;
int x;
int test4 = __alignof__(x); // ok
int test5 = __alignof__(s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
};
const int test6 = __alignof__(S2::x);
const int test7 = __alignof__(S2::s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
// Arguably, these should fail like the S1 cases do: the alignment of
// 's2.x' should depend on the alignment of both x-within-S2 and
// s2-within-S3 and thus require 'S3' to be complete. If we start
// doing the appropriate recursive walk to do that, we should make
// sure that these cases don't explode.
struct S3 {
S2 s2;
static const int test8 = __alignof__(s2.x);
static const int test9 = __alignof__(s2.s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
auto test10() -> char(&)[__alignof__(s2.x)];
static const int test11 = __alignof__(S3::s2.x);
static const int test12 = __alignof__(S3::s2.s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
auto test13() -> char(&)[__alignof__(s2.x)];
};
// Same reasoning as S3.
struct S4 {
union {
int x;
};
static const int test0 = __alignof__(x);
static const int test1 = __alignof__(S0::x);
auto test2() -> char(&)[__alignof__(x)];
};
// Regression test for asking for the alignment of a field within an invalid
// record.
struct S5 {
S1 s; // expected-error {{incomplete type}}
int x;
};
const int test8 = __alignof__(S5::x);
int test14[2];
static_assert(alignof(test14) == 4, "foo"); // expected-warning {{'alignof' applied to an expression is a GNU extension}}
// PR19992
static_assert(alignof(int[]) == alignof(int), ""); // ok
namespace alignof_array_expr {
alignas(32) extern int n[];
static_assert(alignof(n) == 32, ""); // expected-warning {{GNU extension}}
template<int> struct S {
static int a[];
};
template<int N> int S<N>::a[N];
// ok, does not complete type of S<-1>::a
static_assert(alignof(S<-1>::a) == alignof(int), ""); // expected-warning {{GNU extension}}
}
template <typename T> void n(T) {
alignas(T) int T1;
char k[__alignof__(T1)];
static_assert(sizeof(k) == alignof(long long), "");
}
template void n(long long);
namespace PR22042 {
template <typename T>
void Fun(T A) {
typedef int __attribute__((__aligned__(A))) T1; // expected-error {{requested alignment is dependent but declaration is not dependent}}
int k1[__alignof__(T1)];
}
template <int N>
struct S {
typedef __attribute__((aligned(N))) int Field[sizeof(N)]; // expected-error {{requested alignment is dependent but declaration is not dependent}}
};
}
typedef int __attribute__((aligned(16))) aligned_int;
template <typename>
using template_alias = aligned_int;
static_assert(alignof(template_alias<void>) == 16, "Expected alignment of 16" );