blob: fccdb2bc2e2c316f7c5cc3398b4169732c565830 [file] [log] [blame]
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related semantic analysis.
//
//===----------------------------------------------------------------------===//
#include "TypeLocBuilder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/ASTStructuralEquivalence.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateInstCallback.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
enum TypeDiagSelector {
TDS_Function,
TDS_Pointer,
TDS_ObjCObjOrBlock
};
/// isOmittedBlockReturnType - Return true if this declarator is missing a
/// return type because this is a omitted return type on a block literal.
static bool isOmittedBlockReturnType(const Declarator &D) {
if (D.getContext() != DeclaratorContext::BlockLiteralContext ||
D.getDeclSpec().hasTypeSpecifier())
return false;
if (D.getNumTypeObjects() == 0)
return true; // ^{ ... }
if (D.getNumTypeObjects() == 1 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
return true; // ^(int X, float Y) { ... }
return false;
}
/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
/// doesn't apply to the given type.
static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
QualType type) {
TypeDiagSelector WhichType;
bool useExpansionLoc = true;
switch (attr.getKind()) {
case ParsedAttr::AT_ObjCGC:
WhichType = TDS_Pointer;
break;
case ParsedAttr::AT_ObjCOwnership:
WhichType = TDS_ObjCObjOrBlock;
break;
default:
// Assume everything else was a function attribute.
WhichType = TDS_Function;
useExpansionLoc = false;
break;
}
SourceLocation loc = attr.getLoc();
StringRef name = attr.getAttrName()->getName();
// The GC attributes are usually written with macros; special-case them.
IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
: nullptr;
if (useExpansionLoc && loc.isMacroID() && II) {
if (II->isStr("strong")) {
if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
} else if (II->isStr("weak")) {
if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
}
}
S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
<< type;
}
// objc_gc applies to Objective-C pointers or, otherwise, to the
// smallest available pointer type (i.e. 'void*' in 'void**').
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
case ParsedAttr::AT_ObjCGC: \
case ParsedAttr::AT_ObjCOwnership
// Calling convention attributes.
#define CALLING_CONV_ATTRS_CASELIST \
case ParsedAttr::AT_CDecl: \
case ParsedAttr::AT_FastCall: \
case ParsedAttr::AT_StdCall: \
case ParsedAttr::AT_ThisCall: \
case ParsedAttr::AT_RegCall: \
case ParsedAttr::AT_Pascal: \
case ParsedAttr::AT_SwiftCall: \
case ParsedAttr::AT_VectorCall: \
case ParsedAttr::AT_AArch64VectorPcs: \
case ParsedAttr::AT_MSABI: \
case ParsedAttr::AT_SysVABI: \
case ParsedAttr::AT_Pcs: \
case ParsedAttr::AT_IntelOclBicc: \
case ParsedAttr::AT_PreserveMost: \
case ParsedAttr::AT_PreserveAll
// Function type attributes.
#define FUNCTION_TYPE_ATTRS_CASELIST \
case ParsedAttr::AT_NSReturnsRetained: \
case ParsedAttr::AT_NoReturn: \
case ParsedAttr::AT_Regparm: \
case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
case ParsedAttr::AT_AnyX86NoCfCheck: \
CALLING_CONV_ATTRS_CASELIST
// Microsoft-specific type qualifiers.
#define MS_TYPE_ATTRS_CASELIST \
case ParsedAttr::AT_Ptr32: \
case ParsedAttr::AT_Ptr64: \
case ParsedAttr::AT_SPtr: \
case ParsedAttr::AT_UPtr
// Nullability qualifiers.
#define NULLABILITY_TYPE_ATTRS_CASELIST \
case ParsedAttr::AT_TypeNonNull: \
case ParsedAttr::AT_TypeNullable: \
case ParsedAttr::AT_TypeNullUnspecified
namespace {
/// An object which stores processing state for the entire
/// GetTypeForDeclarator process.
class TypeProcessingState {
Sema &sema;
/// The declarator being processed.
Declarator &declarator;
/// The index of the declarator chunk we're currently processing.
/// May be the total number of valid chunks, indicating the
/// DeclSpec.
unsigned chunkIndex;
/// Whether there are non-trivial modifications to the decl spec.
bool trivial;
/// Whether we saved the attributes in the decl spec.
bool hasSavedAttrs;
/// The original set of attributes on the DeclSpec.
SmallVector<ParsedAttr *, 2> savedAttrs;
/// A list of attributes to diagnose the uselessness of when the
/// processing is complete.
SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
/// Attributes corresponding to AttributedTypeLocs that we have not yet
/// populated.
// FIXME: The two-phase mechanism by which we construct Types and fill
// their TypeLocs makes it hard to correctly assign these. We keep the
// attributes in creation order as an attempt to make them line up
// properly.
using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
SmallVector<TypeAttrPair, 8> AttrsForTypes;
bool AttrsForTypesSorted = true;
/// MacroQualifiedTypes mapping to macro expansion locations that will be
/// stored in a MacroQualifiedTypeLoc.
llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
/// Flag to indicate we parsed a noderef attribute. This is used for
/// validating that noderef was used on a pointer or array.
bool parsedNoDeref;
public:
TypeProcessingState(Sema &sema, Declarator &declarator)
: sema(sema), declarator(declarator),
chunkIndex(declarator.getNumTypeObjects()), trivial(true),
hasSavedAttrs(false), parsedNoDeref(false) {}
Sema &getSema() const {
return sema;
}
Declarator &getDeclarator() const {
return declarator;
}
bool isProcessingDeclSpec() const {
return chunkIndex == declarator.getNumTypeObjects();
}
unsigned getCurrentChunkIndex() const {
return chunkIndex;
}
void setCurrentChunkIndex(unsigned idx) {
assert(idx <= declarator.getNumTypeObjects());
chunkIndex = idx;
}
ParsedAttributesView &getCurrentAttributes() const {
if (isProcessingDeclSpec())
return getMutableDeclSpec().getAttributes();
return declarator.getTypeObject(chunkIndex).getAttrs();
}
/// Save the current set of attributes on the DeclSpec.
void saveDeclSpecAttrs() {
// Don't try to save them multiple times.
if (hasSavedAttrs) return;
DeclSpec &spec = getMutableDeclSpec();
for (ParsedAttr &AL : spec.getAttributes())
savedAttrs.push_back(&AL);
trivial &= savedAttrs.empty();
hasSavedAttrs = true;
}
/// Record that we had nowhere to put the given type attribute.
/// We will diagnose such attributes later.
void addIgnoredTypeAttr(ParsedAttr &attr) {
ignoredTypeAttrs.push_back(&attr);
}
/// Diagnose all the ignored type attributes, given that the
/// declarator worked out to the given type.
void diagnoseIgnoredTypeAttrs(QualType type) const {
for (auto *Attr : ignoredTypeAttrs)
diagnoseBadTypeAttribute(getSema(), *Attr, type);
}
/// Get an attributed type for the given attribute, and remember the Attr
/// object so that we can attach it to the AttributedTypeLoc.
QualType getAttributedType(Attr *A, QualType ModifiedType,
QualType EquivType) {
QualType T =
sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
AttrsForTypesSorted = false;
return T;
}
/// Completely replace the \c auto in \p TypeWithAuto by
/// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
/// necessary.
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
// Attributed type still should be an attributed type after replacement.
auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
for (TypeAttrPair &A : AttrsForTypes) {
if (A.first == AttrTy)
A.first = NewAttrTy;
}
AttrsForTypesSorted = false;
}
return T;
}
/// Extract and remove the Attr* for a given attributed type.
const Attr *takeAttrForAttributedType(const AttributedType *AT) {
if (!AttrsForTypesSorted) {
llvm::stable_sort(AttrsForTypes, llvm::less_first());
AttrsForTypesSorted = true;
}
// FIXME: This is quadratic if we have lots of reuses of the same
// attributed type.
for (auto It = std::partition_point(
AttrsForTypes.begin(), AttrsForTypes.end(),
[=](const TypeAttrPair &A) { return A.first < AT; });
It != AttrsForTypes.end() && It->first == AT; ++It) {
if (It->second) {
const Attr *Result = It->second;
It->second = nullptr;
return Result;
}
}
llvm_unreachable("no Attr* for AttributedType*");
}
SourceLocation
getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
auto FoundLoc = LocsForMacros.find(MQT);
assert(FoundLoc != LocsForMacros.end() &&
"Unable to find macro expansion location for MacroQualifedType");
return FoundLoc->second;
}
void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
SourceLocation Loc) {
LocsForMacros[MQT] = Loc;
}
void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
bool didParseNoDeref() const { return parsedNoDeref; }
~TypeProcessingState() {
if (trivial) return;
restoreDeclSpecAttrs();
}
private:
DeclSpec &getMutableDeclSpec() const {
return const_cast<DeclSpec&>(declarator.getDeclSpec());
}
void restoreDeclSpecAttrs() {
assert(hasSavedAttrs);
getMutableDeclSpec().getAttributes().clearListOnly();
for (ParsedAttr *AL : savedAttrs)
getMutableDeclSpec().getAttributes().addAtEnd(AL);
}
};
} // end anonymous namespace
static void moveAttrFromListToList(ParsedAttr &attr,
ParsedAttributesView &fromList,
ParsedAttributesView &toList) {
fromList.remove(&attr);
toList.addAtEnd(&attr);
}
/// The location of a type attribute.
enum TypeAttrLocation {
/// The attribute is in the decl-specifier-seq.
TAL_DeclSpec,
/// The attribute is part of a DeclaratorChunk.
TAL_DeclChunk,
/// The attribute is immediately after the declaration's name.
TAL_DeclName
};
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
TypeAttrLocation TAL, ParsedAttributesView &attrs);
static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
QualType &type);
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType &type);
static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
QualType &type);
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType &type);
static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType &type) {
if (attr.getKind() == ParsedAttr::AT_ObjCGC)
return handleObjCGCTypeAttr(state, attr, type);
assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
return handleObjCOwnershipTypeAttr(state, attr, type);
}
/// Given the index of a declarator chunk, check whether that chunk
/// directly specifies the return type of a function and, if so, find
/// an appropriate place for it.
///
/// \param i - a notional index which the search will start
/// immediately inside
///
/// \param onlyBlockPointers Whether we should only look into block
/// pointer types (vs. all pointer types).
static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
unsigned i,
bool onlyBlockPointers) {
assert(i <= declarator.getNumTypeObjects());
DeclaratorChunk *result = nullptr;
// First, look inwards past parens for a function declarator.
for (; i != 0; --i) {
DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
switch (fnChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
// If we find anything except a function, bail out.
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
return result;
// If we do find a function declarator, scan inwards from that,
// looking for a (block-)pointer declarator.
case DeclaratorChunk::Function:
for (--i; i != 0; --i) {
DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
switch (ptrChunk.Kind) {
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pipe:
continue;
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pointer:
if (onlyBlockPointers)
continue;
LLVM_FALLTHROUGH;
case DeclaratorChunk::BlockPointer:
result = &ptrChunk;
goto continue_outer;
}
llvm_unreachable("bad declarator chunk kind");
}
// If we run out of declarators doing that, we're done.
return result;
}
llvm_unreachable("bad declarator chunk kind");
// Okay, reconsider from our new point.
continue_outer: ;
}
// Ran out of chunks, bail out.
return result;
}
/// Given that an objc_gc attribute was written somewhere on a
/// declaration *other* than on the declarator itself (for which, use
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
/// didn't apply in whatever position it was written in, try to move
/// it to a more appropriate position.
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType type) {
Declarator &declarator = state.getDeclarator();
// Move it to the outermost normal or block pointer declarator.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer: {
// But don't move an ARC ownership attribute to the return type
// of a block.
DeclaratorChunk *destChunk = nullptr;
if (state.isProcessingDeclSpec() &&
attr.getKind() == ParsedAttr::AT_ObjCOwnership)
destChunk = maybeMovePastReturnType(declarator, i - 1,
/*onlyBlockPointers=*/true);
if (!destChunk) destChunk = &chunk;
moveAttrFromListToList(attr, state.getCurrentAttributes(),
destChunk->getAttrs());
return;
}
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
// We may be starting at the return type of a block.
case DeclaratorChunk::Function:
if (state.isProcessingDeclSpec() &&
attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
if (DeclaratorChunk *dest = maybeMovePastReturnType(
declarator, i,
/*onlyBlockPointers=*/true)) {
moveAttrFromListToList(attr, state.getCurrentAttributes(),
dest->getAttrs());
return;
}
}
goto error;
// Don't walk through these.
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
goto error;
}
}
error:
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Distribute an objc_gc type attribute that was written on the
/// declarator.
static void distributeObjCPointerTypeAttrFromDeclarator(
TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// objc_gc goes on the innermost pointer to something that's not a
// pointer.
unsigned innermost = -1U;
bool considerDeclSpec = true;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
innermost = i;
continue;
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
case DeclaratorChunk::Pipe:
continue;
case DeclaratorChunk::Function:
considerDeclSpec = false;
goto done;
}
}
done:
// That might actually be the decl spec if we weren't blocked by
// anything in the declarator.
if (considerDeclSpec) {
if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
// Splice the attribute into the decl spec. Prevents the
// attribute from being applied multiple times and gives
// the source-location-filler something to work with.
state.saveDeclSpecAttrs();
declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
declarator.getAttributes(), &attr);
return;
}
}
// Otherwise, if we found an appropriate chunk, splice the attribute
// into it.
if (innermost != -1U) {
moveAttrFromListToList(attr, declarator.getAttributes(),
declarator.getTypeObject(innermost).getAttrs());
return;
}
// Otherwise, diagnose when we're done building the type.
declarator.getAttributes().remove(&attr);
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written somewhere in a declaration
/// *other* than on the declarator itself or in the decl spec. Given
/// that it didn't apply in whatever position it was written in, try
/// to move it to a more appropriate position.
static void distributeFunctionTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType type) {
Declarator &declarator = state.getDeclarator();
// Try to push the attribute from the return type of a function to
// the function itself.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Function:
moveAttrFromListToList(attr, state.getCurrentAttributes(),
chunk.getAttrs());
return;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
continue;
}
}
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Try to distribute a function type attribute to the innermost
/// function chunk or type. Returns true if the attribute was
/// distributed, false if no location was found.
static bool distributeFunctionTypeAttrToInnermost(
TypeProcessingState &state, ParsedAttr &attr,
ParsedAttributesView &attrList, QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Put it on the innermost function chunk, if there is one.
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
if (chunk.Kind != DeclaratorChunk::Function) continue;
moveAttrFromListToList(attr, attrList, chunk.getAttrs());
return true;
}
return handleFunctionTypeAttr(state, attr, declSpecType);
}
/// A function type attribute was written in the decl spec. Try to
/// apply it somewhere.
static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
ParsedAttr &attr,
QualType &declSpecType) {
state.saveDeclSpecAttrs();
// C++11 attributes before the decl specifiers actually appertain to
// the declarators. Move them straight there. We don't support the
// 'put them wherever you like' semantics we allow for GNU attributes.
if (attr.isCXX11Attribute()) {
moveAttrFromListToList(attr, state.getCurrentAttributes(),
state.getDeclarator().getAttributes());
return;
}
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(
state, attr, state.getCurrentAttributes(), declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written on the declarator. Try to
/// apply it somewhere.
static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
ParsedAttr &attr,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(
state, attr, declarator.getAttributes(), declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
declarator.getAttributes().remove(&attr);
state.addIgnoredTypeAttr(attr);
}
/// Given that there are attributes written on the declarator
/// itself, try to distribute any type attributes to the appropriate
/// declarator chunk.
///
/// These are attributes like the following:
/// int f ATTR;
/// int (f ATTR)();
/// but not necessarily this:
/// int f() ATTR;
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
QualType &declSpecType) {
// Collect all the type attributes from the declarator itself.
assert(!state.getDeclarator().getAttributes().empty() &&
"declarator has no attrs!");
// The called functions in this loop actually remove things from the current
// list, so iterating over the existing list isn't possible. Instead, make a
// non-owning copy and iterate over that.
ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
for (ParsedAttr &attr : AttrsCopy) {
// Do not distribute C++11 attributes. They have strict rules for what
// they appertain to.
if (attr.isCXX11Attribute())
continue;
switch (attr.getKind()) {
OBJC_POINTER_TYPE_ATTRS_CASELIST:
distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
break;
FUNCTION_TYPE_ATTRS_CASELIST:
distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
break;
MS_TYPE_ATTRS_CASELIST:
// Microsoft type attributes cannot go after the declarator-id.
continue;
NULLABILITY_TYPE_ATTRS_CASELIST:
// Nullability specifiers cannot go after the declarator-id.
// Objective-C __kindof does not get distributed.
case ParsedAttr::AT_ObjCKindOf:
continue;
default:
break;
}
}
}
/// Add a synthetic '()' to a block-literal declarator if it is
/// required, given the return type.
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
QualType declSpecType) {
Declarator &declarator = state.getDeclarator();
// First, check whether the declarator would produce a function,
// i.e. whether the innermost semantic chunk is a function.
if (declarator.isFunctionDeclarator()) {
// If so, make that declarator a prototyped declarator.
declarator.getFunctionTypeInfo().hasPrototype = true;
return;
}
// If there are any type objects, the type as written won't name a
// function, regardless of the decl spec type. This is because a
// block signature declarator is always an abstract-declarator, and
// abstract-declarators can't just be parentheses chunks. Therefore
// we need to build a function chunk unless there are no type
// objects and the decl spec type is a function.
if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
return;
// Note that there *are* cases with invalid declarators where
// declarators consist solely of parentheses. In general, these
// occur only in failed efforts to make function declarators, so
// faking up the function chunk is still the right thing to do.
// Otherwise, we need to fake up a function declarator.
SourceLocation loc = declarator.getBeginLoc();
// ...and *prepend* it to the declarator.
SourceLocation NoLoc;
declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
/*HasProto=*/true,
/*IsAmbiguous=*/false,
/*LParenLoc=*/NoLoc,
/*ArgInfo=*/nullptr,
/*NumParams=*/0,
/*EllipsisLoc=*/NoLoc,
/*RParenLoc=*/NoLoc,
/*RefQualifierIsLvalueRef=*/true,
/*RefQualifierLoc=*/NoLoc,
/*MutableLoc=*/NoLoc, EST_None,
/*ESpecRange=*/SourceRange(),
/*Exceptions=*/nullptr,
/*ExceptionRanges=*/nullptr,
/*NumExceptions=*/0,
/*NoexceptExpr=*/nullptr,
/*ExceptionSpecTokens=*/nullptr,
/*DeclsInPrototype=*/None, loc, loc, declarator));
// For consistency, make sure the state still has us as processing
// the decl spec.
assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
state.setCurrentChunkIndex(declarator.getNumTypeObjects());
}
static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
unsigned &TypeQuals,
QualType TypeSoFar,
unsigned RemoveTQs,
unsigned DiagID) {
// If this occurs outside a template instantiation, warn the user about
// it; they probably didn't mean to specify a redundant qualifier.
typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
if (!(RemoveTQs & Qual.first))
continue;
if (!S.inTemplateInstantiation()) {
if (TypeQuals & Qual.first)
S.Diag(Qual.second, DiagID)
<< DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
<< FixItHint::CreateRemoval(Qual.second);
}
TypeQuals &= ~Qual.first;
}
}
/// Return true if this is omitted block return type. Also check type
/// attributes and type qualifiers when returning true.
static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
QualType Result) {
if (!isOmittedBlockReturnType(declarator))
return false;
// Warn if we see type attributes for omitted return type on a block literal.
SmallVector<ParsedAttr *, 2> ToBeRemoved;
for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
if (AL.isInvalid() || !AL.isTypeAttr())
continue;
S.Diag(AL.getLoc(),
diag::warn_block_literal_attributes_on_omitted_return_type)
<< AL;
ToBeRemoved.push_back(&AL);
}
// Remove bad attributes from the list.
for (ParsedAttr *AL : ToBeRemoved)
declarator.getMutableDeclSpec().getAttributes().remove(AL);
// Warn if we see type qualifiers for omitted return type on a block literal.
const DeclSpec &DS = declarator.getDeclSpec();
unsigned TypeQuals = DS.getTypeQualifiers();
diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
diag::warn_block_literal_qualifiers_on_omitted_return_type);
declarator.getMutableDeclSpec().ClearTypeQualifiers();
return true;
}
/// Apply Objective-C type arguments to the given type.
static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
ArrayRef<TypeSourceInfo *> typeArgs,
SourceRange typeArgsRange,
bool failOnError = false) {
// We can only apply type arguments to an Objective-C class type.
const auto *objcObjectType = type->getAs<ObjCObjectType>();
if (!objcObjectType || !objcObjectType->getInterface()) {
S.Diag(loc, diag::err_objc_type_args_non_class)
<< type
<< typeArgsRange;
if (failOnError)
return QualType();
return type;
}
// The class type must be parameterized.
ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
if (!typeParams) {
S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
<< objcClass->getDeclName()
<< FixItHint::CreateRemoval(typeArgsRange);
if (failOnError)
return QualType();
return type;
}
// The type must not already be specialized.
if (objcObjectType->isSpecialized()) {
S.Diag(loc, diag::err_objc_type_args_specialized_class)
<< type
<< FixItHint::CreateRemoval(typeArgsRange);
if (failOnError)
return QualType();
return type;
}
// Check the type arguments.
SmallVector<QualType, 4> finalTypeArgs;
unsigned numTypeParams = typeParams->size();
bool anyPackExpansions = false;
for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
TypeSourceInfo *typeArgInfo = typeArgs[i];
QualType typeArg = typeArgInfo->getType();
// Type arguments cannot have explicit qualifiers or nullability.
// We ignore indirect sources of these, e.g. behind typedefs or
// template arguments.
if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
bool diagnosed = false;
SourceRange rangeToRemove;
if (auto attr = qual.getAs<AttributedTypeLoc>()) {
rangeToRemove = attr.getLocalSourceRange();
if (attr.getTypePtr()->getImmediateNullability()) {
typeArg = attr.getTypePtr()->getModifiedType();
S.Diag(attr.getBeginLoc(),
diag::err_objc_type_arg_explicit_nullability)
<< typeArg << FixItHint::CreateRemoval(rangeToRemove);
diagnosed = true;
}
}
if (!diagnosed) {
S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
<< typeArg << typeArg.getQualifiers().getAsString()
<< FixItHint::CreateRemoval(rangeToRemove);
}
}
// Remove qualifiers even if they're non-local.
typeArg = typeArg.getUnqualifiedType();
finalTypeArgs.push_back(typeArg);
if (typeArg->getAs<PackExpansionType>())
anyPackExpansions = true;
// Find the corresponding type parameter, if there is one.
ObjCTypeParamDecl *typeParam = nullptr;
if (!anyPackExpansions) {
if (i < numTypeParams) {
typeParam = typeParams->begin()[i];
} else {
// Too many arguments.
S.Diag(loc, diag::err_objc_type_args_wrong_arity)
<< false
<< objcClass->getDeclName()
<< (unsigned)typeArgs.size()
<< numTypeParams;
S.Diag(objcClass->getLocation(), diag::note_previous_decl)
<< objcClass;
if (failOnError)
return QualType();
return type;
}
}
// Objective-C object pointer types must be substitutable for the bounds.
if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
// If we don't have a type parameter to match against, assume
// everything is fine. There was a prior pack expansion that
// means we won't be able to match anything.
if (!typeParam) {
assert(anyPackExpansions && "Too many arguments?");
continue;
}
// Retrieve the bound.
QualType bound = typeParam->getUnderlyingType();
const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
// Determine whether the type argument is substitutable for the bound.
if (typeArgObjC->isObjCIdType()) {
// When the type argument is 'id', the only acceptable type
// parameter bound is 'id'.
if (boundObjC->isObjCIdType())
continue;
} else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
// Otherwise, we follow the assignability rules.
continue;
}
// Diagnose the mismatch.
S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_arg_does_not_match_bound)
<< typeArg << bound << typeParam->getDeclName();
S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
<< typeParam->getDeclName();
if (failOnError)
return QualType();
return type;
}
// Block pointer types are permitted for unqualified 'id' bounds.
if (typeArg->isBlockPointerType()) {
// If we don't have a type parameter to match against, assume
// everything is fine. There was a prior pack expansion that
// means we won't be able to match anything.
if (!typeParam) {
assert(anyPackExpansions && "Too many arguments?");
continue;
}
// Retrieve the bound.
QualType bound = typeParam->getUnderlyingType();
if (bound->isBlockCompatibleObjCPointerType(S.Context))
continue;
// Diagnose the mismatch.
S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_arg_does_not_match_bound)
<< typeArg << bound << typeParam->getDeclName();
S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
<< typeParam->getDeclName();
if (failOnError)
return QualType();
return type;
}
// Dependent types will be checked at instantiation time.
if (typeArg->isDependentType()) {
continue;
}
// Diagnose non-id-compatible type arguments.
S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_arg_not_id_compatible)
<< typeArg << typeArgInfo->getTypeLoc().getSourceRange();
if (failOnError)
return QualType();
return type;
}
// Make sure we didn't have the wrong number of arguments.
if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
S.Diag(loc, diag::err_objc_type_args_wrong_arity)
<< (typeArgs.size() < typeParams->size())
<< objcClass->getDeclName()
<< (unsigned)finalTypeArgs.size()
<< (unsigned)numTypeParams;
S.Diag(objcClass->getLocation(), diag::note_previous_decl)
<< objcClass;
if (failOnError)
return QualType();
return type;
}
// Success. Form the specialized type.
return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
}
QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc,
bool FailOnError) {
QualType Result = QualType(Decl->getTypeForDecl(), 0);
if (!Protocols.empty()) {
bool HasError;
Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
HasError);
if (HasError) {
Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
<< SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
if (FailOnError) Result = QualType();
}
if (FailOnError && Result.isNull())
return QualType();
}
return Result;
}
QualType Sema::BuildObjCObjectType(QualType BaseType,
SourceLocation Loc,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<TypeSourceInfo *> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc,
bool FailOnError) {
QualType Result = BaseType;
if (!TypeArgs.empty()) {
Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
SourceRange(TypeArgsLAngleLoc,
TypeArgsRAngleLoc),
FailOnError);
if (FailOnError && Result.isNull())
return QualType();
}
if (!Protocols.empty()) {
bool HasError;
Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
HasError);
if (HasError) {
Diag(Loc, diag::err_invalid_protocol_qualifiers)
<< SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
if (FailOnError) Result = QualType();
}
if (FailOnError && Result.isNull())
return QualType();
}
return Result;
}
TypeResult Sema::actOnObjCProtocolQualifierType(
SourceLocation lAngleLoc,
ArrayRef<Decl *> protocols,
ArrayRef<SourceLocation> protocolLocs,
SourceLocation rAngleLoc) {
// Form id<protocol-list>.
QualType Result = Context.getObjCObjectType(
Context.ObjCBuiltinIdTy, { },
llvm::makeArrayRef(
(ObjCProtocolDecl * const *)protocols.data(),
protocols.size()),
false);
Result = Context.getObjCObjectPointerType(Result);
TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
TypeLoc ResultTL = ResultTInfo->getTypeLoc();
auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
.castAs<ObjCObjectTypeLoc>();
ObjCObjectTL.setHasBaseTypeAsWritten(false);
ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
// No type arguments.
ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
// Fill in protocol qualifiers.
ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
for (unsigned i = 0, n = protocols.size(); i != n; ++i)
ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
// We're done. Return the completed type to the parser.
return CreateParsedType(Result, ResultTInfo);
}
TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
Scope *S,
SourceLocation Loc,
ParsedType BaseType,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<ParsedType> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<Decl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc) {
TypeSourceInfo *BaseTypeInfo = nullptr;
QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
if (T.isNull())
return true;
// Handle missing type-source info.
if (!BaseTypeInfo)
BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
// Extract type arguments.
SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
TypeSourceInfo *TypeArgInfo = nullptr;
QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
if (TypeArg.isNull()) {
ActualTypeArgInfos.clear();
break;
}
assert(TypeArgInfo && "No type source info?");
ActualTypeArgInfos.push_back(TypeArgInfo);
}
// Build the object type.
QualType Result = BuildObjCObjectType(
T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
ProtocolLAngleLoc,
llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
Protocols.size()),
ProtocolLocs, ProtocolRAngleLoc,
/*FailOnError=*/false);
if (Result == T)
return BaseType;
// Create source information for this type.
TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
TypeLoc ResultTL = ResultTInfo->getTypeLoc();
// For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
// object pointer type. Fill in source information for it.
if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
// The '*' is implicit.
ObjCObjectPointerTL.setStarLoc(SourceLocation());
ResultTL = ObjCObjectPointerTL.getPointeeLoc();
}
if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
// Protocol qualifier information.
if (OTPTL.getNumProtocols() > 0) {
assert(OTPTL.getNumProtocols() == Protocols.size());
OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
}
// We're done. Return the completed type to the parser.
return CreateParsedType(Result, ResultTInfo);
}
auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
// Type argument information.
if (ObjCObjectTL.getNumTypeArgs() > 0) {
assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
} else {
ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
}
// Protocol qualifier information.
if (ObjCObjectTL.getNumProtocols() > 0) {
assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
} else {
ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
}
// Base type.
ObjCObjectTL.setHasBaseTypeAsWritten(true);
if (ObjCObjectTL.getType() == T)
ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
else
ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
// We're done. Return the completed type to the parser.
return CreateParsedType(Result, ResultTInfo);
}
static OpenCLAccessAttr::Spelling
getImageAccess(const ParsedAttributesView &Attrs) {
for (const ParsedAttr &AL : Attrs)
if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
return OpenCLAccessAttr::Keyword_read_only;
}
/// Convert the specified declspec to the appropriate type
/// object.
/// \param state Specifies the declarator containing the declaration specifier
/// to be converted, along with other associated processing state.
/// \returns The type described by the declaration specifiers. This function
/// never returns null.
static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
// checking.
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
DeclSpec &DS = declarator.getMutableDeclSpec();
SourceLocation DeclLoc = declarator.getIdentifierLoc();
if (DeclLoc.isInvalid())
DeclLoc = DS.getBeginLoc();
ASTContext &Context = S.Context;
QualType Result;
switch (DS.getTypeSpecType()) {
case DeclSpec::TST_void:
Result = Context.VoidTy;
break;
case DeclSpec::TST_char:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.CharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
Result = Context.SignedCharTy;
else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
Result = Context.UnsignedCharTy;
}
break;
case DeclSpec::TST_wchar:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.WCharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
Result = Context.getSignedWCharType();
} else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
Result = Context.getUnsignedWCharType();
}
break;
case DeclSpec::TST_char8:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char8Ty;
break;
case DeclSpec::TST_char16:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char16Ty;
break;
case DeclSpec::TST_char32:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char32Ty;
break;
case DeclSpec::TST_unspecified:
// If this is a missing declspec in a block literal return context, then it
// is inferred from the return statements inside the block.
// The declspec is always missing in a lambda expr context; it is either
// specified with a trailing return type or inferred.
if (S.getLangOpts().CPlusPlus14 &&
declarator.getContext() == DeclaratorContext::LambdaExprContext) {
// In C++1y, a lambda's implicit return type is 'auto'.
Result = Context.getAutoDeductType();
break;
} else if (declarator.getContext() ==
DeclaratorContext::LambdaExprContext ||
checkOmittedBlockReturnType(S, declarator,
Context.DependentTy)) {
Result = Context.DependentTy;
break;
}
// Unspecified typespec defaults to int in C90. However, the C90 grammar
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
// Note that the one exception to this is function definitions, which are
// allowed to be completely missing a declspec. This is handled in the
// parser already though by it pretending to have seen an 'int' in this
// case.
if (S.getLangOpts().ImplicitInt) {
// In C89 mode, we only warn if there is a completely missing declspec
// when one is not allowed.
if (DS.isEmpty()) {
S.Diag(DeclLoc, diag::ext_missing_declspec)
<< DS.getSourceRange()
<< FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
}
} else if (!DS.hasTypeSpecifier()) {
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
// "At least one type specifier shall be given in the declaration
// specifiers in each declaration, and in the specifier-qualifier list in
// each struct declaration and type name."
if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
S.Diag(DeclLoc, diag::err_missing_type_specifier)
<< DS.getSourceRange();
// When this occurs in C++ code, often something is very broken with the
// value being declared, poison it as invalid so we don't get chains of
// errors.
declarator.setInvalidType(true);
} else if ((S.getLangOpts().OpenCLVersion >= 200 ||
S.getLangOpts().OpenCLCPlusPlus) &&
DS.isTypeSpecPipe()) {
S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
<< DS.getSourceRange();
declarator.setInvalidType(true);
} else {
S.Diag(DeclLoc, diag::ext_missing_type_specifier)
<< DS.getSourceRange();
}
}
LLVM_FALLTHROUGH;
case DeclSpec::TST_int: {
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
case DeclSpec::TSW_long: Result = Context.LongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.LongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
} else {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.UnsignedLongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
}
break;
}
case DeclSpec::TST_accum: {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_short:
Result = Context.ShortAccumTy;
break;
case DeclSpec::TSW_unspecified:
Result = Context.AccumTy;
break;
case DeclSpec::TSW_long:
Result = Context.LongAccumTy;
break;
case DeclSpec::TSW_longlong:
llvm_unreachable("Unable to specify long long as _Accum width");
}
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.getCorrespondingUnsignedType(Result);
if (DS.isTypeSpecSat())
Result = Context.getCorrespondingSaturatedType(Result);
break;
}
case DeclSpec::TST_fract: {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_short:
Result = Context.ShortFractTy;
break;
case DeclSpec::TSW_unspecified:
Result = Context.FractTy;
break;
case DeclSpec::TSW_long:
Result = Context.LongFractTy;
break;
case DeclSpec::TSW_longlong:
llvm_unreachable("Unable to specify long long as _Fract width");
}
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.getCorrespondingUnsignedType(Result);
if (DS.isTypeSpecSat())
Result = Context.getCorrespondingSaturatedType(Result);
break;
}
case DeclSpec::TST_int128:
if (!S.Context.getTargetInfo().hasInt128Type() &&
!(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
<< "__int128";
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.UnsignedInt128Ty;
else
Result = Context.Int128Ty;
break;
case DeclSpec::TST_float16:
// CUDA host and device may have different _Float16 support, therefore
// do not diagnose _Float16 usage to avoid false alarm.
// ToDo: more precise diagnostics for CUDA.
if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
!(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
<< "_Float16";
Result = Context.Float16Ty;
break;
case DeclSpec::TST_half: Result = Context.HalfTy; break;
case DeclSpec::TST_float: Result = Context.FloatTy; break;
case DeclSpec::TST_double:
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
Result = Context.LongDoubleTy;
else
Result = Context.DoubleTy;
break;
case DeclSpec::TST_float128:
if (!S.Context.getTargetInfo().hasFloat128Type() &&
!(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
<< "__float128";
Result = Context.Float128Ty;
break;
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
break;
case DeclSpec::TST_decimal32: // _Decimal32
case DeclSpec::TST_decimal64: // _Decimal64
case DeclSpec::TST_decimal128: // _Decimal128
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
case DeclSpec::TST_class:
case DeclSpec::TST_enum:
case DeclSpec::TST_union:
case DeclSpec::TST_struct:
case DeclSpec::TST_interface: {
TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
if (!D) {
// This can happen in C++ with ambiguous lookups.
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
// If the type is deprecated or unavailable, diagnose it.
S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
// TypeQuals handled by caller.
Result = Context.getTypeDeclType(D);
// In both C and C++, make an ElaboratedType.
ElaboratedTypeKeyword Keyword
= ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
DS.isTypeSpecOwned() ? D : nullptr);
break;
}
case DeclSpec::TST_typename: {
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 &&
"Can't handle qualifiers on typedef names yet!");
Result = S.GetTypeFromParser(DS.getRepAsType());
if (Result.isNull()) {
declarator.setInvalidType(true);
}
// TypeQuals handled by caller.
break;
}
case DeclSpec::TST_typeofType:
// FIXME: Preserve type source info.
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for typeof?");
if (!Result->isDependentType())
if (const TagType *TT = Result->getAs<TagType>())
S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
// TypeQuals handled by caller.
Result = Context.getTypeOfType(Result);
break;
case DeclSpec::TST_typeofExpr: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for typeof?");
// TypeQuals handled by caller.
Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_decltype: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for decltype?");
// TypeQuals handled by caller.
Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_underlyingType:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
Result = S.BuildUnaryTransformType(Result,
UnaryTransformType::EnumUnderlyingType,
DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_auto:
Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
break;
case DeclSpec::TST_auto_type:
Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
break;
case DeclSpec::TST_decltype_auto:
Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
/*IsDependent*/ false);
break;
case DeclSpec::TST_unknown_anytype:
Result = Context.UnknownAnyTy;
break;
case DeclSpec::TST_atomic:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for _Atomic?");
Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
#define GENERIC_IMAGE_TYPE(ImgType, Id) \
case DeclSpec::TST_##ImgType##_t: \
switch (getImageAccess(DS.getAttributes())) { \
case OpenCLAccessAttr::Keyword_write_only: \
Result = Context.Id##WOTy; \
break; \
case OpenCLAccessAttr::Keyword_read_write: \
Result = Context.Id##RWTy; \
break; \
case OpenCLAccessAttr::Keyword_read_only: \
Result = Context.Id##ROTy; \
break; \
case OpenCLAccessAttr::SpellingNotCalculated: \
llvm_unreachable("Spelling not yet calculated"); \
} \
break;
#include "clang/Basic/OpenCLImageTypes.def"
case DeclSpec::TST_error:
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
if (S.getLangOpts().OpenCL &&
S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
declarator.setInvalidType(true);
bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
DS.getTypeSpecType() == DeclSpec::TST_fract;
// Only fixed point types can be saturated
if (DS.isTypeSpecSat() && !IsFixedPointType)
S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
// Handle complex types.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
if (S.getLangOpts().Freestanding)
S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
Result = Context.getComplexType(Result);
} else if (DS.isTypeAltiVecVector()) {
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
VectorType::VectorKind VecKind = VectorType::AltiVecVector;
if (DS.isTypeAltiVecPixel())
VecKind = VectorType::AltiVecPixel;
else if (DS.isTypeAltiVecBool())
VecKind = VectorType::AltiVecBool;
Result = Context.getVectorType(Result, 128/typeSize, VecKind);
}
// FIXME: Imaginary.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
// Before we process any type attributes, synthesize a block literal
// function declarator if necessary.
if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
maybeSynthesizeBlockSignature(state, Result);
// Apply any type attributes from the decl spec. This may cause the
// list of type attributes to be temporarily saved while the type
// attributes are pushed around.
// pipe attributes will be handled later ( at GetFullTypeForDeclarator )
if (!DS.isTypeSpecPipe())
processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
// Apply const/volatile/restrict qualifiers to T.
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
// Warn about CV qualifiers on function types.
// C99 6.7.3p8:
// If the specification of a function type includes any type qualifiers,
// the behavior is undefined.
// C++11 [dcl.fct]p7:
// The effect of a cv-qualifier-seq in a function declarator is not the
// same as adding cv-qualification on top of the function type. In the
// latter case, the cv-qualifiers are ignored.
if (TypeQuals && Result->isFunctionType()) {
diagnoseAndRemoveTypeQualifiers(
S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
S.getLangOpts().CPlusPlus
? diag::warn_typecheck_function_qualifiers_ignored
: diag::warn_typecheck_function_qualifiers_unspecified);
// No diagnostic for 'restrict' or '_Atomic' applied to a
// function type; we'll diagnose those later, in BuildQualifiedType.
}
// C++11 [dcl.ref]p1:
// Cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef-name
// or decltype-specifier, in which case the cv-qualifiers are ignored.
//
// There don't appear to be any other contexts in which a cv-qualified
// reference type could be formed, so the 'ill-formed' clause here appears
// to never happen.
if (TypeQuals && Result->isReferenceType()) {
diagnoseAndRemoveTypeQualifiers(
S, DS, TypeQuals, Result,
DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
diag::warn_typecheck_reference_qualifiers);
}
// C90 6.5.3 constraints: "The same type qualifier shall not appear more
// than once in the same specifier-list or qualifier-list, either directly
// or via one or more typedefs."
if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
&& TypeQuals & Result.getCVRQualifiers()) {
if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
<< "const";
}
if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
<< "volatile";
}
// C90 doesn't have restrict nor _Atomic, so it doesn't force us to
// produce a warning in this case.
}
QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
// If adding qualifiers fails, just use the unqualified type.
if (Qualified.isNull())
declarator.setInvalidType(true);
else
Result = Qualified;
}
assert(!Result.isNull() && "This function should not return a null type");
return Result;
}
static std::string getPrintableNameForEntity(DeclarationName Entity) {
if (Entity)
return Entity.getAsString();
return "type name";
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
Qualifiers Qs, const DeclSpec *DS) {
if (T.isNull())
return QualType();
// Ignore any attempt to form a cv-qualified reference.
if (T->isReferenceType()) {
Qs.removeConst();
Qs.removeVolatile();
}
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
// object or incomplete types shall not be restrict-qualified."
if (Qs.hasRestrict()) {
unsigned DiagID = 0;
QualType ProblemTy;
if (T->isAnyPointerType() || T->isReferenceType() ||
T->isMemberPointerType()) {
QualType EltTy;
if (T->isObjCObjectPointerType())
EltTy = T;
else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
EltTy = PTy->getPointeeType();
else
EltTy = T->getPointeeType();
// If we have a pointer or reference, the pointee must have an object
// incomplete type.
if (!EltTy->isIncompleteOrObjectType()) {
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
ProblemTy = EltTy;
}
} else if (!T->isDependentType()) {
DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
ProblemTy = T;
}
if (DiagID) {
Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
Qs.removeRestrict();
}
}
return Context.getQualifiedType(T, Qs);
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
unsigned CVRAU, const DeclSpec *DS) {
if (T.isNull())
return QualType();
// Ignore any attempt to form a cv-qualified reference.
if (T->isReferenceType())
CVRAU &=
~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
// Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
// TQ_unaligned;
unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
// C11 6.7.3/5:
// If the same qualifier appears more than once in the same
// specifier-qualifier-list, either directly or via one or more typedefs,
// the behavior is the same as if it appeared only once.
//
// It's not specified what happens when the _Atomic qualifier is applied to
// a type specified with the _Atomic specifier, but we assume that this
// should be treated as if the _Atomic qualifier appeared multiple times.
if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
// C11 6.7.3/5:
// If other qualifiers appear along with the _Atomic qualifier in a
// specifier-qualifier-list, the resulting type is the so-qualified
// atomic type.
//
// Don't need to worry about array types here, since _Atomic can't be
// applied to such types.
SplitQualType Split = T.getSplitUnqualifiedType();
T = BuildAtomicType(QualType(Split.Ty, 0),
DS ? DS->getAtomicSpecLoc() : Loc);
if (T.isNull())
return T;
Split.Quals.addCVRQualifiers(CVR);
return BuildQualifiedType(T, Loc, Split.Quals);
}
Qualifiers Q = Qualifiers::fromCVRMask(CVR);
Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
return BuildQualifiedType(T, Loc, Q, DS);
}
/// Build a paren type including \p T.
QualType Sema::BuildParenType(QualType T) {
return Context.getParenType(T);
}
/// Given that we're building a pointer or reference to the given
static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
SourceLocation loc,
bool isReference) {
// Bail out if retention is unrequired or already specified.
if (!type->isObjCLifetimeType() ||
type.getObjCLifetime() != Qualifiers::OCL_None)
return type;
Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
// If the object type is const-qualified, we can safely use
// __unsafe_unretained. This is safe (because there are no read
// barriers), and it'll be safe to coerce anything but __weak* to
// the resulting type.
if (type.isConstQualified()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// Otherwise, check whether the static type does not require
// retaining. This currently only triggers for Class (possibly
// protocol-qualifed, and arrays thereof).
} else if (type->isObjCARCImplicitlyUnretainedType()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// If we are in an unevaluated context, like sizeof, skip adding a
// qualification.
} else if (S.isUnevaluatedContext()) {
return type;
// If that failed, give an error and recover using __strong. __strong
// is the option most likely to prevent spurious second-order diagnostics,
// like when binding a reference to a field.
} else {
// These types can show up in private ivars in system headers, so
// we need this to not be an error in those cases. Instead we
// want to delay.
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(loc,
diag::err_arc_indirect_no_ownership, type, isReference));
} else {
S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
}
implicitLifetime = Qualifiers::OCL_Strong;
}
assert(implicitLifetime && "didn't infer any lifetime!");
Qualifiers qs;
qs.addObjCLifetime(implicitLifetime);
return S.Context.getQualifiedType(type, qs);
}
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
std::string Quals = FnTy->getMethodQuals().getAsString();
switch (FnTy->getRefQualifier()) {
case RQ_None:
break;
case RQ_LValue:
if (!Quals.empty())
Quals += ' ';
Quals += '&';
break;
case RQ_RValue:
if (!Quals.empty())
Quals += ' ';
Quals += "&&";
break;
}
return Quals;
}
namespace {
/// Kinds of declarator that cannot contain a qualified function type.
///
/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
/// a function type with a cv-qualifier or a ref-qualifier can only appear
/// at the topmost level of a type.
///
/// Parens and member pointers are permitted. We don't diagnose array and
/// function declarators, because they don't allow function types at all.
///
/// The values of this enum are used in diagnostics.
enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
} // end anonymous namespace
/// Check whether the type T is a qualified function type, and if it is,
/// diagnose that it cannot be contained within the given kind of declarator.
static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
QualifiedFunctionKind QFK) {
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
if (!FPT ||
(FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
return false;
S.Diag(Loc, diag::err_compound_qualified_function_type)
<< QFK << isa<FunctionType>(T.IgnoreParens()) << T
<< getFunctionQualifiersAsString(FPT);
return true;
}
bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
if (!FPT ||
(FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
return false;
Diag(Loc, diag::err_qualified_function_typeid)
<< T << getFunctionQualifiersAsString(FPT);
return true;
}
/// Build a pointer type.
///
/// \param T The type to which we'll be building a pointer.
///
/// \param Loc The location of the entity whose type involves this
/// pointer type or, if there is no such entity, the location of the
/// type that will have pointer type.
///
/// \param Entity The name of the entity that involves the pointer
/// type, if known.
///
/// \returns A suitable pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity) {
if (T->isReferenceType()) {
// C++ 8.3.2p4: There shall be no ... pointers to references ...
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isFunctionType() && getLangOpts().OpenCL) {
Diag(Loc, diag::err_opencl_function_pointer);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
return QualType();
assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
// In ARC, it is forbidden to build pointers to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
// Build the pointer type.
return Context.getPointerType(T);
}
/// Build a reference type.
///
/// \param T The type to which we'll be building a reference.
///
/// \param Loc The location of the entity whose type involves this
/// reference type or, if there is no such entity, the location of the
/// type that will have reference type.
///
/// \param Entity The name of the entity that involves the reference
/// type, if known.
///
/// \returns A suitable reference type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
SourceLocation Loc,
DeclarationName Entity) {
assert(Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type");
// C++0x [dcl.ref]p6:
// If a typedef (7.1.3), a type template-parameter (14.3.1), or a
// decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
// type T, an attempt to create the type "lvalue reference to cv TR" creates
// the type "lvalue reference to T", while an attempt to create the type
// "rvalue reference to cv TR" creates the type TR.
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
// C++ [dcl.ref]p4: There shall be no references to references.
//
// According to C++ DR 106, references to references are only
// diagnosed when they are written directly (e.g., "int & &"),
// but not when they happen via a typedef:
//
// typedef int& intref;
// typedef intref& intref2;
//
// Parser::ParseDeclaratorInternal diagnoses the case where
// references are written directly; here, we handle the
// collapsing of references-to-references as described in C++0x.
// DR 106 and 540 introduce reference-collapsing into C++98/03.
// C++ [dcl.ref]p1:
// A declarator that specifies the type "reference to cv void"
// is ill-formed.
if (T->isVoidType()) {
Diag(Loc, diag::err_reference_to_void);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
return QualType();
// In ARC, it is forbidden to build references to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
// Handle restrict on references.
if (LValueRef)
return Context.getLValueReferenceType(T, SpelledAsLValue);
return Context.getRValueReferenceType(T);
}
/// Build a Read-only Pipe type.
///
/// \param T The type to which we'll be building a Pipe.
///
/// \param Loc We do not use it for now.
///
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
/// NULL type.
QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
return Context.getReadPipeType(T);
}
/// Build a Write-only Pipe type.
///
/// \param T The type to which we'll be building a Pipe.
///
/// \param Loc We do not use it for now.
///
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
/// NULL type.
QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
return Context.getWritePipeType(T);
}
/// Check whether the specified array size makes the array type a VLA. If so,
/// return true, if not, return the size of the array in SizeVal.
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
// If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
// (like gnu99, but not c99) accept any evaluatable value as an extension.
class VLADiagnoser : public Sema::VerifyICEDiagnoser {
public:
VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
}
void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
}
} Diagnoser;
return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
S.LangOpts.GNUMode ||
S.LangOpts.OpenCL).isInvalid();
}
/// Build an array type.
///
/// \param T The type of each element in the array.
///
/// \param ASM C99 array size modifier (e.g., '*', 'static').
///
/// \param ArraySize Expression describing the size of the array.
///
/// \param Brackets The range from the opening '[' to the closing ']'.
///
/// \param Entity The name of the entity that involves the array
/// type, if known.
///
/// \returns A suitable array type, if there are no errors. Otherwise,
/// returns a NULL type.
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity) {
SourceLocation Loc = Brackets.getBegin();
if (getLangOpts().CPlusPlus) {
// C++ [dcl.array]p1:
// T is called the array element type; this type shall not be a reference
// type, the (possibly cv-qualified) type void, a function type or an
// abstract class type.
//
// C++ [dcl.array]p3:
// When several "array of" specifications are adjacent, [...] only the
// first of the constant expressions that specify the bounds of the arrays
// may be omitted.
//
// Note: function types are handled in the common path with C.
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_array_of_references)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType() || T->isIncompleteArrayType()) {
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
return QualType();
}
if (RequireNonAbstractType(Brackets.getBegin(), T,
diag::err_array_of_abstract_type))
return QualType();
// Mentioning a member pointer type for an array type causes us to lock in
// an inheritance model, even if it's inside an unused typedef.
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
if (!MPTy->getClass()->isDependentType())
(void)isCompleteType(Loc, T);
} else {
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
if (RequireCompleteType(Loc, T,
diag::err_illegal_decl_array_incomplete_type))
return QualType();
}
if (T->isFunctionType()) {
Diag(Loc, diag::err_illegal_decl_array_of_functions)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (const RecordType *EltTy = T->getAs<RecordType>()) {
// If the element type is a struct or union that contains a variadic
// array, accept it as a GNU extension: C99 6.7.2.1p2.
if (EltTy->getDecl()->hasFlexibleArrayMember())
Diag(Loc, diag::ext_flexible_array_in_array) << T;
} else if (T->isObjCObjectType()) {
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
return QualType();
}
// Do placeholder conversions on the array size expression.
if (ArraySize && ArraySize->hasPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(ArraySize);
if (Result.isInvalid()) return QualType();
ArraySize = Result.get();
}
// Do lvalue-to-rvalue conversions on the array size expression.
if (ArraySize && !ArraySize->isRValue()) {
ExprResult Result = DefaultLvalueConversion(ArraySize);
if (Result.isInvalid())
return QualType();
ArraySize = Result.get();
}
// C99 6.7.5.2p1: The size expression shall have integer type.
// C++11 allows contextual conversions to such types.
if (!getLangOpts().CPlusPlus11 &&
ArraySize && !ArraySize->isTypeDependent() &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
if (!ArraySize) {
if (ASM == ArrayType::Star)
T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
else
T = Context.getIncompleteArrayType(T, ASM, Quals);
} else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
} else if ((!T->isDependentType() && !T->isIncompleteType() &&
!T->isConstantSizeType()) ||
isArraySizeVLA(*this, ArraySize, ConstVal)) {
// Even in C++11, don't allow contextual conversions in the array bound
// of a VLA.
if (getLangOpts().CPlusPlus11 &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
// C99: an array with an element type that has a non-constant-size is a VLA.
// C99: an array with a non-ICE size is a VLA. We accept any expression
// that we can fold to a non-zero positive value as an extension.
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
} else {
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
// have a value greater than zero.
if (ConstVal.isSigned() && ConstVal.isNegative()) {
if (Entity)
Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
<< getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
else
Diag(ArraySize->getBeginLoc(), diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (ConstVal == 0) {
// GCC accepts zero sized static arrays. We allow them when
// we're not in a SFINAE context.
Diag(ArraySize->getBeginLoc(), isSFINAEContext()
? diag::err_typecheck_zero_array_size
: diag::ext_typecheck_zero_array_size)
<< ArraySize->getSourceRange();
if (ASM == ArrayType::Static) {
Diag(ArraySize->getBeginLoc(),
diag::warn_typecheck_zero_static_array_size)
<< ArraySize->getSourceRange();
ASM = ArrayType::Normal;
}
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
!T->isIncompleteType() && !T->isUndeducedType()) {
// Is the array too large?
unsigned ActiveSizeBits
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
<< ConstVal.toString(10) << ArraySize->getSourceRange();
return QualType();
}
}
T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
}
// OpenCL v1.2 s6.9.d: variable length arrays are not supported.
if (getLangOpts().OpenCL && T->isVariableArrayType()) {
Diag(Loc, diag::err_opencl_vla);
return QualType();
}
if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
// CUDA device code and some other targets don't support VLAs.
targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
? diag::err_cuda_vla
: diag::err_vla_unsupported)
<< ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
? CurrentCUDATarget()
: CFT_InvalidTarget);
}
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
if (!getLangOpts().C99) {
if (T->isVariableArrayType()) {
// Prohibit the use of VLAs during template argument deduction.
if (isSFINAEContext()) {
Diag(Loc, diag::err_vla_in_sfinae);
return QualType();
}
// Just extwarn about VLAs.
else
Diag(Loc, diag::ext_vla);
} else if (ASM != ArrayType::Normal || Quals != 0)
Diag(Loc,
getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
: diag::ext_c99_array_usage) << ASM;
}
if (T->isVariableArrayType()) {
// Warn about VLAs for -Wvla.
Diag(Loc, diag::warn_vla_used);
}
// OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
// OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
// OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
if (getLangOpts().OpenCL) {
const QualType ArrType = Context.getBaseElementType(T);
if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
ArrType->isSamplerT() || ArrType->isImageType()) {
Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
return QualType();
}
}
return T;
}
QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
SourceLocation AttrLoc) {
// The base type must be integer (not Boolean or enumeration) or float, and
// can't already be a vector.
if (!CurType->isDependentType() &&
(!CurType->isBuiltinType() || CurType->isBooleanType() ||
(!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
return QualType();
}
if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
VectorType::GenericVector);
llvm::APSInt VecSize(32);
if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_type)
<< "vector_size" << AANT_ArgumentIntegerConstant
<< SizeExpr->getSourceRange();
return QualType();
}
if (CurType->isDependentType())
return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
VectorType::GenericVector);
unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
if (VectorSize == 0) {
Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
return QualType();
}
// vecSize is specified in bytes - convert to bits.
if (VectorSize % TypeSize) {
Diag(AttrLoc, diag::err_attribute_invalid_size)
<< SizeExpr->getSourceRange();
return QualType();
}
if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
Diag(AttrLoc, diag::err_attribute_size_too_large)
<< SizeExpr->getSourceRange();
return QualType();
}
return Context.getVectorType(CurType, VectorSize / TypeSize,
VectorType::GenericVector);
}
/// Build an ext-vector type.
///
/// Run the required checks for the extended vector type.
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc) {
// Unlike gcc's vector_size attribute, we do not allow vectors to be defined
// in conjunction with complex types (pointers, arrays, functions, etc.).
//
// Additionally, OpenCL prohibits vectors of booleans (they're considered a
// reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
// on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
// of bool aren't allowed.
if ((!T->isDependentType() && !T->isIntegerType() &&
!T->isRealFloatingType()) ||
T->isBooleanType()) {
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
return QualType();
}
if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
llvm::APSInt vecSize(32);
if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_type)
<< "ext_vector_type" << AANT_ArgumentIntegerConstant
<< ArraySize->getSourceRange();
return QualType();
}
// Unlike gcc's vector_size attribute, the size is specified as the
// number of elements, not the number of bytes.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
if (vectorSize == 0) {
Diag(AttrLoc, diag::err_attribute_zero_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (VectorType::isVectorSizeTooLarge(vectorSize)) {
Diag(AttrLoc, diag::err_attribute_size_too_large)
<< ArraySize->getSourceRange();
return QualType();
}
return Context.getExtVectorType(T, vectorSize);
}
return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
}
bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
if (T->isArrayType() || T->isFunctionType()) {
Diag(Loc, diag::err_func_returning_array_function)
<< T->isFunctionType() << T;
return true;
}
// Functions cannot return half FP.
if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
FixItHint::CreateInsertion(Loc, "*");
return true;
}
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (T->isObjCObjectType()) {
Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << T << FixItHint::CreateInsertion(Loc, "*");
return true;
}
if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
T.hasNonTrivialToPrimitiveCopyCUnion())
checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
NTCUK_Destruct|NTCUK_Copy);
// C++2a [dcl.fct]p12:
// A volatile-qualified return type is deprecated
if (T.isVolatileQualified() && getLangOpts().CPlusPlus2a)
Diag(Loc, diag::warn_deprecated_volatile_return) << T;
return false;
}
/// Check the extended parameter information. Most of the necessary
/// checking should occur when applying the parameter attribute; the
/// only other checks required are positional restrictions.
static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
const FunctionProtoType::ExtProtoInfo &EPI,
llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
bool hasCheckedSwiftCall = false;
auto checkForSwiftCC = [&](unsigned paramIndex) {
// Only do this once.
if (hasCheckedSwiftCall) return;
hasCheckedSwiftCall = true;
if (EPI.ExtInfo.getCC() == CC_Swift) return;
S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
<< getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
};
for (size_t paramIndex = 0, numParams = paramTypes.size();
paramIndex != numParams; ++paramIndex) {
switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
// Nothing interesting to check for orindary-ABI parameters.
case ParameterABI::Ordinary:
continue;
// swift_indirect_result parameters must be a prefix of the function
// arguments.
case ParameterABI::SwiftIndirectResult:
checkForSwiftCC(paramIndex);
if (paramIndex != 0 &&
EPI.ExtParameterInfos[paramIndex - 1].getABI()
!= ParameterABI::SwiftIndirectResult) {
S.Diag(getParamLoc(paramIndex),
diag::err_swift_indirect_result_not_first);
}
continue;
case ParameterABI::SwiftContext:
checkForSwiftCC(paramIndex);
continue;
// swift_error parameters must be preceded by a swift_context parameter.
case ParameterABI::SwiftErrorResult:
checkForSwiftCC(paramIndex);
if (paramIndex == 0 ||
EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
ParameterABI::SwiftContext) {
S.Diag(getParamLoc(paramIndex),
diag::err_swift_error_result_not_after_swift_context);
}
continue;
}
llvm_unreachable("bad ABI kind");
}
}
QualType Sema::BuildFunctionType(QualType T,
MutableArrayRef<QualType> ParamTypes,
SourceLocation Loc, DeclarationName Entity,
const FunctionProtoType::ExtProtoInfo &EPI) {
bool Invalid = false;
Invalid |= CheckFunctionReturnType(T, Loc);
for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
// FIXME: Loc is too inprecise here, should use proper locations for args.
QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
if (ParamType->isVoidType()) {
Diag(Loc, diag::err_param_with_void_type);
Invalid = true;
} else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
// Disallow half FP arguments.
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
FixItHint::CreateInsertion(Loc, "*");
Invalid = true;
}
// C++2a [dcl.fct]p4:
// A parameter with volatile-qualified type is deprecated
if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus2a)
Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
ParamTypes[Idx] = ParamType;
}
if (EPI.ExtParameterInfos) {
checkExtParameterInfos(*this, ParamTypes, EPI,
[=](unsigned i) { return Loc; });
}
if (EPI.ExtInfo.getProducesResult()) {
// This is just a warning, so we can't fail to build if we see it.
checkNSReturnsRetainedReturnType(Loc, T);
}
if (Invalid)
return QualType();
return Context.getFunctionType(T, ParamTypes, EPI);
}
/// Build a member pointer type \c T Class::*.
///
/// \param T the type to which the member pointer refers.
/// \param Class the class type into which the member pointer points.
/// \param Loc the location where this type begins
/// \param Entity the name of the entity that will have this member pointer type
///
/// \returns a member pointer type, if successful, or a NULL type if there was
/// an error.
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
SourceLocation Loc,
DeclarationName Entity) {
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (CheckDistantExceptionSpec(T)) {
Diag(Loc, diag::err_distant_exception_spec);
return QualType();
}
// C++ 8.3.3p3: A pointer to member shall not point to ... a member
// with reference type, or "cv void."
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
<< getPrintableNameForEntity(Entity);
return QualType();
}
if (!Class->isDependentType() && !Class->isRecordType()) {
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
return QualType();
}
// Adjust the default free function calling convention to the default method
// calling convention.
bool IsCtorOrDtor =
(Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
(Entity.getNameKind() == DeclarationName::CXXDestructorName);
if (T->isFunctionType())
adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
return Context.getMemberPointerType(T, Class.getTypePtr());
}
/// Build a block pointer type.
///
/// \param T The type to which we'll be building a block pointer.
///
/// \param Loc The source location, used for diagnostics.
///
/// \param Entity The name of the entity that involves the block pointer
/// type, if known.
///
/// \returns A suitable block pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildBlockPointerType(QualType T,
SourceLocation Loc,
DeclarationName Entity) {
if (!T->isFunctionType()) {
Diag(Loc, diag::err_nonfunction_block_type);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
return QualType();
return Context.getBlockPointerType(T);
}
QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
QualType QT = Ty.get();
if (QT.isNull()) {
if (TInfo) *TInfo = nullptr;
return QualType();
}
TypeSourceInfo *DI = nullptr;
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
QT = LIT->getType();
DI = LIT->getTypeSourceInfo();
}
if (TInfo) *TInfo = DI;
return QT;
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex);
/// Given that this is the declaration of a parameter under ARC,
/// attempt to infer attributes and such for pointer-to-whatever
/// types.
static void inferARCWriteback(TypeProcessingState &state,
QualType &declSpecType) {
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
// TODO: should we care about decl qualifiers?
// Check whether the declarator has the expected form. We walk
// from the inside out in order to make the block logic work.
unsigned outermostPointerIndex = 0;
bool isBlockPointer = false;
unsigned numPointers = 0;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = i;
DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
// Count the number of pointers. Treat references
// interchangeably as pointers; if they're mis-ordered, normal
// type building will discover that.
outermostPointerIndex = chunkIndex;
numPointers++;
break;
case DeclaratorChunk::BlockPointer:
// If we have a pointer to block pointer, that's an acceptable
// indirect reference; anything else is not an application of
// the rules.
if (numPointers != 1) return;
numPointers++;
outermostPointerIndex = chunkIndex;
isBlockPointer = true;
// We don't care about pointer structure in return values here.
goto done;
case DeclaratorChunk::Array: // suppress if written (id[])?
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
return;
}
}
done:
// If we have *one* pointer, then we want to throw the qualifier on
// the declaration-specifiers, which means that it needs to be a
// retainable object type.
if (numPointers == 1) {
// If it's not a retainable object type, the rule doesn't apply.
if (!declSpecType->isObjCRetainableType()) return;
// If it already has lifetime, don't do anything.
if (declSpecType.getObjCLifetime()) return;
// Otherwise, modify the type in-place.
Qualifiers qs;
if (declSpecType->isObjCARCImplicitlyUnretainedType())
qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
else
qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
declSpecType = S.Context.getQualifiedType(declSpecType, qs);
// If we have *two* pointers, then we want to throw the qualifier on
// the outermost pointer.
} else if (numPointers == 2) {
// If we don't have a block pointer, we need to check whether the
// declaration-specifiers gave us something that will turn into a
// retainable object pointer after we slap the first pointer on it.
if (!isBlockPointer && !declSpecType->isObjCObjectType())
return;
// Look for an explicit lifetime attribute there.
DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
if (chunk.Kind != DeclaratorChunk::Pointer &&
chunk.Kind != DeclaratorChunk::BlockPointer)
return;
for (const ParsedAttr &AL : chunk.getAttrs())
if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
return;
transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
outermostPointerIndex);
// Any other number of pointers/references does not trigger the rule.
} else return;
// TODO: mark whether we did this inference?
}
void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
SourceLocation FallbackLoc,
SourceLocation ConstQualLoc,
SourceLocation VolatileQualLoc,
SourceLocation RestrictQualLoc,
SourceLocation AtomicQualLoc,
SourceLocation UnalignedQualLoc) {
if (!Quals)
return;
struct Qual {
const char *Name;
unsigned Mask;
SourceLocation Loc;
} const QualKinds[5] = {
{ "const", DeclSpec::TQ_const, ConstQualLoc },
{ "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
{ "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
{ "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
{ "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
};
SmallString<32> QualStr;
unsigned NumQuals = 0;
SourceLocation Loc;
FixItHint FixIts[5];
// Build a string naming the redundant qualifiers.
for (auto &E : QualKinds) {
if (Quals & E.Mask) {
if (!QualStr.empty()) QualStr += ' ';
QualStr += E.Name;
// If we have a location for the qualifier, offer a fixit.
SourceLocation QualLoc = E.Loc;
if (QualLoc.isValid()) {
FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
if (Loc.isInvalid() ||
getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
Loc = QualLoc;
}
++NumQuals;
}
}
Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
<< QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
}
// Diagnose pointless type qualifiers on the return type of a function.
static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
Declarator &D,
unsigned FunctionChunkIndex) {
if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
// FIXME: TypeSourceInfo doesn't preserve location information for
// qualifiers.
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
RetTy.getLocalCVRQualifiers(),
D.getIdentifierLoc());
return;
}
for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
End = D.getNumTypeObjects();
OuterChunkIndex != End; ++OuterChunkIndex) {
DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
switch (OuterChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Pointer: {
DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
S.diagnoseIgnoredQualifiers(
diag::warn_qual_return_type,
PTI.TypeQuals,
SourceLocation(),
SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
return;
}
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Array:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
// FIXME: We can't currently provide an accurate source location and a
// fix-it hint for these.
unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
RetTy.getCVRQualifiers() | AtomicQual,
D.getIdentifierLoc());
return;
}
llvm_unreachable("unknown declarator chunk kind");
}
// If the qualifiers come from a conversion function type, don't diagnose
// them -- they're not necessarily redundant, since such a conversion
// operator can be explicitly called as "x.operator const int()".
if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
return;
// Just parens all the way out to the decl specifiers. Diagnose any qualifiers
// which are present there.
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
D.getDeclSpec().getTypeQualifiers(),
D.getIdentifierLoc(),
D.getDeclSpec().getConstSpecLoc(),
D.getDeclSpec().getVolatileSpecLoc(),
D.getDeclSpec().getRestrictSpecLoc(),
D.getDeclSpec().getAtomicSpecLoc(),
D.getDeclSpec().getUnalignedSpecLoc());
}
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
TypeSourceInfo *&ReturnTypeInfo) {
Sema &SemaRef = state.getSema();
Declarator &D = state.getDeclarator();
QualType T;
ReturnTypeInfo = nullptr;
// The TagDecl owned by the DeclSpec.
TagDecl *OwnedTagDecl = nullptr;
switch (D.getName().getKind()) {
case UnqualifiedIdKind::IK_ImplicitSelfParam:
case UnqualifiedIdKind::IK_OperatorFunctionId:
case UnqualifiedIdKind::IK_Identifier:
case UnqualifiedIdKind::IK_LiteralOperatorId:
case UnqualifiedIdKind::IK_TemplateId:
T = ConvertDeclSpecToType(state);
if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
// Owned declaration is embedded in declarator.
OwnedTagDecl->setEmbeddedInDeclarator(true);
}
break;
case UnqualifiedIdKind::IK_ConstructorName:
case UnqualifiedIdKind::IK_ConstructorTemplateId:
case UnqualifiedIdKind::IK_DestructorName:
// Constructors and destructors don't have return types. Use
// "void" instead.
T = SemaRef.Context.VoidTy;
processTypeAttrs(state, T, TAL_DeclSpec,
D.getMutableDeclSpec().getAttributes());
break;
case UnqualifiedIdKind::IK_DeductionGuideName:
// Deduction guides have a trailing return type and no type in their
// decl-specifier sequence. Use a placeholder return type for now.
T = SemaRef.Context.DependentTy;
break;
case UnqualifiedIdKind::IK_ConversionFunctionId:
// The result type of a conversion function is the type that it
// converts to.
T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
&ReturnTypeInfo);
break;
}
if (!D.getAttributes().empty())
distributeTypeAttrsFromDeclarator(state, T);
// C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
if (DeducedType *Deduced = T->getContainedDeducedType()) {
AutoType *Auto = dyn_cast<AutoType>(Deduced);
int Error = -1;
// Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
// class template argument deduction)?
bool IsCXXAutoType =
(Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
bool IsDeducedReturnType = false;
switch (D.getContext()) {
case DeclaratorContext::LambdaExprContext:
// Declared return type of a lambda-declarator is implicit and is always
// 'auto'.
break;
case DeclaratorContext::ObjCParameterContext:
case DeclaratorContext::ObjCResultContext:
case DeclaratorContext::PrototypeContext:
Error = 0;
break;
case DeclaratorContext::LambdaExprParameterContext:
// In C++14, generic lambdas allow 'auto' in their parameters.
if (!SemaRef.getLangOpts().CPlusPlus14 ||
!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
Error = 16;
else {
// If auto is mentioned in a lambda parameter context, convert it to a
// template parameter type.
sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
assert(LSI && "No LambdaScopeInfo on the stack!");
const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
const unsigned AutoParameterPosition = LSI->TemplateParams.size();
const bool IsParameterPack = D.hasEllipsis();
// Create the TemplateTypeParmDecl here to retrieve the corresponding
// template parameter type. Template parameters are temporarily added
// to the TU until the associated TemplateDecl is created.
TemplateTypeParmDecl *CorrespondingTemplateParam =
TemplateTypeParmDecl::Create(
SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
/*KeyLoc*/ SourceLocation(), /*NameLoc*/ D.getBeginLoc(),
TemplateParameterDepth, AutoParameterPosition,
/*Identifier*/ nullptr, false, IsParameterPack);
CorrespondingTemplateParam->setImplicit();
LSI->TemplateParams.push_back(CorrespondingTemplateParam);
// Replace the 'auto' in the function parameter with this invented
// template type parameter.
// FIXME: Retain some type sugar to indicate that this was written
// as 'auto'.
T = state.ReplaceAutoType(
T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
}
break;
case DeclaratorContext::MemberContext: {
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
D.isFunctionDeclarator())
break;
bool Cxx = SemaRef.getLangOpts().CPlusPlus;
switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
case TTK_Enum: llvm_unreachable("unhandled tag kind");
case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
case TTK_Class: Error = 5; /* Class member */ break;
case TTK_Interface: Error = 6; /* Interface member */ break;
}
if (D.getDeclSpec().isFriendSpecified())
Error = 20; // Friend type
break;
}
case DeclaratorContext::CXXCatchContext:
case DeclaratorContext::ObjCCatchContext:
Error = 7; // Exception declaration
break;
case DeclaratorContext::TemplateParamContext:
if (isa<DeducedTemplateSpecializationType>(Deduced))
Error = 19; // Template parameter
else if (!SemaRef.getLangOpts().CPlusPlus17)
Error = 8; // Template parameter (until C++17)
break;
case DeclaratorContext::BlockLiteralContext:
Error = 9; // Block literal
break;
case DeclaratorContext::TemplateArgContext:
// Within a template argument list, a deduced template specialization
// type will be reinterpreted as a template template argument.
if (isa<DeducedTemplateSpecializationType>(Deduced) &&
!D.getNumTypeObjects() &&
D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
break;
LLVM_FALLTHROUGH;
case DeclaratorContext::TemplateTypeArgContext:
Error = 10; // Template type argument
break;
case DeclaratorContext::AliasDeclContext:
case DeclaratorContext::AliasTemplateContext:
Error = 12; // Type alias
break;
case DeclaratorContext::TrailingReturnContext:
case DeclaratorContext::TrailingReturnVarContext:
if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
Error = 13; // Function return type
IsDeducedReturnType = true;
break;
case DeclaratorContext::ConversionIdContext:
if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
Error = 14; // conversion-type-id
IsDeducedReturnType = true;
break;
case DeclaratorContext::FunctionalCastContext:
if (isa<DeducedTemplateSpecializationType>(Deduced))
break;
LLVM_FALLTHROUGH;
case DeclaratorContext::TypeNameContext:
Error = 15; // Generic
break;
case DeclaratorContext::FileContext:
case DeclaratorContext::BlockContext:
case DeclaratorContext::ForContext:
case DeclaratorContext::InitStmtContext:
case DeclaratorContext::ConditionContext:
// FIXME: P0091R3 (erroneously) does not permit class template argument
// deduction in conditions, for-init-statements, and other declarations
// that are not simple-declarations.
break;
case DeclaratorContext::CXXNewContext:
// FIXME: P0091R3 does not permit class template argument deduction here,
// but we follow GCC and allow it anyway.
if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
Error = 17; // 'new' type
break;
case DeclaratorContext::KNRTypeListContext:
Error = 18; // K&R function parameter
break;
}
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
Error = 11;
// In Objective-C it is an error to use 'auto' on a function declarator
// (and everywhere for '__auto_type').
if (D.isFunctionDeclarator() &&
(!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
Error = 13;
bool HaveTrailing = false;
// C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
// contains a trailing return type. That is only legal at the outermost
// level. Check all declarator chunks (outermost first) anyway, to give
// better diagnostics.
// We don't support '__auto_type' with trailing return types.
// FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
D.hasTrailingReturnType()) {
HaveTrailing = true;
Error = -1;
}
SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
AutoRange = D.getName().getSourceRange();
if (Error != -1) {
unsigned Kind;
if (Auto) {
switch (Auto->getKeyword()) {
case AutoTypeKeyword::Auto: Kind = 0; break;
case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
}
} else {
assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type");
Kind = 3;
}
auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
<< Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
<< QualType(Deduced, 0) << AutoRange;
if (auto *TD = TN.getAsTemplateDecl())
SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
T = SemaRef.Context.IntTy;
D.setInvalidType(true);
} else if (!HaveTrailing &&
D.getContext() != DeclaratorContext::LambdaExprContext) {
// If there was a trailing return type, we already got
// warn_cxx98_compat_trailing_return_type in the parser.
SemaRef.Diag(AutoRange.getBegin(),
D.getContext() ==
DeclaratorContext::LambdaExprParameterContext
? diag::warn_cxx11_compat_generic_lambda
: IsDeducedReturnType
? diag::warn_cxx11_compat_deduced_return_type
: diag::warn_cxx98_compat_auto_type_specifier)
<< AutoRange;
}
}
if (SemaRef.getLangOpts().CPlusPlus &&
OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
// Check the contexts where C++ forbids the declaration of a new class
// or enumeration in a type-specifier-seq.
unsigned DiagID = 0;
switch (D.getContext()) {
case DeclaratorContext::TrailingReturnContext:
case DeclaratorContext::TrailingReturnVarContext:
// Class and enumeration definitions are syntactically not allowed in
// trailing return types.
llvm_unreachable("parser should not have allowed this");
break;
case DeclaratorContext::FileContext:
case DeclaratorContext::MemberContext:
case DeclaratorContext::BlockContext:
case DeclaratorContext::ForContext:
case DeclaratorContext::InitStmtContext:
case DeclaratorContext::BlockLiteralContext:
case DeclaratorContext::LambdaExprContext:
// C++11 [dcl.type]p3:
// A type-specifier-seq shall not define a class or enumeration unless
// it appears in the type-id of an alias-declaration (7.1.3) that is not
// the declaration of a template-declaration.
case DeclaratorContext::AliasDeclContext:
break;
case DeclaratorContext::AliasTemplateContext:
DiagID = diag::err_type_defined_in_alias_template;
break;
case DeclaratorContext::TypeNameContext:
case DeclaratorContext::FunctionalCastContext:
case DeclaratorContext::ConversionIdContext:
case DeclaratorContext::TemplateParamContext:
case DeclaratorContext::CXXNewContext:
case DeclaratorContext::CXXCatchContext:
case DeclaratorContext::ObjCCatchContext:
case DeclaratorContext::TemplateArgContext:
case DeclaratorContext::TemplateTypeArgContext:
DiagID = diag::err_type_defined_in_type_specifier;
break;
case DeclaratorContext::PrototypeContext:
case DeclaratorContext::LambdaExprParameterContext:
case DeclaratorContext::ObjCParameterContext:
case DeclaratorContext::ObjCResultContext:
case DeclaratorContext::KNRTypeListContext:
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
DiagID = diag::err_type_defined_in_param_type;
break;
case DeclaratorContext::ConditionContext:
// C++ 6.4p2:
// The type-specifier-seq shall not contain typedef and shall not declare
// a new class or enumeration.
DiagID = diag::err_type_defined_in_condition;
break;
}
if (DiagID != 0) {
SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
D.setInvalidType(true);
}
}
assert(!T.isNull() && "This function should not return a null type");
return T;
}
/// Produce an appropriate diagnostic for an ambiguity between a function
/// declarator and a C++ direct-initializer.
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
DeclaratorChunk &DeclType, QualType RT) {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
// If the return type is void there is no ambiguity.
if (RT->isVoidType())
return;
// An initializer for a non-class type can have at most one argument.
if (!RT->isRecordType() && FTI.NumParams > 1)
return;
// An initializer for a reference must have exactly one argument.
if (RT->isReferenceType() && FTI.NumParams != 1)
return;
// Only warn if this declarator is declaring a function at block scope, and
// doesn't have a storage class (such as 'extern') specified.
if (!D.isFunctionDeclarator() ||
D.getFunctionDefinitionKind() != FDK_Declaration ||
!S.CurContext->isFunctionOrMethod() ||
D.getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_unspecified)
return;
// Inside a condition, a direct initializer is not permitted. We allow one to
// be parsed in order to give better diagnostics in condition parsing.
if (D.getContext() == DeclaratorContext::ConditionContext)
return;
SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
S.Diag(DeclType.Loc,
FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
: diag::warn_empty_parens_are_function_decl)
<< ParenRange;
// If the declaration looks like:
// T var1,
// f();
// and name lookup finds a function named 'f', then the ',' was
// probably intended to be a ';'.
if (!D.isFirstDeclarator() && D.getIdentifier()) {
FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
if (Comma.getFileID() != Name.getFileID() ||
Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
Sema::LookupOrdinaryName);
if (S.LookupName(Result, S.getCurScope()))
S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
<< FixItHint::CreateReplacement(D.getCommaLoc(), ";")
<< D.getIdentifier();
Result.suppressDiagnostics();
}
}
if (FTI.NumParams > 0) {
// For a declaration with parameters, eg. "T var(T());", suggest adding
// parens around the first parameter to turn the declaration into a
// variable declaration.
SourceRange Range = FTI.Params[0].Param->getSourceRange();
SourceLocation B = Range.getBegin();
SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
// FIXME: Maybe we should suggest adding braces instead of parens
// in C++11 for classes that don't have an initializer_list constructor.
S.Diag(B, diag::note_additional_parens_for_variable_declaration)
<< FixItHint::CreateInsertion(B, "(")
<< FixItHint::CreateInsertion(E, ")");
} else {
// For a declaration without parameters, eg. "T var();", suggest replacing
// the parens with an initializer to turn the declaration into a variable
// declaration.
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
// Empty parens mean value-initialization, and no parens mean
// default initialization. These are equivalent if the default
// constructor is user-provided or if zero-initialization is a
// no-op.
if (RD && RD->hasDefinition() &&
(RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
<< FixItHint::CreateRemoval(ParenRange);
else {
std::string Init =
S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
if (Init.empty() && S.LangOpts.CPlusPlus11)
Init = "{}";
if (!Init.empty())
S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
<< FixItHint::CreateReplacement(ParenRange, Init);
}
}
}
/// Produce an appropriate diagnostic for a declarator with top-level
/// parentheses.
static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
assert(Paren.Kind == DeclaratorChunk::Paren &&
"do not have redundant top-level parentheses");
// This is a syntactic check; we're not interested in cases that arise
// during template instantiation.
if (S.inTemplateInstantiation())
return;
// Check whether this could be intended to be a construction of a temporary
// object in C++ via a function-style cast.
bool CouldBeTemporaryObject =
S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
!D.isInvalidType() && D.getIdentifier() &&
D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
(T->isRecordType() || T->isDependentType()) &&
D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
bool StartsWithDeclaratorId = true;
for (auto &C : D.type_objects()) {
switch (C.Kind) {
case DeclaratorChunk::Paren:
if (&C == &Paren)
continue;
LLVM_FALLTHROUGH;
case DeclaratorChunk::Pointer:
StartsWithDeclaratorId = false;
continue;
case DeclaratorChunk::Array:
if (!C.Arr.NumElts)
CouldBeTemporaryObject = false;
continue;
case DeclaratorChunk::Reference:
// FIXME: Suppress the warning here if there is no initializer; we're
// going to give an error anyway.
// We assume that something like 'T (&x) = y;' is highly likely to not
// be intended to be a temporary object.
CouldBeTemporaryObject = false;
StartsWithDeclaratorId = false;
continue;
case DeclaratorChunk::Function:
// In a new-type-id, function chunks require parentheses.
if (D.getContext() == DeclaratorContext::CXXNewContext)
return;
// FIXME: "A(f())" deserves a vexing-parse warning, not just a
// redundant-parens warning, but we don't know whether the function
// chunk was syntactically valid as an expression here.
CouldBeTemporaryObject = false;
continue;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
// These cannot appear in expressions.
CouldBeTemporaryObject = false;
StartsWithDeclaratorId = false;
continue;
}
}
// FIXME: If there is an initializer, assume that this is not intended to be
// a construction of a temporary object.
// Check whether the name has already been declared; if not, this is not a
// function-style cast.
if (CouldBeTemporaryObject) {
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
Sema::LookupOrdinaryName);
if (!S.LookupName(Result, S.getCurScope()))
CouldBeTemporaryObject = false;
Result.suppressDiagnostics();
}
SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
if (!CouldBeTemporaryObject) {
// If we have A (::B), the parentheses affect the meaning of the program.
// Suppress the warning in that case. Don't bother looking at the DeclSpec
// here: even (e.g.) "int ::x" is visually ambiguous even though it's
// formally unambiguous.
if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
NNS = NNS->getPrefix()) {
if (NNS->getKind() == NestedNameSpecifier::Global)
return;
}
}
S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
<< ParenRange << FixItHint::CreateRemoval(Paren.Loc)
<< FixItHint::CreateRemoval(Paren.EndLoc);
return;
}
S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
<< ParenRange << D.getIdentifier();
auto *RD = T->getAsCXXRecordDecl();
if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
<< FixItHint::CreateInsertion(Paren.Loc, " varname") << T
<< D.getIdentifier();
// FIXME: A cast to void is probably a better suggestion in cases where it's
// valid (when there is no initializer and we're not in a condition).
S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
<< FixItHint::CreateInsertion(D.getBeginLoc(), "(")
<< FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
<< FixItHint::CreateRemoval(Paren.Loc)
<< FixItHint::CreateRemoval(Paren.EndLoc);
}
/// Helper for figuring out the default CC for a function declarator type. If
/// this is the outermost chunk, then we can determine the CC from the
/// declarator context. If not, then this could be either a member function
/// type or normal function type.
static CallingConv getCCForDeclaratorChunk(
Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
// Check for an explicit CC attribute.
for (const ParsedAttr &AL : AttrList) {
switch (AL.getKind()) {
CALLING_CONV_ATTRS_CASELIST : {
// Ignore attributes that don't validate or can't apply to the
// function type. We'll diagnose the failure to apply them in
// handleFunctionTypeAttr.
CallingConv CC;
if (!S.CheckCallingConvAttr(AL, CC) &&
(!FTI.isVariadic || supportsVariadicCall(CC))) {
return CC;
}
break;
}
default:
break;
}
}
bool IsCXXInstanceMethod = false;
if (S.getLangOpts().CPlusPlus) {
// Look inwards through parentheses to see if this chunk will form a
// member pointer type or if we're the declarator. Any type attributes
// between here and there will override the CC we choose here.
unsigned I = ChunkIndex;
bool FoundNonParen = false;
while (I && !FoundNonParen) {
--I;
if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
FoundNonParen = true;
}
if (FoundNonParen) {
// If we're not the declarator, we're a regular function type unless we're
// in a member pointer.
IsCXXInstanceMethod =
D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
} else if (D.getContext() == DeclaratorContext::LambdaExprContext) {
// This can only be a call operator for a lambda, which is an instance
// method.
IsCXXInstanceMethod = true;
} else {
// We're the innermost decl chunk, so must be a function declarator.
assert(D.isFunctionDeclarator());
// If we're inside a record, we're declaring a method, but it could be
// explicitly or implicitly static.
IsCXXInstanceMethod =
D.isFirstDeclarationOfMember() &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
!D.isStaticMember();
}
}
CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
IsCXXInstanceMethod);
// Attribute AT_OpenCLKernel affects the calling convention for SPIR
// and AMDGPU targets, hence it cannot be treated as a calling
// convention attribute. This is the simplest place to infer
// calling convention for OpenCL kernels.
if (S.getLangOpts().OpenCL) {
for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
CC = CC_OpenCLKernel;
break;
}
}
}
return CC;
}
namespace {
/// A simple notion of pointer kinds, which matches up with the various
/// pointer declarators.
enum class SimplePointerKind {
Pointer,
BlockPointer,
MemberPointer,
Array,
};
} // end anonymous namespace
IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
switch (nullability) {
case NullabilityKind::NonNull:
if (!Ident__Nonnull)
Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
return Ident__Nonnull;
case NullabilityKind::Nullable:
if (!Ident__Nullable)
Ident__Nullable = PP.getIdentifierInfo("_Nullable");
return Ident__Nullable;
case NullabilityKind::Unspecified:
if (!Ident__Null_unspecified)
Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
return Ident__Null_unspecified;
}
llvm_unreachable("Unknown nullability kind.");
}
/// Retrieve the identifier "NSError".
IdentifierInfo *Sema::getNSErrorIdent() {
if (!Ident_NSError)
Ident_NSError = PP.getIdentifierInfo("NSError");
return Ident_NSError;
}
/// Check whether there is a nullability attribute of any kind in the given
/// attribute list.
static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
for (const ParsedAttr &AL : attrs) {
if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
AL.getKind() == ParsedAttr::AT_TypeNullable ||
AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
return true;
}
return false;
}
namespace {
/// Describes the kind of a pointer a declarator describes.
enum class PointerDeclaratorKind {
// Not a pointer.
NonPointer,
// Single-level pointer.
SingleLevelPointer,
// Multi-level pointer (of any pointer kind).
MultiLevelPointer,
// CFFooRef*
MaybePointerToCFRef,
// CFErrorRef*
CFErrorRefPointer,
// NSError**
NSErrorPointerPointer,
};
/// Describes a declarator chunk wrapping a pointer that marks inference as
/// unexpected.
// These values must be kept in sync with diagnostics.
enum class PointerWrappingDeclaratorKind {
/// Pointer is top-level.
None = -1,
/// Pointer is an array element.
Array = 0,
/// Pointer is the referent type of a C++ reference.
Reference = 1
};
} // end anonymous namespace
/// Classify the given declarator, whose type-specified is \c type, based on
/// what kind of pointer it refers to.
///
/// This is used to determine the default nullability.
static PointerDeclaratorKind
classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
PointerWrappingDeclaratorKind &wrappingKind) {
unsigned numNormalPointers = 0;
// For any dependent type, we consider it a non-pointer.
if (type->isDependentType())
return PointerDeclaratorKind::NonPointer;
// Look through the declarator chunks to identify pointers.
for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Array:
if (numNormalPointers == 0)
wrappingKind = PointerWrappingDeclaratorKind::Array;
break;
case DeclaratorChunk::Function:
case DeclaratorChunk::Pipe:
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
case DeclaratorChunk::Paren:
break;
case DeclaratorChunk::Reference:
if (numNormalPointers == 0)
wrappingKind = PointerWrappingDeclaratorKind::Reference;
break;
case DeclaratorChunk::Pointer:
++numNormalPointers;
if (numNormalPointers > 2)
return PointerDeclaratorKind::MultiLevelPointer;
break;
}
}
// Then, dig into the type specifier itself.
unsigned numTypeSpecifierPointers = 0;
do {
// Decompose normal pointers.
if (auto ptrType = type->getAs<PointerType>()) {
++numNormalPointers;
if (numNormalPointers > 2)
return PointerDeclaratorKind::MultiLevelPointer;
type = ptrType->getPointeeType();
++numTypeSpecifierPointers;
continue;
}
// Decompose block pointers.
if (type->getAs<BlockPointerType>()) {
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
}
// Decompose member pointers.
if (type->getAs<MemberPointerType>()) {
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
}
// Look at Objective-C object pointers.
if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
++numNormalPointers;
++numTypeSpecifierPointers;
// If this is NSError**, report that.
if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
return PointerDeclaratorKind::NSErrorPointerPointer;
}
}
break;
}
// Look at Objective-C class types.
if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
return PointerDeclaratorKind::NSErrorPointerPointer;
}
break;
}
// If at this point we haven't seen a pointer, we won't see one.
if (numNormalPointers == 0)
return PointerDeclaratorKind::NonPointer;
if (auto recordType = type->getAs<RecordType>()) {
RecordDecl *recordDecl = recordType->getDecl();
bool isCFError = false;
if (S.CFError) {
// If we already know about CFError, test it directly.
isCFError = (S.CFError == recordDecl);
} else {
// Check whether this is CFError, which we identify based on its bridge
// to NSError. CFErrorRef used to be declared with "objc_bridge" but is
// now declared with "objc_bridge_mutable", so look for either one of
// the two attributes.
if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
IdentifierInfo *bridgedType = nullptr;
if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
bridgedType = bridgeAttr->getBridgedType();
else if (auto bridgeAttr =
recordDecl->getAttr<ObjCBridgeMutableAttr>())
bridgedType = bridgeAttr->getBridgedType();
if (bridgedType == S.getNSErrorIdent()) {
S.CFError = recordDecl;
isCFError = true;
}
}
}
// If this is CFErrorRef*, report it as such.
if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
return PointerDeclaratorKind::CFErrorRefPointer;
}
break;
}
break;
} while (true);
switch (numNormalPointers) {
case 0:
return PointerDeclaratorKind::NonPointer;
case 1:
return PointerDeclaratorKind::SingleLevelPointer;
case 2:
return PointerDeclaratorKind::MaybePointerToCFRef;
default:
return PointerDeclaratorKind::MultiLevelPointer;
}
}
static FileID getNullabilityCompletenessCheckFileID(Sema &S,
SourceLocation loc) {
// If we're anywhere in a function, method, or closure context, don't perform
// completeness checks.
for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
if (ctx->isFunctionOrMethod())
return FileID();
if (ctx->isFileContext())
break;
}
// We only care about the expansion location.
loc = S.SourceMgr.getExpansionLoc(loc);
FileID file = S.SourceMgr.getFileID(loc);
if (file.isInvalid())
return FileID();
// Retrieve file information.
bool invalid = false;
const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
if (invalid || !sloc.isFile())
return FileID();
// We don't want to perform completeness checks on the main file or in
// system headers.
const SrcMgr::FileInfo &fileInfo = sloc.getFile();
if (fileInfo.getIncludeLoc().isInvalid())
return FileID();
if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
S.Diags.getSuppressSystemWarnings()) {
return FileID();
}
return file;
}
/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
/// taking into account whitespace before and after.
static void fixItNullability(Sema &S, DiagnosticBuilder &Diag,
SourceLocation PointerLoc,
NullabilityKind Nullability) {
assert(PointerLoc.isValid());
if (PointerLoc.isMacroID())
return;
SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
return;
const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
if (!NextChar)
return;
SmallString<32> InsertionTextBuf{" "};
InsertionTextBuf += getNullabilitySpelling(Nullability);
InsertionTextBuf += " ";
StringRef InsertionText = InsertionTextBuf.str();
if (isWhitespace(*NextChar)) {
InsertionText = InsertionText.drop_back();
} else if (NextChar[-1] == '[') {
if (NextChar[0] == ']')
InsertionText = InsertionText.drop_back().drop_front();
else
InsertionText = InsertionText.drop_front();
} else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
!isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
InsertionText = InsertionText.drop_back().drop_front();
}
Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
}
static void emitNullabilityConsistencyWarning(Sema &S,
SimplePointerKind PointerKind,
SourceLocation PointerLoc,
SourceLocation PointerEndLoc) {
assert(PointerLoc.isValid());
if (PointerKind == SimplePointerKind::Array) {
S.Diag(PointerLoc, diag::warn_nullability_missing_array);
} else {
S.Diag(PointerLoc, diag::warn_nullability_missing)
<< static_cast<unsigned>(PointerKind);
}
auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
if (FixItLoc.isMacroID())
return;
auto addFixIt = [&](NullabilityKind Nullability) {
auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
Diag << static_cast<unsigned>(Nullability);
Diag << static_cast<unsigned>(PointerKind);
fixItNullability(S, Diag, FixItLoc, Nullability);
};
addFixIt(NullabilityKind::Nullable);
addFixIt(NullabilityKind::NonNull);
}
/// Complains about missing nullability if the file containing \p pointerLoc
/// has other uses of nullability (either the keywords or the \c assume_nonnull
/// pragma).
///
/// If the file has \e not seen other uses of nullability, this particular
/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
static void
checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
SourceLocation pointerLoc,
SourceLocation pointerEndLoc = SourceLocation()) {
// Determine which file we're performing consistency checking for.
FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
if (file.isInvalid())
return;
// If we haven't seen any type nullability in this file, we won't warn now
// about anything.
FileNullability &fileNullability = S.NullabilityMap[file];
if (!fileNullability.SawTypeNullability) {
// If this is the first pointer declarator in the file, and the appropriate
// warning is on, record it in case we need to diagnose it retroactively.
diag::kind diagKind;
if (pointerKind == SimplePointerKind::Array)
diagKind = diag::warn_nullability_missing_array;
else
diagKind = diag::warn_nullability_missing;
if (fileNullability.PointerLoc.isInvalid() &&
!S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
fileNullability.PointerLoc = pointerLoc;
fileNullability.PointerEndLoc = pointerEndLoc;
fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
}
return;
}
// Complain about missing nullability.
emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
}
/// Marks that a nullability feature has been used in the file containing
/// \p loc.
///
/// If this file already had pointer types in it that were missing nullability,
/// the first such instance is retroactively diagnosed.
///
/// \sa checkNullabilityConsistency
static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
FileID file = getNullabilityCompletenessCheckFileID(S, loc);
if (file.isInvalid())
return;
FileNullability &fileNullability = S.NullabilityMap[file];
if (fileNullability.SawTypeNullability)
return;
fileNullability.SawTypeNullability = true;
// If we haven't seen any type nullability before, now we have. Retroactively
// diagnose the first unannotated pointer, if there was one.
if (fileNullability.PointerLoc.isInvalid())
return;
auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
fileNullability.PointerEndLoc);
}
/// Returns true if any of the declarator chunks before \p endIndex include a
/// level of indirection: array, pointer, reference, or pointer-to-member.
///
/// Because declarator chunks are stored in outer-to-inner order, testing
/// every chunk before \p endIndex is testing all chunks that embed the current
/// chunk as part of their type.
///
/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
/// end index, in which case all chunks are tested.
static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
unsigned i = endIndex;
while (i != 0) {
// Walk outwards along the declarator chunks.
--i;
const DeclaratorChunk &DC = D.getTypeObject(i);
switch (DC.Kind) {
case DeclaratorChunk::Paren:
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
return true;
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Pipe:
// These are invalid anyway, so just ignore.
break;
}
}
return false;
}
static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
return (Chunk.Kind == DeclaratorChunk::Pointer ||
Chunk.Kind == DeclaratorChunk::Array);
}
template<typename AttrT>
static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
AL.setUsedAsTypeAttr();
return ::new (Ctx) AttrT(Ctx, AL);
}
static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
NullabilityKind NK) {
switch (NK) {
case NullabilityKind::NonNull:
return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
case NullabilityKind::Nullable:
return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
case NullabilityKind::Unspecified:
return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
}
llvm_unreachable("unknown NullabilityKind");
}
// Diagnose whether this is a case with the multiple addr spaces.
// Returns true if this is an invalid case.
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
// by qualifiers for two or more different address spaces."
static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
LangAS ASNew,
SourceLocation AttrLoc) {
if (ASOld != LangAS::Default) {
if (ASOld != ASNew) {
S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
return true;
}
// Emit a warning if they are identical; it's likely unintended.
S.Diag(AttrLoc,
diag::warn_attribute_address_multiple_identical_qualifiers);
}
return false;
}
static TypeSourceInfo *
GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
QualType T, TypeSourceInfo *ReturnTypeInfo);
static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
QualType declSpecType,
TypeSourceInfo *TInfo) {
// The TypeSourceInfo that this function returns will not be a null type.
// If there is an error, this function will fill in a dummy type as fallback.
QualType T = declSpecType;
Declarator &D = state.getDeclarator();
Sema &S = state.getSema();
ASTContext &Context = S.Context;
const LangOptions &LangOpts = S.getLangOpts();
// The name we're declaring, if any.
DeclarationName Name;
if (D.getIdentifier())
Name = D.getIdentifier();
// Does this declaration declare a typedef-name?
bool IsTypedefName =
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
D.getContext() == DeclaratorContext::AliasDeclContext ||
D.getContext() == DeclaratorContext::AliasTemplateContext;
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
bool IsQualifiedFunction = T->isFunctionProtoType() &&
(!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
// If T is 'decltype(auto)', the only declarators we can have are parens
// and at most one function declarator if this is a function declaration.
// If T is a deduced class template specialization type, we can have no
// declarator chunks at all.
if (auto *DT = T->getAs<DeducedType>()) {
const AutoType *AT = T->getAs<AutoType>();
bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
unsigned Index = E - I - 1;
DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
unsigned DiagId = IsClassTemplateDeduction
? diag::err_deduced_class_template_compound_type
: diag::err_decltype_auto_compound_type;
unsigned DiagKind = 0;
switch (DeclChunk.Kind) {
case DeclaratorChunk::Paren:
// FIXME: Rejecting this is a little silly.
if (IsClassTemplateDeduction) {
DiagKind = 4;
break;
}
continue;
case DeclaratorChunk::Function: {
if (IsClassTemplateDeduction) {
DiagKind = 3;
break;
}
unsigned FnIndex;
if (D.isFunctionDeclarationContext() &&
D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
continue;
DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
break;
}
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
DiagKind = 0;
break;
case DeclaratorChunk::Reference:
DiagKind = 1;
break;
case DeclaratorChunk::Array:
DiagKind = 2;
break;
case DeclaratorChunk::Pipe:
break;
}
S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
D.setInvalidType(true);
break;
}
}
}
// Determine whether we should infer _Nonnull on pointer types.
Optional<NullabilityKind> inferNullability;
bool inferNullabilityCS = false;
bool inferNullabilityInnerOnly = false;
bool inferNullabilityInnerOnlyComplete = false;
// Are we in an assume-nonnull region?
bool inAssumeNonNullRegion = false;
SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
if (assumeNonNullLoc.isValid()) {
inAssumeNonNullRegion = true;
recordNullabilitySeen(S, assumeNonNullLoc);
}
// Whether to complain about missing nullability specifiers or not.
enum {
/// Never complain.
CAMN_No,
/// Complain on the inner pointers (but not the outermost
/// pointer).
CAMN_InnerPointers,
/// Complain about any pointers that don't have nullability
/// specified or inferred.
CAMN_Yes
} complainAboutMissingNullability = CAMN_No;
unsigned NumPointersRemaining = 0;
auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
if (IsTypedefName) {
// For typedefs, we do not infer any nullability (the default),
// and we only complain about missing nullability specifiers on
// inner pointers.
complainAboutMissingNullability = CAMN_InnerPointers;
if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
!T->getNullability(S.Context)) {
// Note that we allow but don't require nullability on dependent types.
++NumPointersRemaining;
}
for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
case DeclaratorChunk::Pipe:
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
++NumPointersRemaining;
break;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Reference:
continue;
case DeclaratorChunk::Pointer:
++NumPointersRemaining;
continue;
}
}
} else {
bool isFunctionOrMethod = false;
switch (auto context = state.getDeclarator().getContext()) {
case DeclaratorContext::ObjCParameterContext:
case DeclaratorContext::ObjCResultContext:
case DeclaratorContext::PrototypeContext:
case DeclaratorContext::TrailingReturnContext:
case DeclaratorContext::TrailingReturnVarContext:
isFunctionOrMethod = true;
LLVM_FALLTHROUGH;
case DeclaratorContext::MemberContext:
if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
complainAboutMissingNullability = CAMN_No;
break;
}
// Weak properties are inferred to be nullable.
if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
inferNullability = NullabilityKind::Nullable;
break;
}
LLVM_FALLTHROUGH;
case DeclaratorContext::FileContext:
case DeclaratorContext::KNRTypeListContext: {
complainAboutMissingNullability = CAMN_Yes;
// Nullability inference depends on the type and declarator.
auto wrappingKind = PointerWrappingDeclaratorKind::None;
switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
case PointerDeclaratorKind::NonPointer:
case PointerDeclaratorKind::MultiLevelPointer:
// Cannot infer nullability.
break;
case PointerDeclaratorKind::SingleLevelPointer:
// Infer _Nonnull if we are in an assumes-nonnull region.
if (inAssumeNonNullRegion) {
complainAboutInferringWithinChunk = wrappingKind;
inferNullability = NullabilityKind::NonNull;
inferNullabilityCS =
(context == DeclaratorContext::ObjCParameterContext ||
context == DeclaratorContext::ObjCResultContext);
}
break;
case PointerDeclaratorKind::CFErrorRefPointer:
case PointerDeclaratorKind::NSErrorPointerPointer:
// Within a function or method signature, infer _Nullable at both
// levels.
if (isFunctionOrMethod && inAssumeNonNullRegion)
inferNullability = NullabilityKind::Nullable;
break;
case PointerDeclaratorKind::MaybePointerToCFRef:
if (isFunctionOrMethod) {
// On pointer-to-pointer parameters marked cf_returns_retained or
// cf_returns_not_retained, if the outer pointer is explicit then
// infer the inner pointer as _Nullable.
auto hasCFReturnsAttr =
[](const ParsedAttributesView &AttrList) -> bool {
return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
};
if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
if (hasCFReturnsAttr(D.getAttributes()) ||
hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
inferNullability = NullabilityKind::Nullable;
inferNullabilityInnerOnly = true;
}
}
}
break;
}
break;
}
case DeclaratorContext::ConversionIdContext:
complainAboutMissingNullability = CAMN_Yes;
break;
case DeclaratorContext::AliasDeclContext:
case DeclaratorContext::AliasTemplateContext:
case DeclaratorContext::BlockContext:
case DeclaratorContext::BlockLiteralContext:
case DeclaratorContext::ConditionContext:
case DeclaratorContext::CXXCatchContext:
case DeclaratorContext::CXXNewContext:
case DeclaratorContext::ForContext:
case DeclaratorContext::InitStmtContext:
case DeclaratorContext::LambdaExprContext:
case DeclaratorContext::LambdaExprParameterContext:
case DeclaratorContext::ObjCCatchContext:
case DeclaratorContext::TemplateParamContext:
case DeclaratorContext::TemplateArgContext:
case DeclaratorContext::TemplateTypeArgContext:
case DeclaratorContext::TypeNameContext:
case DeclaratorContext::FunctionalCastContext:
// Don't infer in these contexts.
break;
}
}
// Local function that returns true if its argument looks like a va_list.
auto isVaList = [&S](QualType T) -> bool {
auto *typedefTy = T->getAs<TypedefType>();
if (!typedefTy)
return false;
TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
do {
if (typedefTy->getDecl() == vaListTypedef)
return true;
if (auto *name = typedefTy->getDecl()->getIdentifier())
if (name->isStr("va_list"))
return true;
typedefTy = typedefTy->desugar()->getAs<TypedefType>();
} while (typedefTy);
return false;
};
// Local function that checks the nullability for a given pointer declarator.
// Returns true if _Nonnull was inferred.
auto inferPointerNullability =
[&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
SourceLocation pointerEndLoc,
ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
// We've seen a pointer.
if (NumPointersRemaining > 0)
--NumPointersRemaining;
// If a nullability attribute is present, there's nothing to do.
if (hasNullabilityAttr(attrs))
return nullptr;
// If we're supposed to infer nullability, do so now.
if (inferNullability && !inferNullabilityInnerOnlyComplete) {
ParsedAttr::Syntax syntax = inferNullabilityCS
? ParsedAttr::AS_ContextSensitiveKeyword
: ParsedAttr::AS_Keyword;
ParsedAttr *nullabilityAttr = Pool.create(
S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
nullptr, SourceLocation(), nullptr, 0, syntax);
attrs.addAtEnd(nullabilityAttr);
if (inferNullabilityCS) {
state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
}
if (pointerLoc.isValid() &&
complainAboutInferringWithinChunk !=
PointerWrappingDeclaratorKind::None) {
auto Diag =
S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
Diag << static_cast<int>(complainAboutInferringWithinChunk);
fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
}
if (inferNullabilityInnerOnly)
inferNullabilityInnerOnlyComplete = true;
return nullabilityAttr;
}
// If we're supposed to complain about missing nullability, do so
// now if it's truly missing.
switch (complainAboutMissingNullability) {
case CAMN_No:
break;
case CAMN_InnerPointers:
if (NumPointersRemaining == 0)
break;
LLVM_FALLTHROUGH;
case CAMN_Yes:
checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
}
return nullptr;
};
// If the type itself could have nullability but does not, infer pointer
// nullability and perform consistency checking.
if (S.CodeSynthesisContexts.empty()) {
if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
!T->getNullability(S.Context)) {
if (isVaList(T)) {
// Record that we've seen a pointer, but do nothing else.
if (NumPointersRemaining > 0)
--NumPointersRemaining;
} else {
SimplePointerKind pointerKind = SimplePointerKind::Pointer;
if (T->isBlockPointerType())
pointerKind = SimplePointerKind::BlockPointer;
else if (T->isMemberPointerType())
pointerKind = SimplePointerKind::MemberPointer;
if (auto *attr = inferPointerNullability(
pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
D.getDeclSpec().getEndLoc(),
D.getMutableDeclSpec().getAttributes(),
D.getMutableDeclSpec().getAttributePool())) {
T = state.getAttributedType(
createNullabilityAttr(Context, *attr, *inferNullability), T, T);
}
}
}
if (complainAboutMissingNullability == CAMN_Yes &&
T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
D.isPrototypeContext() &&
!hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
checkNullabilityConsistency(S, SimplePointerKind::Array,
D.getDeclSpec().getTypeSpecTypeLoc());
}
}
bool ExpectNoDerefChunk =
state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
// Walk the DeclTypeInfo, building the recursive type as we go.
// DeclTypeInfos are ordered from the identifier out, which is
// opposite of what we want :).
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = e - i - 1;
state.setCurrentChunkIndex(chunkIndex);
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
switch (DeclType.Kind) {
case DeclaratorChunk::Paren:
if (i == 0)
warnAboutRedundantParens(S, D, T);
T = S.BuildParenType(T);
break;
case DeclaratorChunk::BlockPointer:
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
// Handle pointer nullability.
inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
DeclType.EndLoc, DeclType.getAttrs(),
state.getDeclarator().getAttributePool());
T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
// OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
// qualified with const.
if (LangOpts.OpenCL)
DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
}
break;
case DeclaratorChunk::Pointer:
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
// Handle pointer nullability
inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
DeclType.EndLoc, DeclType.getAttrs(),
state.getDeclarator().getAttributePool());
if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
T = Context.getObjCObjectPointerType(T);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
}
// OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
// OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
// OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
if (LangOpts.OpenCL) {
if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
T->isBlockPointerType()) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
D.setInvalidType(true);
}
}
T = S.BuildPointerType(T, DeclType.Loc, Name);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
case DeclaratorChunk::Reference: {
// Verify that we're not building a reference to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
if (DeclType.Ref.HasRestrict)
T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
break;
}
case DeclaratorChunk::Array: {
// Verify that we're not building an array of pointers to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
ArrayType::ArraySizeModifier ASM;
if (ATI.isStar)
ASM = ArrayType::Star;
else if (ATI.hasStatic)
ASM = ArrayType::Static;
else
ASM = ArrayType::Normal;
if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
// FIXME: This check isn't quite right: it allows star in prototypes
// for function definitions, and disallows some edge cases detailed
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
ASM = ArrayType::Normal;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: The optional type qualifiers and the keyword static
// shall appear only in a declaration of a function parameter with an
// array type, ...
if (ASM == ArrayType::Static || ATI.TypeQuals) {
if (!(D.isPrototypeContext() ||
D.getContext() == DeclaratorContext::KNRTypeListContext)) {
S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
// Remove the 'static' and the type qualifiers.
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: ... and then only in the outermost array type
// derivation.
if (hasOuterPointerLikeChunk(D, chunkIndex)) {
S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
}
}
const AutoType *AT = T->getContainedAutoType();
// Allow arrays of auto if we are a generic lambda parameter.
// i.e. [](auto (&array)[5]) { return array[0]; }; OK
if (AT &&
D.getContext() != DeclaratorContext::LambdaExprParameterContext) {
// We've already diagnosed this for decltype(auto).
if (!AT->isDecltypeAuto())
S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
<< getPrintableNameForEntity(Name) << T;
T = QualType();
break;
}
// Array parameters can be marked nullable as well, although it's not
// necessary if they're marked 'static'.
if (complainAboutMissingNullability == CAMN_Yes &&
!hasNullabilityAttr(DeclType.getAttrs()) &&
ASM != ArrayType::Static &&
D.isPrototypeContext() &&
!hasOuterPointerLikeChunk(D, chunkIndex)) {
checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
}
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
break;
}
case DeclaratorChunk::Function: {
// If the function declarator has a prototype (i.e. it is not () and
// does not have a K&R-style identifier list), then the arguments are part
// of the type, otherwise the argument list is ().
DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
IsQualifiedFunction =
FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
// Check for auto functions and trailing return type and adjust the
// return type accordingly.
if (!D.isInvalidType()) {
// trailing-return-type is only required if we're declaring a function,
// and not, for instance, a pointer to a function.
if (D.getDeclSpec().hasAutoTypeSpec() &&
!FTI.hasTrailingReturnType() && chunkIndex == 0) {
if (!S.getLangOpts().CPlusPlus14) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
? diag::err_auto_missing_trailing_return
: diag::err_deduced_return_type);
T = Context.IntTy;
D.setInvalidType(true);
} else {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::warn_cxx11_compat_deduced_return_type);
}
} else if (FTI.hasTrailingReturnType()) {
// T must be exactly 'auto' at this point. See CWG issue 681.
if (isa<ParenType>(T)) {
S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
<< T << D.getSourceRange();
D.setInvalidType(true);
} else if (D.getName().getKind() ==
UnqualifiedIdKind::IK_DeductionGuideName) {
if (T != Context.DependentTy) {
S.Diag(D.getDeclSpec().getBeginLoc(),
diag::err_deduction_guide_with_complex_decl)
<< D.getSourceRange();
D.setInvalidType(true);
}
} else if (D.getContext() != DeclaratorContext::LambdaExprContext &&
(T.hasQualifiers() || !isa<AutoType>(T) ||
cast<AutoType>(T)->getKeyword() !=
AutoTypeKeyword::Auto)) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_trailing_return_without_auto)
<< T << D.getDeclSpec().getSourceRange();
D.setInvalidType(true);
}
T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
if (T.isNull()) {
// An error occurred parsing the trailing return type.
T = Context.IntTy;
D.setInvalidType(true);
}
} else {
// This function type is not the type of the entity being declared,
// so checking the 'auto' is not the responsibility of this chunk.
}
}
// C99 6.7.5.3p1: The return type may not be a function or array type.
// For conversion functions, we'll diagnose this particular error later.
if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
(D.getName().getKind() !=
UnqualifiedIdKind::IK_ConversionFunctionId)) {
unsigned diagID = diag::err_func_returning_array_function;
// Last processing chunk in block context means this function chunk
// represents the block.
if (chunkIndex == 0 &&
D.getContext() == DeclaratorContext::BlockLiteralContext)
diagID = diag::err_block_returning_array_function;
S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
T = Context.IntTy;
D.setInvalidType(true);
}
// Do not allow returning half FP value.
// FIXME: This really should be in BuildFunctionType.
if (T->isHalfType()) {
if (S.getLangOpts().OpenCL) {
if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
<< T << 0 /*pointer hint*/;
D.setInvalidType(true);
}
} else if (!S.getLangOpts().HalfArgsAndReturns) {
S.Diag(D.getIdentifierLoc(),
diag::err_parameters_retval_cannot_have_fp16_type) << 1;
D.setInvalidType(true);
}
}
if (LangOpts.OpenCL) {
// OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
// function.
if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
T->isPipeType()) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
<< T << 1 /*hint off*/;
D.setInvalidType(true);
}
// OpenCL doesn't support variadic functions and blocks
// (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
// We also allow here any toolchain reserved identifiers.
if (FTI.isVariadic &&
!(D.getIdentifier() &&
((D.getIdentifier()->getName() == "printf" &&
(LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
D.getIdentifier()->getName().startswith("__")))) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
D.setInvalidType(true);
}
}
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (T->isObjCObjectType()) {
SourceLocation DiagLoc, FixitLoc;
if (TInfo) {
DiagLoc = TInfo->getTypeLoc().getBeginLoc();
FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
} else {
DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
}
S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << T
<< FixItHint::CreateInsertion(FixitLoc, "*");
T = Context.getObjCObjectPointerType(T);
if (TInfo) {
TypeLocBuilder TLB;
TLB.pushFullCopy(TInfo->getTypeLoc());
ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
TLoc.setStarLoc(FixitLoc);
TInfo = TLB.getTypeSourceInfo(Context, T);
}
D.setInvalidType(true);
}
// cv-qualifiers on return types are pointless except when the type is a
// class type in C++.
if ((T.getCVRQualifiers() || T->isAtomicType()) &&
!(S.getLangOpts().CPlusPlus &&
(T->isDependentType() || T->isRecordType()))) {
if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
D.getFunctionDefinitionKind() == FDK_Definition) {
// [6.9.1/3] qualified void return is invalid on a C
// function definition. Apparently ok on declarations and
// in C++ though (!)
S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
} else
diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
// C++2a [dcl.fct]p12:
// A volatile-qualified return type is deprecated
if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus2a)
S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
}
// Objective-C ARC ownership qualifiers are ignored on the function
// return type (by type canonicalization). Complain if this attribute
// was written here.
if (T.getQualifiers().hasObjCLifetime()) {
SourceLocation AttrLoc;
if (chunkIndex + 1 < D.getNumTypeObjects()) {
DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
AttrLoc = AL.getLoc();
break;
}
}
}
if (AttrLoc.isInvalid()) {
for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
AttrLoc = AL.getLoc();
break;
}
}
}
if (AttrLoc.isValid()) {
// The ownership attributes are almost always written via
// the predefined
// __strong/__weak/__autoreleasing/__unsafe_unretained.
if (AttrLoc.isMacroID())
AttrLoc =
S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
<< T.getQualifiers().getObjCLifetime();
}
}
if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
<< Context.getTypeDeclType(Tag);
}
// Exception specs are not allowed in typedefs. Complain, but add it
// anyway.
if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
S.Diag(FTI.getExceptionSpecLocBeg(),
diag::err_exception_spec_in_typedef)
<< (D.getContext() == DeclaratorContext::AliasDeclContext ||
D.getContext() == DeclaratorContext::AliasTemplateContext);
// If we see "T var();" or "T var(T());" at block scope, it is probably
// an attempt to initialize a variable, not a function declaration.
if (FTI.isAmbiguous)
warnAboutAmbiguousFunction(S, D, DeclType, T);
FunctionType::ExtInfo EI(
getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
&& !LangOpts.OpenCL) {
// Simple void foo(), where the incoming T is the result type.
T = Context.getFunctionNoProtoType(T, EI);
} else {
// We allow a zero-parameter variadic function in C if the
// function is marked with the "overloadable" attribute. Scan
// for this attribute now.
if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
// definition.
S.Diag(FTI.Params[0].IdentLoc,
diag::err_ident_list_in_fn_declaration);
D.setInvalidType(true);
// Recover by creating a K&R-style function type.
T = Context.getFunctionNoProtoType(T, EI);
break;
}
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = EI;
EPI.Variadic = FTI.isVariadic;
EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
EPI.TypeQuals.addCVRUQualifiers(
FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
: 0);
EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
: FTI.RefQualifierIsLValueRef? RQ_LValue
: RQ_RValue;
// Otherwise, we have a function with a parameter list that is
// potentially variadic.
SmallVector<QualType, 16> ParamTys;
ParamTys.reserve(FTI.NumParams);
SmallVector<FunctionProtoType::ExtParameterInfo, 16>
ExtParameterInfos(FTI.NumParams);
bool HasAnyInterestingExtParameterInfos = false;
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
QualType ParamTy = Param->getType();
assert(!ParamTy.isNull() && "Couldn't parse type?");
// Look for 'void'. void is allowed only as a single parameter to a
// function with no other parameters (C99 6.7.5.3p10). We record
// int(void) as a FunctionProtoType with an empty parameter list.
if (ParamTy->isVoidType()) {
// If this is something like 'float(int, void)', reject it. 'void'
// is an incomplete type (C99 6.2.5p19) and function decls cannot
// have parameters of incomplete type.
if (FTI.NumParams != 1 || FTI.isVariadic) {
S.Diag(DeclType.Loc, diag::err_void_only_param);
ParamTy = Context.IntTy;
Param->setType(ParamTy);
} else if (FTI.Params[i].Ident) {
// Reject, but continue to parse 'int(void abc)'.
S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
ParamTy = Context.IntTy;
Param->setType(ParamTy);
} else {
// Reject, but continue to parse 'float(const void)'.
if (ParamTy.hasQualifiers())
S.Diag(DeclType.Loc, diag::err_void_param_qualified);
// Do not add 'void' to the list.
break;
}
} else if (ParamTy->isHalfType()) {
// Disallow half FP parameters.
// FIXME: This really should be in BuildFunctionType.
if (S.getLangOpts().OpenCL) {
if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
S.Diag(Param->getLocation(),
diag::err_opencl_half_param) << ParamTy;
D.setInvalidType();
Param->setInvalidDecl();
}
} else if (!S.getLangOpts().HalfArgsAndReturns) {
S.Diag(Param->getLocation(),
diag::err_parameters_retval_cannot_have_fp16_type) << 0;
D.setInvalidType();
}
} else if (!FTI.hasPrototype) {
if (ParamTy->isPromotableIntegerType()) {
ParamTy = Context.getPromotedIntegerType(ParamTy);
Param->setKNRPromoted(true);
} else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
if (BTy->getKind() == BuiltinType::Float) {
ParamTy = Context.DoubleTy;
Param->setKNRPromoted(true);
}
}
}
if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
HasAnyInterestingExtParameterInfos = true;
}
if (auto attr = Param->getAttr<ParameterABIAttr>()) {
ExtParameterInfos[i] =
ExtParameterInfos[i].withABI(attr->getABI());
HasAnyInterestingExtParameterInfos = true;
}
if (Param->hasAttr<PassObjectSizeAttr>()) {
ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
HasAnyInterestingExtParameterInfos = true;
}
if (Param->hasAttr<NoEscapeAttr>()) {
ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
HasAnyInterestingExtParameterInfos = true;
}
ParamTys.push_back(ParamTy);
}
if (HasAnyInterestingExtParameterInfos) {
EPI.ExtParameterInfos = ExtParameterInfos.data();
checkExtParameterInfos(S, ParamTys, EPI,
[&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
}
SmallVector<QualType, 4> Exceptions;
SmallVector<ParsedType, 2> DynamicExceptions;
SmallVector<SourceRange, 2> DynamicExceptionRanges;
Expr *NoexceptExpr = nullptr;
if (FTI.getExceptionSpecType() == EST_Dynamic) {
// FIXME: It's rather inefficient to have to split into two vectors
// here.
unsigned N = FTI.getNumExceptions();
DynamicExceptions.reserve(N);
DynamicExceptionRanges.reserve(N);
for (unsigned I = 0; I != N; ++I) {
DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
}
} else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
NoexceptExpr = FTI.NoexceptExpr;
}
S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
FTI.getExceptionSpecType(),
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr,
Exceptions,
EPI.ExceptionSpec);
// FIXME: Set address space from attrs for C++ mode here.
// OpenCLCPlusPlus: A class member function has an address space.
auto IsClassMember = [&]() {
return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
state.getDeclarator()
.getCXXScopeSpec()
.getScopeRep()
->getKind() == NestedNameSpecifier::TypeSpec) ||
state.getDeclarator().getContext() ==
DeclaratorContext::MemberContext;
};
if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
LangAS ASIdx = LangAS::Default;
// Take address space attr if any and mark as invalid to avoid adding
// them later while creating QualType.
if (FTI.MethodQualifiers)
for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
LangAS ASIdxNew = attr.asOpenCLLangAS();
if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
attr.getLoc()))
D.setInvalidType(true);
else
ASIdx = ASIdxNew;
}
// If a class member function's address space is not set, set it to
// __generic.
LangAS AS =
(ASIdx == LangAS::Default ? LangAS::opencl_generic : ASIdx);
EPI.TypeQuals.addAddressSpace(AS);
}
T = Context.getFunctionType(T, ParamTys, EPI);
}
break;
}
case DeclaratorChunk::MemberPointer: {
// The scope spec must refer to a class, or be dependent.
CXXScopeSpec &SS = DeclType.Mem.Scope();
QualType ClsType;
// Handle pointer nullability.
inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
DeclType.EndLoc, DeclType.getAttrs(),
state.getDeclarator().getAttributePool());
if (SS.isInvalid()) {
// Avoid emitting extra errors if we already errored on the scope.
D.setInvalidType(true);
} else if (S.isDependentScopeSpecifier(SS) ||
dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
NestedNameSpecifier *NNS = SS.getScopeRep();
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
NNS->getAsIdentifier());
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
llvm_unreachable("Nested-name-specifier must name a type");
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
ClsType = QualType(NNS->getAsType(), 0);
// Note: if the NNS has a prefix and ClsType is a nondependent
// TemplateSpecializationType, then the NNS prefix is NOT included
// in ClsType; hence we wrap ClsType into an ElaboratedType.
// NOTE: in particular, no wrap occurs if ClsType already is an
// Elaborated, DependentName, or DependentTemplateSpecialization.
if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
break;
}
} else {
S.Diag(DeclType.Mem.Scope().getBeginLoc(),
diag::err_illegal_decl_mempointer_in_nonclass)
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
<< DeclType.Mem.Scope().getRange();
D.setInvalidType(true);
}
if (!ClsType.isNull())
T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
D.getIdentifier());
if (T.isNull()) {
T = Context.IntTy;
D.setInvalidType(true);
} else if (DeclType.Mem.TypeQuals) {
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
}
break;
}
case DeclaratorChunk::Pipe: {
T = S.BuildReadPipeType(T, DeclType.Loc);
processTypeAttrs(state, T, TAL_DeclSpec,
D.getMutableDeclSpec().getAttributes());
break;
}
}
if (T.isNull()) {
D.setInvalidType(true);
T = Context.IntTy;
}
// See if there are any attributes on this declarator chunk.
processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
if (DeclType.Kind != DeclaratorChunk::Paren) {
if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
ExpectNoDerefChunk = state.didParseNoDeref();
}
}
if (ExpectNoDerefChunk)
S.Diag(state.getDeclarator().getBeginLoc(),
diag::warn_noderef_on_non_pointer_or_array);
// GNU warning -Wstrict-prototypes
// Warn if a function declaration is without a prototype.
// This warning is issued for all kinds of unprototyped function
// declarations (i.e. function type typedef, function pointer etc.)
// C99 6.7.5.3p14:
// The empty list in a function declarator that is not part of a definition
// of that function specifies that no information about the number or types
// of the parameters is supplied.
if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
bool IsBlock = false;
for (const DeclaratorChunk &DeclType : D.type_objects()) {
switch (DeclType.Kind) {
case DeclaratorChunk::BlockPointer:
IsBlock = true;
break;
case DeclaratorChunk::Function: {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
// We supress the warning when there's no LParen location, as this
// indicates the declaration was an implicit declaration, which gets
// warned about separately via -Wimplicit-function-declaration.
if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
<< IsBlock
<< FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
IsBlock = false;
break;
}
default:
break;
}
}
}
assert(!T.isNull() && "T must not be null after this point");
if (LangOpts.CPlusPlus && T->isFunctionType()) {
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
// C++ 8.3.5p4:
// A cv-qualifier-seq shall only be part of the function type
// for a nonstatic member function, the function type to which a pointer
// to member refers, or the top-level function type of a function typedef
// declaration.
//
// Core issue 547 also allows cv-qualifiers on function types that are
// top-level template type arguments.
enum { NonMember, Member, DeductionGuide } Kind = NonMember;
if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
Kind = DeductionGuide;
else if (!D.getCXXScopeSpec().isSet()) {
if ((D.getContext() == DeclaratorContext::MemberContext ||
D.getContext() == DeclaratorContext::LambdaExprContext) &&
!D.getDeclSpec().isFriendSpecified())
Kind = Member;
} else {
DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
if (!DC || DC->isRecord())
Kind = Member;
}
// C++11 [dcl.fct]p6 (w/DR1417):
// An attempt to specify a function type with a cv-qualifier-seq or a
// ref-qualifier (including by typedef-name) is ill-formed unless it is:
// - the function type for a non-static member function,
// - the function type to which a pointer to member refers,
// - the top-level function type of a function typedef declaration or
// alias-declaration,
// - the type-id in the default argument of a type-parameter, or
// - the type-id of a template-argument for a type-parameter
//
// FIXME: Checking this here is insufficient. We accept-invalid on:
//
// template<typename T> struct S { void f(T); };
// S<int() const> s;
//
// ... for instance.
if (IsQualifiedFunction &&
!(Kind == Member &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
!IsTypedefName &&
D.getContext() != DeclaratorContext::TemplateArgContext &&
D.getContext() != DeclaratorContext::TemplateTypeArgContext) {
SourceLocation Loc = D.getBeginLoc();
SourceRange RemovalRange;
unsigned I;
if (D.isFunctionDeclarator(I)) {
SmallVector<SourceLocation, 4> RemovalLocs;
const DeclaratorChunk &Chunk = D.getTypeObject(I);
assert(Chunk.Kind == DeclaratorChunk::Function);
if (Chunk.Fun.hasRefQualifier())
RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
if (Chunk.Fun.hasMethodTypeQualifiers())
Chunk.Fun.MethodQualifiers->forEachQualifier(
[&](DeclSpec::TQ TypeQual, StringRef QualName,
SourceLocation SL) { RemovalLocs.push_back(SL); });
if (!RemovalLocs.empty()) {
llvm::sort(RemovalLocs,
BeforeThanCompare<SourceLocation>(S.getSourceManager()));
RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
Loc = RemovalLocs.front();
}
}
S.Diag(Loc, diag::err_invalid_qualified_function_type)
<< Kind << D.isFunctionDeclarator() << T
<< getFunctionQualifiersAsString(FnTy)
<< FixItHint::CreateRemoval(RemovalRange);
// Strip the cv-qualifiers and ref-qualifiers from the type.
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
EPI.TypeQuals.removeCVRQualifiers();
EPI.RefQualifier = RQ_None;
T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
EPI);
// Rebuild any parens around the identifier in the function type.
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
break;
T = S.BuildParenType(T);
}
}
}
// Apply any undistributed attributes from the declarator.
processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
// Diagnose any ignored type attributes.
state.diagnoseIgnoredTypeAttrs(T);
// C++0x [dcl.constexpr]p9:
// A constexpr specifier used in an object declaration declares the object
// as const.
if (D.getDeclSpec().getConstexprSpecifier() == CSK_constexpr &&
T->isObjectType())
T.addConst();
// C++2a [dcl.fct]p4:
// A parameter with volatile-qualified type is deprecated
if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus2a &&
(D.getContext() == DeclaratorContext::PrototypeContext ||
D.getContext() == DeclaratorContext::LambdaExprParameterContext))
S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
// If there was an ellipsis in the declarator, the declaration declares a
// parameter pack whose type may be a pack expansion type.
if (D.hasEllipsis()) {
// C++0x [dcl.fct]p13:
// A declarator-id or abstract-declarator containing an ellipsis shall
// only be used in a parameter-declaration. Such a parameter-declaration
// is a parameter pack (14.5.3). [...]
switch (D.getContext()) {
case DeclaratorContext::PrototypeContext:
case DeclaratorContext::LambdaExprParameterContext:
// C++0x [dcl.fct]p13:
// [...] When it is part of a parameter-declaration-clause, the
// parameter pack is a function parameter pack (14.5.3). The type T
// of the declarator-id of the function parameter pack shall contain
// a template parameter pack; each template parameter pack in T is
// expanded by the function parameter pack.
//
// We represent function parameter packs as function parameters whose
// type is a pack expansion.
if (!T->containsUnexpandedParameterPack()) {
S.Diag(D.getEllipsisLoc(),
diag::err_function_parameter_pack_without_parameter_packs)
<< T << D.getSourceRange();
D.setEllipsisLoc(SourceLocation());
} else {
T = Context.getPackExpansionType(T, None);
}
break;
case DeclaratorContext::TemplateParamContext:
// C++0x [temp.param]p15:
// If a template-parameter is a [...] is a parameter-declaration that
// declares a parameter pack (8.3.5), then the template-parameter is a
// template parameter pack (14.5.3).
//
// Note: core issue 778 clarifies that, if there are any unexpanded
// parameter packs in the type of the non-type template parameter, then
// it expands those parameter packs.
if (T->containsUnexpandedParameterPack())
T = Context.getPackExpansionType(T, None);
else
S.Diag(D.getEllipsisLoc(),
LangOpts.CPlusPlus11
? diag::warn_cxx98_compat_variadic_templates
: diag::ext_variadic_templates);
break;
case DeclaratorContext::FileContext:
case DeclaratorContext::KNRTypeListContext:
case DeclaratorContext::ObjCParameterContext: // FIXME: special diagnostic
// here?
case DeclaratorContext::ObjCResultContext: // FIXME: special diagnostic
// here?
case DeclaratorContext::TypeNameContext:
case DeclaratorContext::FunctionalCastContext:
case DeclaratorContext::CXXNewContext:
case DeclaratorContext::AliasDeclContext:
case DeclaratorContext::AliasTemplateContext:
case DeclaratorContext::MemberContext:
case DeclaratorContext::BlockContext:
case DeclaratorContext::ForContext:
case DeclaratorContext::InitStmtContext:
case DeclaratorContext::ConditionContext:
case DeclaratorContext::CXXCatchContext:
case DeclaratorContext::ObjCCatchContext:
case DeclaratorContext::BlockLiteralContext:
case DeclaratorContext::LambdaExprContext:
case DeclaratorContext::ConversionIdContext:
case DeclaratorContext::TrailingReturnContext:
case DeclaratorContext::TrailingReturnVarContext:
case DeclaratorContext::TemplateArgContext:
case DeclaratorContext::TemplateTypeArgContext:
// FIXME: We may want to allow parameter packs in block-literal contexts
// in the future.
S.Diag(D.getEllipsisLoc(),
diag::err_ellipsis_in_declarator_not_parameter);
D.setEllipsisLoc(SourceLocation());
break;
}
}
assert(!T.isNull() && "T must not be null at the end of this function");
if (D.isInvalidType())
return Context.getTrivialTypeSourceInfo(T);
return GetTypeSourceInfoForDeclarator(state, T, TInfo);
}
/// GetTypeForDeclarator - Convert the type for the specified
/// declarator to Type instances.
///
/// The result of this call will never be null, but the associated
/// type may be a null type if there's an unrecoverable error.
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
// Determine the type of the declarator. Not all forms of declarator
// have a type.
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = nullptr;
QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
inferARCWriteback(state, T);
return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
}
static void transferARCOwnershipToDeclSpec(Sema &S,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
if (declSpecTy->isObjCRetainableType() &&
declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
Qualifiers qs;
qs.addObjCLifetime(ownership);
declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
}
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
// Look for an explicit lifetime attribute.
DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
return;
const char *attrStr = nullptr;
switch (ownership) {
case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
case Qualifiers::OCL_Strong: attrStr = "strong"; break;
case Qualifiers::OCL_Weak: attrStr = "weak"; break;
case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
}
IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
Arg->Ident = &S.Context.Idents.get(attrStr);
Arg->Loc = SourceLocation();
ArgsUnion Args(Arg);
// If there wasn't one, add one (with an invalid source location
// so that we don't make an AttributedType for it).
ParsedAttr *attr = D.getAttributePool().create(
&S.Context.Idents.get("objc_ownership"), SourceLocation(),
/*scope*/ nullptr, SourceLocation(),
/*args*/ &Args, 1, ParsedAttr::AS_GNU);
chunk.getAttrs().addAtEnd(attr);
// TODO: mark whether we did this inference?
}
/// Used for transferring ownership in casts resulting in l-values.
static void transferARCOwnership(TypeProcessingState &state,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
int inner = -1;
bool hasIndirection = false;
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
if (inner != -1)
hasIndirection = true;
inner = i;
break;
case DeclaratorChunk::BlockPointer:
if (inner != -1)
transferARCOwnershipToDeclaratorChunk(state, ownership, i);
return;
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
return;
}
}
if (inner == -1)
return;
DeclaratorChunk &chunk = D.getTypeObject(inner);
if (chunk.Kind == DeclaratorChunk::Pointer) {
if (declSpecTy->isObjCRetainableType())
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
if (declSpecTy->isObjCObjectType() && hasIndirection)
return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
} else {
assert(chunk.Kind == DeclaratorChunk::Array ||
chunk.Kind == DeclaratorChunk::Reference);
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
}
}
TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = nullptr;
QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (getLangOpts().ObjC) {
Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
if (ownership != Qualifiers::OCL_None)
transferARCOwnership(state, declSpecTy, ownership);
}
return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
}
static void fillAttributedTypeLoc(AttributedTypeLoc TL,
TypeProcessingState &State) {
TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
}
namespace {
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
ASTContext &Context;
TypeProcessingState &State;
const DeclSpec &DS;
public:
TypeSpecLocFiller(ASTContext &Context, TypeProcessingState &State,
const DeclSpec &DS)
: Context(Context), State(State), DS(DS) {}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
Visit(TL.getModifiedLoc());
fillAttributedTypeLoc(TL, State);
}
void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
Visit(TL.getInnerLoc());
TL.setExpansionLoc(
State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
Visit(TL.getUnqualifiedLoc());
}
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
}
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
// FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
// addition field. What we have is good enough for dispay of location
// of 'fixit' on interface name.
TL.setNameEndLoc(DS.getEndLoc());
}
void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
TypeSourceInfo *RepTInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
TL.copy(RepTInfo->getTypeLoc());
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TypeSourceInfo *RepTInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
TL.copy(RepTInfo->getTypeLoc());
}
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
// If we got no declarator info from previous Sema routines,
// just fill with the typespec loc.
if (!TInfo) {
TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
return;
}
TypeLoc OldTL = TInfo->getTypeLoc();
if (TInfo->getType()->getAs<ElaboratedType>()) {
ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
.castAs<TemplateSpecializationTypeLoc>();
TL.copy(NamedTL);
} else {
TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
}
}
void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
}
void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
// FIXME: This holds only because we only have one unary transform.
assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
// By default, use the source location of the type specifier.
TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
if (TL.needsExtraLocalData()) {
// Set info for the written builtin specifiers.
TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
// Try to have a meaningful source location.
if (TL.getWrittenSignSpec() != TSS_unspecified)
TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
if (TL.getWrittenWidthSpec() != TSW_unspecified)
TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
}
}
void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
ElaboratedTypeKeyword Keyword
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
if (DS.getTypeSpecType() == TST_typename) {
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
if (TInfo) {
TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
return;
}
}
TL.setElaboratedKeywordLoc(Keyword != ETK_None
? DS.getTypeSpecTypeLoc()
: SourceLocation());
const CXXScopeSpec& SS = DS.getTypeSpecScope();
TL.setQualifierLoc(SS.getWithLocInContext(Context));
Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
}
void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
}
void VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(
TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
}
void VisitTagTypeLoc(TagTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
}
void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
// An AtomicTypeLoc can come from either an _Atomic(...) type specifier
// or an _Atomic qualifier.
if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
} else {
TL.setKWLoc(DS.getAtomicSpecLoc());
// No parens, to indicate this was spelled as an _Atomic qualifier.
TL.setParensRange(SourceRange());
Visit(TL.getValueLoc());
}
}
void VisitPipeTypeLoc(PipeTypeLoc TL) {
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
}
void VisitTypeLoc(TypeLoc TL) {
// FIXME: add other typespec types and change this to an assert.
TL.initialize(Context, DS.getTypeSpecTypeLoc());
}
};
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
ASTContext &Context;
TypeProcessingState &State;
const DeclaratorChunk &Chunk;
public:
DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
const DeclaratorChunk &Chunk)
: Context(Context), State(State), Chunk(Chunk) {}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
llvm_unreachable("qualified type locs not expected here!");
}
void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
llvm_unreachable("decayed type locs not expected here!");
}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
fillAttributedTypeLoc(TL, State);
}
void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
// nothing
}
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
TL.setCaretLoc(Chunk.Loc);
}
void VisitPointerTypeLoc(PointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
const CXXScopeSpec& SS = Chunk.Mem.Scope();
NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
const Type* ClsTy = TL.getClass();
QualType ClsQT = QualType(ClsTy, 0);
TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
// Now copy source location info into the type loc component.
TypeLoc ClsTL = ClsTInfo->getTypeLoc();
switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
{
DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
DNTLoc.setElaboratedKeywordLoc(SourceLocation());
DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
}
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (isa<ElaboratedType>(ClsTy)) {
ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
ETLoc.setElaboratedKeywordLoc(SourceLocation());
ETLoc.setQualifierLoc(NNSLoc.getPrefix());
TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
} else {
ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
}
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
llvm_unreachable("Nested-name-specifier must name a type");
}
// Finally fill in MemberPointerLocInfo fields.
TL.setStarLoc(Chunk.Loc);
TL.setClassTInfo(ClsTInfo);
}
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
// 'Amp' is misleading: this might have been originally
/// spelled with AmpAmp.
TL.setAmpLoc(Chunk.Loc);
}
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
assert(!Chunk.Ref.LValueRef);
TL.setAmpAmpLoc(Chunk.Loc);
}
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Array);
TL.setLBracketLoc(Chunk.Loc);
TL.setRBracketLoc(Chunk.EndLoc);
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
}
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Function);
TL.setLocalRangeBegin(Chunk.Loc);
TL.setLocalRangeEnd(Chunk.EndLoc);
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
TL.setLParenLoc(FTI.getLParenLoc());
TL.setRParenLoc(FTI.getRParenLoc());
for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
TL.setParam(tpi++, Param);
}
TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
}
void VisitParenTypeLoc(ParenTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Paren);
TL.setLParenLoc(Chunk.Loc);
TL.setRParenLoc(Chunk.EndLoc);
}
void VisitPipeTypeLoc(PipeTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pipe);
TL.setKWLoc(Chunk.Loc);
}
void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
TL.setExpansionLoc(Chunk.Loc);
}
void VisitTypeLoc(TypeLoc TL) {
llvm_unreachable("unsupported TypeLoc kind in declarator!");
}
};
} // end anonymous namespace
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
SourceLocation Loc;
switch (Chunk.Kind) {
case DeclaratorChunk::Function:
case DeclaratorChunk::Array:
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pipe:
llvm_unreachable("cannot be _Atomic qualified");
case DeclaratorChunk::Pointer:
Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
// FIXME: Provide a source location for the _Atomic keyword.
break;
}
ATL.setKWLoc(Loc);
ATL.setParensRange(SourceRange());
}
static void
fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
const ParsedAttributesView &Attrs) {
for (const ParsedAttr &AL : Attrs) {
if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
DASTL.setAttrNameLoc(AL.getLoc());
DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
DASTL.setAttrOperandParensRange(SourceRange());
return;
}
}
llvm_unreachable(
"no address_space attribute found at the expected location!");
}
/// Create and instantiate a TypeSourceInfo with type source information.
///
/// \param T QualType referring to the type as written in source code.
///
/// \param ReturnTypeInfo For declarators whose return type does not show
/// up in the normal place in the declaration specifiers (such as a C++
/// conversion function), this pointer will refer to a type source information
/// for that return type.
static TypeSourceInfo *
GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
QualType T, TypeSourceInfo *ReturnTypeInfo) {
Sema &S = State.getSema();
Declarator &D = State.getDeclarator();
TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
// Handle parameter packs whose type is a pack expansion.
if (isa<PackExpansionType>(T)) {
CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
// An AtomicTypeLoc might be produced by an atomic qualifier in this
// declarator chunk.
if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
fillAtomicQualLoc(ATL, D.getTypeObject(i));
CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
}
while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
TL.setExpansionLoc(
State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
}
while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
fillAttributedTypeLoc(TL, State);
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
}
while (DependentAddressSpaceTypeLoc TL =
CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
}
// FIXME: Ordering here?
while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
// If we have different source information for the return type, use
// that. This really only applies to C++ conversion functions.
if (ReturnTypeInfo) {
TypeLoc TL = ReturnTypeInfo->getTypeLoc();
assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
} else {
TypeSpecLocFiller(S.Context, State, D.getDeclSpec()).Visit(CurrTL);
}
return TInfo;
}
/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
// and Sema during declaration parsing. Try deallocating/caching them when
// it's appropriate, instead of allocating them and keeping them around.
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
TypeAlignment);
new (LocT) LocInfoType(T, TInfo);
assert(LocT->getTypeClass() != T->getTypeClass() &&
"LocInfoType's TypeClass conflicts with an existing Type class");
return ParsedType::make(QualType(LocT, 0));
}
void LocInfoType::getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser");
}
TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
// C99 6.7.6: Type names have no identifier. This is already validated by
// the parser.
assert(D.getIdentifier() == nullptr &&
"Type name should have no identifier!");
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType T = TInfo->getType();
if (D.isInvalidType())
return true;
// Make sure there are no unused decl attributes on the declarator.
// We don't want to do this for ObjC parameters because we're going
// to apply them to the actual parameter declaration.
// Likewise, we don't want to do this for alias declarations, because
// we are actually going to build a declaration from this eventually.
if (D.getContext() != DeclaratorContext::ObjCParameterContext &&
D.getContext() != DeclaratorContext::AliasDeclContext &&
D.getContext() != DeclaratorContext::AliasTemplateContext)
checkUnusedDeclAttributes(D);
if (getLangOpts().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
}
return CreateParsedType(T, TInfo);
}
ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
QualType T = Context.getObjCInstanceType();
TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
return CreateParsedType(T, TInfo);
}
//===----------------------------------------------------------------------===//
// Type Attribute Processing
//===----------------------------------------------------------------------===//
/// Build an AddressSpace index from a constant expression and diagnose any
/// errors related to invalid address_spaces. Returns true on successfully
/// building an AddressSpace index.
static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
const Expr *AddrSpace,
SourceLocation AttrLoc) {
if (!AddrSpace->isValueDependent()) {
llvm::APSInt addrSpace(32);
if (!AddrSpace->isIntegerConstantExpr(addrSpace, S.Context)) {
S.Diag(AttrLoc, diag::err_attribute_argument_type)
<< "'address_space'" << AANT_ArgumentIntegerConstant
<< AddrSpace->getSourceRange();
return false;
}
// Bounds checking.
if (addrSpace.isSigned()) {
if (addrSpace.isNegative()) {
S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
<< AddrSpace->getSourceRange();
return false;
}
addrSpace.setIsSigned(false);
}
llvm::APSInt max(addrSpace.getBitWidth());
max =
Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
if (addrSpace > max) {
S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
<< (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
return false;
}
ASIdx =
getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
return true;
}
// Default value for DependentAddressSpaceTypes
ASIdx = LangAS::Default;
return true;
}
/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
/// is uninstantiated. If instantiated it will apply the appropriate address
/// space to the type. This function allows dependent template variables to be
/// used in conjunction with the address_space attribute
QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
SourceLocation AttrLoc) {
if (!AddrSpace->isValueDependent()) {
if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
AttrLoc))
return QualType();
return Context.getAddrSpaceQualType(T, ASIdx);
}
// A check with similar intentions as checking if a type already has an
// address space except for on a dependent types, basically if the
// current type is already a DependentAddressSpaceType then its already
// lined up to have another address space on it and we can't have
// multiple address spaces on the one pointer indirection
if (T->getAs<DependentAddressSpaceType>()) {
Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
return QualType();
}
return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
}
QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
SourceLocation AttrLoc) {
LangAS ASIdx;
if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
return QualType();
return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
}
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
/// specified type. The attribute contains 1 argument, the id of the address
/// space for the type.
static void HandleAddressSpaceTypeAttribute(QualType &Type,
const ParsedAttr &Attr,
TypeProcessingState &State) {
Sema &S = State.getSema();
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
// qualified by an address-space qualifier."
if (Type->isFunctionType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
Attr.setInvalid();
return;
}
LangAS ASIdx;
if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
<< 1;
Attr.setInvalid();
return;
}
Expr *ASArgExpr;
if (Attr.isArgIdent(0)) {
// Special case where the argument is a template id.
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId id;
id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
ExprResult AddrSpace = S.ActOnIdExpression(
S.getCurScope(), SS, TemplateKWLoc, id, /*HasTrailingLParen=*/false,
/*IsAddressOfOperand=*/false);
if (AddrSpace.isInvalid())
return;
ASArgExpr = static_cast<Expr *>(AddrSpace.get());
} else {
ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
}
LangAS ASIdx;
if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
Attr.setInvalid();
return;
}
ASTContext &Ctx = S.Context;
auto *ASAttr =
::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
// If the expression is not value dependent (not templated), then we can
// apply the address space qualifiers just to the equivalent type.
// Otherwise, we make an AttributedType with the modified and equivalent
// type the same, and wrap it in a DependentAddressSpaceType. When this
// dependent type is resolved, the qualifier is added to the equivalent type
// later.
QualType T;
if (!ASArgExpr->isValueDependent()) {
QualType EquivType =
S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
if (EquivType.isNull()) {
Attr.setInvalid();
return;
}
T = State.getAttributedType(ASAttr, Type, EquivType);
} else {
T = State.getAttributedType(ASAttr, Type, Type);
T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
}
if (!T.isNull())
Type = T;
else
Attr.setInvalid();
} else {
// The keyword-based type attributes imply which address space to use.
ASIdx = Attr.asOpenCLLangAS();
if (ASIdx == LangAS::Default)
llvm_unreachable("Invalid address space");
if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
Attr.getLoc())) {
Attr.setInvalid();
return;
}
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
}
}
/// handleObjCOwnershipTypeAttr - Process an objc_ownership
/// attribute on the specified type.
///
/// Returns 'true' if the attribute was handled.
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType &type) {
bool NonObjCPointer = false;
if (!type->isDependentType() && !type->isUndeducedType()) {
if (const PointerType *ptr = type->getAs<PointerType>()) {
QualType pointee = ptr->getPointeeType();
if (pointee->isObjCRetainableType() || pointee->isPointerType())
return false;
// It is important not to lose the source info that there was an attribute
// applied to non-objc pointer. We will create an attributed type but
// its type will be the same as the original type.
NonObjCPointer = true;
} else if (!type->isObjCRetainableType()) {
return false;
}
// Don't accept an ownership attribute in the declspec if it would
// just be the return type of a block pointer.
if (state.isProcessingDeclSpec()) {
Declarator &D = state.getDeclarator();
if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
/*onlyBlockPointers=*/true))
return false;
}
}
Sema &S = state.getSema();
SourceLocation AttrLoc = attr.getLoc();
if (AttrLoc.isMacroID())
AttrLoc =
S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
if (!attr.isArgIdent(0)) {
S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
<< AANT_ArgumentString;
attr.setInvalid();
return true;
}
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
Qualifiers::ObjCLifetime lifetime;
if (II->isStr("none"))
lifetime = Qualifiers::OCL_ExplicitNone;
else if (II->isStr("strong"))
lifetime = Qualifiers::OCL_Strong;
else if (II->isStr("weak"))
lifetime = Qualifiers::OCL_Weak;
else if (II->isStr("autoreleasing"))
lifetime = Qualifiers::OCL_Autoreleasing;
else {
S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
attr.setInvalid();
return true;
}
// Just ignore lifetime attributes other than __weak and __unsafe_unretained
// outside of ARC mode.
if (!S.getLangOpts().ObjCAutoRefCount &&
lifetime != Qualifiers::OCL_Weak &&
lifetime != Qualifiers::OCL_ExplicitNone) {
return true;
}
SplitQualType underlyingType = type.split();
// Check for redundant/conflicting ownership qualifiers.
if (Qualifiers::ObjCLifetime previousLifetime
= type.getQualifiers().getObjCLifetime()) {
// If it's written directly, that's an error.
if (S.Context.hasDirectOwnershipQualifier(type)) {
S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
<< type;
return true;
}
// Otherwise, if the qualifiers actually conflict, pull sugar off
// and remove the ObjCLifetime qualifiers.
if (previousLifetime != lifetime) {
// It's possible to have multiple local ObjCLifetime qualifiers. We
// can't stop after we reach a type that is directly qualified.
const Type *prevTy = nullptr;
while (!prevTy || prevTy != underlyingType.Ty) {
prevTy = underlyingType.Ty;
underlyingType = underlyingType.getSingleStepDesugaredType();
}
underlyingType.Quals.removeObjCLifetime();
}
}
underlyingType.Quals.addObjCLifetime(lifetime);
if (NonObjCPointer) {
StringRef name = attr.getAttrName()->getName();
switch (lifetime) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
break;
case Qualifiers::OCL_Strong: name = "__strong"; break;
case Qualifiers::OCL_Weak: name = "__weak"; break;
case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
}
S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
<< TDS_ObjCObjOrBlock << type;
}
// Don't actually add the __unsafe_unretained qualifier in non-ARC files,
// because having both 'T' and '__unsafe_unretained T' exist in the type
// system causes unfortunate widespread consistency problems. (For example,
// they're not considered compatible types, and we mangle them identicially
// as template arguments.) These problems are all individually fixable,
// but it's easier to just not add the qualifier and instead sniff it out
// in specific places using isObjCInertUnsafeUnretainedType().
//
// Doing this does means we miss some trivial consistency checks that
// would've triggered in ARC, but that's better than trying to solve all
// the coexistence problems with __unsafe_unretained.
if (!S.getLangOpts().ObjCAutoRefCount &&
lifetime == Qualifiers::OCL_ExplicitNone) {
type = state.getAttributedType(
createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
type, type);
return true;
}
QualType origType = type;
if (!NonObjCPointer)
type = S.Context.getQualifiedType(underlyingType);
// If we have a valid source location for the attribute, use an
// AttributedType instead.
if (AttrLoc.isValid()) {
type = state.getAttributedType(::new (S.Context)
ObjCOwnershipAttr(S.Context, attr, II),
origType, type);
}
auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
unsigned diagnostic, QualType type) {
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(
S.getSourceManager().getExpansionLoc(loc),
diagnostic, type, /*ignored*/ 0));
} else {
S.Diag(loc, diagnostic);
}
};
// Sometimes, __weak isn't allowed.
if (lifetime == Qualifiers::OCL_Weak &&
!S.getLangOpts().ObjCWeak && !NonObjCPointer) {
// Use a specialized diagnostic if the runtime just doesn't support them.
unsigned diagnostic =
(S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
: diag::err_arc_weak_no_runtime);
// In any case, delay the diagnostic until we know what we're parsing.
diagnoseOrDelay(S, AttrLoc, diagnostic, type);
attr.setInvalid();
return true;
}
// Forbid __weak for class objects marked as
// objc_arc_weak_reference_unavailable
if (lifetime == Qualifiers::OCL_Weak) {
if (const ObjCObjectPointerType *ObjT =
type->getAs<ObjCObjectPointerType>()) {
if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
if (Class->isArcWeakrefUnavailable()) {
S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
S.Diag(ObjT->getInterfaceDecl()->getLocation(),
diag::note_class_declared);
}
}
}
}
return true;
}
/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
/// attribute on the specified type. Returns true to indicate that
/// the attribute was handled, false to indicate that the type does
/// not permit the attribute.
static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
QualType &type) {
Sema &S = state.getSema();
// Delay if this isn't some kind of pointer.
if (!type->isPointerType() &&
!type->isObjCObjectPointerType() &&
!type->isBlockPointerType())
return false;
if (type.getObjCGCAttr() != Qualifiers::GCNone) {
S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
attr.setInvalid();
return true;
}
// Check the attribute arguments.
if (!attr.isArgIdent(0)) {
S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
<< attr << AANT_ArgumentString;
attr.setInvalid();
return true;
}
Qualifiers::GC GCAttr;
if (attr.getNumArgs() > 1) {
S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
<< 1;
attr.setInvalid();
return true;
}
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
if (II->isStr("weak"))
GCAttr = Qualifiers::Weak;
else if (II->isStr("strong"))
GCAttr = Qualifiers::Strong;
else {
S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
<< attr << II;
attr.setInvalid();
return true;
}
QualType origType = type;
type = S.Context.getObjCGCQualType(origType, GCAttr);
// Make an attributed type to preserve the source information.
if (attr.getLoc().isValid())
type = state.getAttributedType(
::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
return true;
}
namespace {
/// A helper class to unwrap a type down to a function for the
/// purposes of applying attributes there.
///
/// Use:
/// FunctionTypeUnwrapper unwrapped(SemaRef, T);
/// if (unwrapped.isFunctionType()) {
/// const FunctionType *fn = unwrapped.get();
/// // change fn somehow
/// T = unwrapped.wrap(fn);
/// }
struct FunctionTypeUnwrapper {
enum WrapKind {
Desugar,
Attributed,
Parens,
Pointer,
BlockPointer,
Reference,
MemberPointer
};
QualType Original;
const FunctionType *Fn;
SmallVector<unsigned char /*WrapKind*/, 8> Stack;
FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
while (true) {
const Type *Ty = T.getTypePtr();
if (isa<FunctionType>(Ty)) {
Fn = cast<FunctionType>(Ty);
return;
} else if (isa<ParenType>(Ty)) {
T = cast<ParenType>(Ty)->getInnerType();
Stack.push_back(Parens);
} else if (isa<PointerType>(Ty)) {
T = cast<PointerType>(Ty)->getPointeeType();
Stack.push_back(Pointer);
} else if (isa<BlockPointerType>(Ty)) {
T = cast<BlockPointerType>(Ty)->getPointeeType();
Stack.push_back(BlockPointer);
} else if (isa<MemberPointerType>(Ty)) {
T = cast<MemberPointerType>(Ty)->getPointeeType();
Stack.push_back(MemberPointer);
} else if (isa<ReferenceType>(Ty)) {
T = cast<ReferenceType>(Ty)->getPointeeType();
Stack.push_back(Reference);
} else if (isa<AttributedType>(Ty)) {
T = cast<AttributedType>(Ty)->getEquivalentType();
Stack.push_back(Attributed);
} else {
const Type *DTy = Ty->getUnqualifiedDesugaredType();
if (Ty == DTy) {
Fn = nullptr;
return;
}
T = QualType(DTy, 0);
Stack.push_back(Desugar);
}
}
}
bool isFunctionType() const { return (Fn != nullptr); }
const FunctionType *get() const { return Fn; }
QualType wrap(Sema &S, const FunctionType *New) {
// If T wasn't modified from the unwrapped type, do nothing.
if (New == get()) return Original;
Fn = New;
return wrap(S.Context, Original, 0);
}
private:
QualType wrap(ASTContext &C, QualType Old, unsigned I) {
if (I == Stack.size())
return C.getQualifiedType(Fn, Old.getQualifiers());
// Build up the inner type, applying the qualifiers from the old
// type to the new type.
SplitQualType SplitOld = Old.split();
// As a special case, tail-recurse if there are no qualifiers.
if (SplitOld.Quals.empty())
return wrap(C, SplitOld.Ty, I);
return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
}
QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
if (I == Stack.size()) return QualType(Fn, 0);
switch (static_cast<WrapKind>(Stack[I++])) {
case Desugar:
// This is the point at which we potentially lose source
// information.
return wrap(C, Old->getUnqualifiedDesugaredType(), I);
case Attributed:
return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
case Parens: {
QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
return C.getParenType(New);
}
case Pointer: {
QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
return C.getPointerType(New);
}
case BlockPointer: {
QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
return C.getBlockPointerType(New);
}
case MemberPointer: {
const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
QualType New = wrap(C, OldMPT->getPointeeType(), I);
return C.getMemberPointerType(New, OldMPT->getClass());
}
case Reference: {
const ReferenceType *OldRef = cast<ReferenceType>(Old);
QualType New = wrap(C, OldRef->getPointeeType(), I);
if (isa<LValueReferenceType>(OldRef))
return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
else
return C.getRValueReferenceType(New);
}
}
llvm_unreachable("unknown wrapping kind");
}
};
} // end anonymous namespace
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
ParsedAttr &PAttr, QualType &Type) {
Sema &S = State.getSema();
Attr *A;
switch (PAttr.getKind()) {
default: llvm_unreachable("Unknown attribute kind");
case ParsedAttr::AT_Ptr32:
A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
break;
case ParsedAttr::AT_Ptr64:
A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
break;
case ParsedAttr::AT_SPtr:
A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
break;
case ParsedAttr::AT_UPtr:
A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
break;
}
attr::Kind NewAttrKind = A->getKind();
QualType Desugared = Type;
const AttributedType *AT = dyn_cast<AttributedType>(Type);
while (AT) {
attr::Kind CurAttrKind = AT->getAttrKind();
// You cannot specify duplicate type attributes, so if the attribute has
// already been applied, flag it.
if (NewAttrKind == CurAttrKind) {
S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
return true;
}
// You cannot have both __sptr and __uptr on the same type, nor can you
// have __ptr32 and __ptr64.
if ((CurAttrKind == attr::Ptr32 && NewAttrKind == attr::Ptr64) ||
(CurAttrKind == attr::Ptr64 && NewAttrKind == attr::Ptr32)) {
S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
<< "'__ptr32'" << "'__ptr64'";
return true;
} else if ((CurAttrKind == attr::SPtr && NewAttrKind == attr::UPtr) ||
(CurAttrKind == attr::UPtr && NewAttrKind == attr::SPtr)) {
S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
<< "'__sptr'" << "'__uptr'";
return true;
}
Desugared = AT->getEquivalentType();
AT = dyn_cast<AttributedType>(Desugared);
}
// Pointer type qualifiers can only operate on pointer types, but not
// pointer-to-member types.
//
// FIXME: Should we really be disallowing this attribute if there is any
// type sugar between it and the pointer (other than attributes)? Eg, this
// disallows the attribute on a parenthesized pointer.
// And if so, should we really allow *any* type attribute?
if (!isa<PointerType>(Desugared)) {
if (Type->isMemberPointerType())
S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
else
S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
return true;
}
Type = State.getAttributedType(A, Type, Type);
return false;
}
/// Map a nullability attribute kind to a nullability kind.
static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
switch (kind) {
case ParsedAttr::AT_TypeNonNull:
return NullabilityKind::NonNull;
case ParsedAttr::AT_TypeNullable:
return NullabilityKind::Nullable;
case ParsedAttr::AT_TypeNullUnspecified:
return NullabilityKind::Unspecified;
default:
llvm_unreachable("not a nullability attribute kind");
}
}
/// Applies a nullability type specifier to the given type, if possible.
///
/// \param state The type processing state.
///
/// \param type The type to which the nullability specifier will be
/// added. On success, this type will be updated appropriately.
///
/// \param attr The attribute as written on the type.
///
/// \param allowOnArrayType Whether to accept nullability specifiers on an
/// array type (e.g., because it will decay to a pointer).
///
/// \returns true if a problem has been diagnosed, false on success.
static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
QualType &type,
ParsedAttr &attr,
bool allowOnArrayType) {
Sema &S = state.getSema();
NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
SourceLocation nullabilityLoc = attr.getLoc();
bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
recordNullabilitySeen(S, nullabilityLoc);
// Check for existing nullability attributes on the type.
QualType desugared = type;
while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
// Check whether there is already a null
if (auto existingNullability = attributed->getImmediateNullability()) {
// Duplicated nullability.
if (nullability == *existingNullability) {
S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< FixItHint::CreateRemoval(nullabilityLoc);
break;
}
// Conflicting nullability.
S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< DiagNullabilityKind(*existingNullability, false);
return true;
}
desugared = attributed->getModifiedType();
}
// If there is already a different nullability specifier, complain.
// This (unlike the code above) looks through typedefs that might
// have nullability specifiers on them, which means we cannot
// provide a useful Fix-It.
if (auto existingNullability = desugared->getNullability(S.Context)) {
if (nullability != *existingNullability) {
S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< DiagNullabilityKind(*existingNullability, false);
// Try to find the typedef with the existing nullability specifier.
if (auto typedefType = desugared->getAs<TypedefType>()) {
TypedefNameDecl *typedefDecl = typedefType->getDecl();
QualType underlyingType = typedefDecl->getUnderlyingType();
if (auto typedefNullability
= AttributedType::stripOuterNullability(underlyingType)) {
if (*typedefNullability == *existingNullability) {
S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
<< DiagNullabilityKind(*existingNullability, false);
}
}
}
return true;
}
}
// If this definitely isn't a pointer type, reject the specifier.
if (!desugared->canHaveNullability() &&
!(allowOnArrayType && desugared->isArrayType())) {
S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
<< DiagNullabilityKind(nullability, isContextSensitive) << type;
return true;
}
// For the context-sensitive keywords/Objective-C property
// attributes, require that the type be a single-level pointer.
if (isContextSensitive) {
// Make sure that the pointee isn't itself a pointer type.
const Type *pointeeType;
if (desugared->isArrayType())
pointeeType = desugared->getArrayElementTypeNoTypeQual();
else
pointeeType = desugared->getPointeeType().getTypePtr();
if (pointeeType->isAnyPointerType() ||
pointeeType->isObjCObjectPointerType() ||
pointeeType->isMemberPointerType()) {
S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
<< DiagNullabilityKind(nullability, true)
<< type;
S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
<< DiagNullabilityKind(nullability, false)
<< type
<< FixItHint::CreateReplacement(nullabilityLoc,
getNullabilitySpelling(nullability));
return true;
}
}
// Form the attributed type.
type = state.getAttributedType(
createNullabilityAttr(S.Context, attr, nullability), type, type);
return false;
}
/// Check the application of the Objective-C '__kindof' qualifier to
/// the given type.
static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
ParsedAttr &attr) {
Sema &S = state.getSema();
if (isa<ObjCTypeParamType>(type)) {
// Build the attributed type to record where __kindof occurred.
type = state.getAttributedType(
createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
return false;
}
// Find out if it's an Objective-C object or object pointer type;
const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
: type->getAs<ObjCObjectType>();
// If not, we can't apply __kindof.
if (!objType) {
// FIXME: Handle dependent types that aren't yet object types.
S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
<< type;
return true;
}
// Rebuild the "equivalent" type, which pushes __kindof down into
// the object type.
// There is no need to apply kindof on an unqualified id type.
QualType equivType = S.Context.getObjCObjectType(
objType->getBaseType(), objType->getTypeArgsAsWritten(),
objType->getProtocols(),
/*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
// If we started with an object pointer type, rebuild it.
if (ptrType) {
equivType = S.Context.getObjCObjectPointerType(equivType);
if (auto nullability = type->getNullability(S.Context)) {
// We create a nullability attribute from the __kindof attribute.
// Make sure that will make sense.
assert(attr.getAttributeSpellingListIndex() == 0 &&
"multiple spellings for __kindof?");
Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
A->setImplicit(true);
equivType = state.getAttributedType(A, equivType, equivType);
}
}
// Build the attributed type to record where __kindof occurred.
type = state.getAttributedType(
createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
return false;
}
/// Distribute a nullability type attribute that cannot be applied to
/// the type specifier to a pointer, block pointer, or member pointer
/// declarator, complaining if necessary.
///
/// \returns true if the nullability annotation was distributed, false
/// otherwise.
static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
QualType type, ParsedAttr &attr) {
Declarator &declarator = state.getDeclarator();
/// Attempt to move the attribute to the specified chunk.
auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
// If there is already a nullability attribute there, don't add
// one.
if (hasNullabilityAttr(chunk.getAttrs()))
return false;
// Complain about the nullability qualifier being in the wrong
// place.
enum {
PK_Pointer,
PK_BlockPointer,
PK_MemberPointer,
PK_FunctionPointer,
PK_MemberFunctionPointer,
} pointerKind
= chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
: PK_Pointer)
: chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
: inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
auto diag = state.getSema().Diag(attr.getLoc(),
diag::warn_nullability_declspec)
<< DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
attr.isContextSensitiveKeywordAttribute())
<< type
<< static_cast<unsigned>(pointerKind);
// FIXME: MemberPointer chunks don't carry the location of the *.
if (chunk.Kind != DeclaratorChunk::MemberPointer) {
diag << FixItHint::CreateRemoval(attr.getLoc())
<< FixItHint::CreateInsertion(
state.getSema().getPreprocessor().getLocForEndOfToken(
chunk.Loc),
" " + attr.getAttrName()->getName().str() + " ");
}
moveAttrFromListToList(attr, state.getCurrentAttributes(),
chunk.getAttrs());
return true;
};
// Move it to the outermost pointer, member pointer, or block
// pointer declarator.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
return moveToChunk(chunk, false);
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
case DeclaratorChunk::Function:
// Try to move past the return type to a function/block/member
// function pointer.
if (DeclaratorChunk *dest = maybeMovePastReturnType(
declarator, i,
/*onlyBlockPointers=*/false)) {
return moveToChunk(*dest, true);
}
return false;
// Don't walk through these.
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pipe:
return false;
}
}
return false;
}
static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
assert(!Attr.isInvalid());
switch (Attr.getKind()) {
default:
llvm_unreachable("not a calling convention attribute");
case ParsedAttr::AT_CDecl:
return createSimpleAttr<CDeclAttr>(Ctx, Attr);
case ParsedAttr::AT_FastCall:
return createSimpleAttr<FastCallAttr>(Ctx, Attr);
case ParsedAttr::AT_StdCall:
return createSimpleAttr<StdCallAttr>(Ctx, Attr);
case ParsedAttr::AT_ThisCall:
return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
case ParsedAttr::AT_RegCall:
return createSimpleAttr<RegCallAttr>(Ctx, Attr);
case ParsedAttr::AT_Pascal:
return createSimpleAttr<PascalAttr>(Ctx, Attr);
case ParsedAttr::AT_SwiftCall:
return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
case ParsedAttr::AT_VectorCall:
return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
case ParsedAttr::AT_AArch64VectorPcs:
return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
case ParsedAttr::AT_Pcs: {
// The attribute may have had a fixit applied where we treated an
// identifier as a string literal. The contents of the string are valid,
// but the form may not be.
StringRef Str;
if (Attr.isArgExpr(0))
Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
else
Str = Attr.getArgAsIdent(0)->Ident->getName();
PcsAttr::PCSType Type;
if (!PcsAttr::ConvertStrToPCSType(Str, Type))
llvm_unreachable("already validated the attribute");
return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
}
case ParsedAttr::AT_IntelOclBicc:
return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
case ParsedAttr::AT_MSABI:
return createSimpleAttr<MSABIAttr>(Ctx, Attr);
case ParsedAttr::AT_SysVABI:
return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
case ParsedAttr::AT_PreserveMost:
return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
case ParsedAttr::AT_PreserveAll:
return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
}
llvm_unreachable("unexpected attribute kind!");
}
/// Process an individual function attribute. Returns true to
/// indicate that the attribute was handled, false if it wasn't.
static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
QualType &type) {
Sema &S = state.getSema();
FunctionTypeUnwrapper unwrapped(S, type);
if (attr.getKind() == ParsedAttr::AT_NoReturn) {
if (S.CheckAttrNoArgs(attr))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Otherwise we can process right away.
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
// ns_returns_retained is not always a type attribute, but if we got
// here, we're treating it as one right now.
if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
if (attr.getNumArgs()) return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Check whether the return type is reasonable.
if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
unwrapped.get()->getReturnType()))
return true;
// Only actually change the underlying type in ARC builds.
QualType origType = type;
if (state.getSema().getLangOpts().ObjCAutoRefCount) {
FunctionType::ExtInfo EI
= unwrapped.get()->getExtInfo().withProducesResult(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
}
type = state.getAttributedType(
createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
origType, type);
return true;
}
if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
if (!S.getLangOpts().CFProtectionBranch) {
S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
attr.setInvalid();
return true;
}
if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
return true;
// If this is not a function type, warning will be asserted by subject
// check.
if (!unwrapped.isFunctionType())
return true;
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withNoCfCheck(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == ParsedAttr::AT_Regparm) {
unsigned value;
if (S.CheckRegparmAttr(attr, value))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Diagnose regparm with fastcall.
const FunctionType *fn = unwrapped.get();
CallingConv CC = fn->getCallConv();
if (CC == CC_X86FastCall) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< "regparm";
attr.setInvalid();
return true;
}
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withRegParm(value);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == ParsedAttr::AT_NoThrow) {
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
if (S.CheckAttrNoArgs(attr)) {
attr.setInvalid();
return true;
}
// Otherwise we can process right away.
auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
// MSVC ignores nothrow if it is in conflict with an explicit exception
// specification.
if (Proto->hasExceptionSpec()) {
switch (Proto->getExceptionSpecType()) {
case EST_None:
llvm_unreachable("This doesn't have an exception spec!");
case EST_DynamicNone:
case EST_BasicNoexcept:
case EST_NoexceptTrue:
case EST_NoThrow:
// Exception spec doesn't conflict with nothrow, so don't warn.
LLVM_FALLTHROUGH;
case EST_Unparsed:
case EST_Uninstantiated:
case EST_DependentNoexcept:
case EST_Unevaluated:
// We don't have enough information to properly determine if there is a
// conflict, so suppress the warning.
break;
case EST_Dynamic:
case EST_MSAny:
case EST_NoexceptFalse:
S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
break;
}
return true;
}
type = unwrapped.wrap(
S, S.Context
.getFunctionTypeWithExceptionSpec(
QualType{Proto, 0},
FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
->getAs<FunctionType>());
return true;
}
// Delay if the type didn't work out to a function.
if (!unwrapped.isFunctionType()) return false;
// Otherwise, a calling convention.
CallingConv CC;
if (S.CheckCallingConvAttr(attr, CC))
return true;
const FunctionType *fn = unwrapped.get();
CallingConv CCOld = fn->getCallConv();
Attr *CCAttr = getCCTypeAttr(S.Context, attr);
if (CCOld != CC) {
// Error out on when there's already an attribute on the type
// and the CCs don't match.
if (S.getCallingConvAttributedType(type)) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< FunctionType::getNameForCallConv(CCOld);
attr.setInvalid();
return true;
}
}
// Diagnose use of variadic functions with calling conventions that
// don't support them (e.g. because they're callee-cleanup).
// We delay warning about this on unprototyped function declarations
// until after redeclaration checking, just in case we pick up a
// prototype that way. And apparently we also "delay" warning about
// unprototyped function types in general, despite not necessarily having
// much ability to diagnose it later.
if (!supportsVariadicCall(CC)) {
const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
if (FnP && FnP->isVariadic()) {
// stdcall and fastcall are ignored with a warning for GCC and MS
// compatibility.
if (CC == CC_X86StdCall || CC == CC_X86FastCall)
return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
<< FunctionType::getNameForCallConv(CC)
<< (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
attr.setInvalid();
return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
<< FunctionType::getNameForCallConv(CC);
}
}
// Also diagnose fastcall with regparm.
if (CC == CC_X86FastCall && fn->getHasRegParm()) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
attr.setInvalid();
return true;
}
// Modify the CC from the wrapped function type, wrap it all back, and then
// wrap the whole thing in an AttributedType as written. The modified type
// might have a different CC if we ignored the attribute.
QualType Equivalent;
if (CCOld == CC) {
Equivalent = type;
} else {
auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
Equivalent =
unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
}
type = state.getAttributedType(CCAttr, type, Equivalent);
return true;
}
bool Sema::hasExplicitCallingConv(QualType T) {
const AttributedType *AT;
// Stop if we'd be stripping off a typedef sugar node to reach the
// AttributedType.
while ((AT = T->getAs<AttributedType>()) &&
AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
if (AT->isCallingConv())
return true;
T = AT->getModifiedType();
}
return false;
}
void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
SourceLocation Loc) {
FunctionTypeUnwrapper Unwrapped(*this, T);
const FunctionType *FT = Unwrapped.get();
bool IsVariadic = (isa<FunctionProtoType>(FT) &&
cast<FunctionProtoType>(FT)->isVariadic());
CallingConv CurCC = FT->getCallConv();
CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
if (CurCC == ToCC)
return;
// MS compiler ignores explicit calling convention attributes on structors. We
// should do the same.
if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
// Issue a warning on ignored calling convention -- except of __stdcall.
// Again, this is what MS compiler does.
if (CurCC != CC_X86StdCall)
Diag(Loc, diag::warn_cconv_unsupported)
<< FunctionType::getNameForCallConv(CurCC)
<< (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
// Default adjustment.
} else {
// Only adjust types with the default convention. For example, on Windows
// we should adjust a __cdecl type to __thiscall for instance methods, and a
// __thiscall type to __cdecl for static methods.
CallingConv DefaultCC =
Context.getDefaultCallingConvention(IsVariadic, IsStatic);
if (CurCC != DefaultCC || DefaultCC == ToCC)
return;
if (hasExplicitCallingConv(T))
return;
}
FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
QualType Wrapped = Unwrapped.wrap(*this, FT);
T = Context.getAdjustedType(T, Wrapped);
}
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
/// and float scalars, although arrays, pointers, and function return values are
/// allowed in conjunction with this construct. Aggregates with this attribute
/// are invalid, even if they are of the same size as a corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size for
/// the variable, measured in bytes. If curType and rawAttr are well formed,
/// this routine will return a new vector type.
static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
Sema &S) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
<< 1;
Attr.setInvalid();
return;
}
Expr *SizeExpr;
// Special case where the argument is a template id.
if (Attr.isArgIdent(0)) {
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId Id;
Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
Id, /*HasTrailingLParen=*/false,
/*IsAddressOfOperand=*/false);
if (Size.isInvalid())
return;
SizeExpr = Size.get();
} else {
SizeExpr = Attr.getArgAsExpr(0);
}
QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
if (!T.isNull())
CurType = T;
else
Attr.setInvalid();
}
/// Process the OpenCL-like ext_vector_type attribute when it occurs on
/// a type.
static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
<< 1;
return;
}
Expr *sizeExpr;
// Special case where the argument is a template id.
if (Attr.isArgIdent(0)) {
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId id;
id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
id, /*HasTrailingLParen=*/false,
/*IsAddressOfOperand=*/false);
if (Size.isInvalid())
return;
sizeExpr = Size.get();
} else {
sizeExpr = Attr.getArgAsExpr(0);
}
// Create the vector type.
QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
if (!T.isNull())
CurType = T;
}
static bool isPermittedNeonBaseType(QualType &Ty,
VectorType::VectorKind VecKind, Sema &S) {
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
if (!BTy)
return false;
llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
// Signed poly is mathematically wrong, but has been baked into some ABIs by
// now.
bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_be;
if (VecKind == VectorType::NeonPolyVector) {
if (IsPolyUnsigned) {
// AArch64 polynomial vectors are unsigned and support poly64.
return BTy->getKind() == BuiltinType::UChar ||
BTy->getKind() == BuiltinType::UShort ||
BTy->getKind() == BuiltinType::ULong ||
BTy->getKind() == BuiltinType::ULongLong;
} else {
// AArch32 polynomial vector are signed.
return BTy->getKind() == BuiltinType::SChar ||
BTy->getKind() == BuiltinType::Short;
}
}
// Non-polynomial vector types: the usual suspects are allowed, as well as
// float64_t on AArch64.
bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_be;
if (Is64Bit && BTy->getKind() == BuiltinType::Double)
return true;
return BTy->getKind() == BuiltinType::SChar ||
BTy->getKind() == BuiltinType::UChar ||
BTy->getKind() == BuiltinType::Short ||
BTy->getKind() == BuiltinType::UShort ||
BTy->getKind() == BuiltinType::Int ||
BTy->getKind() == BuiltinType::UInt ||
BTy->getKind() == BuiltinType::Long ||
BTy->getKind() == BuiltinType::ULong ||
BTy->getKind() == BuiltinType::LongLong ||
BTy->getKind() == BuiltinType::ULongLong ||
BTy->getKind() == BuiltinType::Float ||
BTy->getKind() == BuiltinType::Half;
}
/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
/// "neon_polyvector_type" attributes are used to create vector types that
/// are mangled according to ARM's ABI. Otherwise, these types are identical
/// to those created with the "vector_size" attribute. Unlike "vector_size"
/// the argument to these Neon attributes is the number of vector elements,
/// not the vector size in bytes. The vector width and element type must
/// match one of the standard Neon vector types.
static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
Sema &S, VectorType::VectorKind VecKind) {
// Target must have NEON
if (!S.Context.getTargetInfo().hasFeature("neon")) {
S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
Attr.setInvalid();
return;
}
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
<< 1;
Attr.setInvalid();
return;
}
// The number of elements must be an ICE.
Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt numEltsInt(32);
if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
!numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr << AANT_ArgumentIntegerConstant
<< numEltsExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Only certain element types are supported for Neon vectors.
if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
Attr.setInvalid();
return;
}
// The total size of the vector must be 64 or 128 bits.
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
unsigned vecSize = typeSize * numElts;
if (vecSize != 64 && vecSize != 128) {
S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
Attr.setInvalid();
return;
}
CurType = S.Context.getVectorType(CurType, numElts, VecKind);
}
/// Handle OpenCL Access Qualifier Attribute.
static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
Sema &S) {
// OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
if (!(CurType->isImageType() || CurType->isPipeType())) {
S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
Attr.setInvalid();
return;
}
if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
QualType BaseTy = TypedefTy->desugar();
std::string PrevAccessQual;
if (BaseTy->isPipeType()) {
if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
OpenCLAccessAttr *Attr =
TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
PrevAccessQual = Attr->getSpelling();
} else {
PrevAccessQual = "read_only";
}
} else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
switch (ImgType->getKind()) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
PrevAccessQual = #Access; \
break;
#include "clang/Basic/OpenCLImageTypes.def"
default:
llvm_unreachable("Unable to find corresponding image type.");
}
} else {
llvm_unreachable("unexpected type");
}
StringRef AttrName = Attr.getAttrName()->getName();
if (PrevAccessQual == AttrName.ltrim("_")) {
// Duplicated qualifiers
S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
<< AttrName << Attr.getRange();
} else {
// Contradicting qualifiers
S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
}
S.Diag(TypedefTy->getDecl()->getBeginLoc(),
diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
} else if (CurType->isPipeType()) {
if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
QualType ElemType = CurType->getAs<PipeType>()->getElementType();
CurType = S.Context.getWritePipeType(ElemType);
}
}
}
static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
QualType &T, TypeAttrLocation TAL) {
Declarator &D = State.getDeclarator();
// Handle the cases where address space should not be deduced.
//
// The pointee type of a pointer type is always deduced since a pointer always
// points to some memory location which should has an address space.
//
// There are situations that at the point of certain declarations, the address
// space may be unknown and better to be left as default. For example, when
// defining a typedef or struct type, they are not associated with any
// specific address space. Later on, they may be used with any address space
// to declare a variable.
//
// The return value of a function is r-value, therefore should not have
// address space.
//
// The void type does not occupy memory, therefore should not have address
// space, except when it is used as a pointee type.
//
// Since LLVM assumes function type is in default address space, it should not
// have address space.
auto ChunkIndex = State.getCurrentChunkIndex();
bool IsPointee =
ChunkIndex > 0 &&
(D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Reference ||
D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer);
// For pointers/references to arrays the next chunk is always an array
// followed by any number of parentheses.
if (!IsPointee && ChunkIndex > 1) {
auto AdjustedCI = ChunkIndex - 1;
if (D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Array)
AdjustedCI--;
// Skip over all parentheses.
while (AdjustedCI > 0 &&
D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Paren)
AdjustedCI--;
if (D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Pointer ||
D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Reference)
IsPointee = true;
}
bool IsFuncReturnType =
ChunkIndex > 0 &&
D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
bool IsFuncType =
ChunkIndex < D.getNumTypeObjects() &&
D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
if ( // Do not deduce addr space for function return type and function type,
// otherwise it will fail some sema check.
IsFuncReturnType || IsFuncType ||
// Do not deduce addr space for member types of struct, except the pointee
// type of a pointer member type or static data members.
(D.getContext() == DeclaratorContext::MemberContext &&
(!IsPointee &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)) ||
// Do not deduce addr space of non-pointee in type alias because it
// doesn't define any object.
(D.getContext() == DeclaratorContext::AliasDeclContext && !IsPointee) ||
// Do not deduce addr space for types used to define a typedef and the
// typedef itself, except the pointee type of a pointer type which is used
// to define the typedef.
(D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef &&
!IsPointee) ||
// Do not deduce addr space of the void type, e.g. in f(void), otherwise
// it will fail some sema check.
(T->isVoidType() && !IsPointee) ||
// Do not deduce addr spaces for dependent types because they might end
// up instantiating to a type with an explicit address space qualifier.
// Except for pointer or reference types because the addr space in
// template argument can only belong to a pointee.
(T->isDependentType() && !T->isPointerType() && !T->isReferenceType()) ||
// Do not deduce addr space of decltype because it will be taken from
// its argument.
T->isDecltypeType() ||
// OpenCL spec v2.0 s6.9.b:
// The sampler type cannot be used with the __local and __global address
// space qualifiers.
// OpenCL spec v2.0 s6.13.14:
// Samplers can also be declared as global constants in the program
// source using the following syntax.
// const sampler_t <sampler name> = <value>
// In codegen, file-scope sampler type variable has special handing and
// does not rely on address space qualifier. On the other hand, deducing
// address space of const sampler file-scope variable as global address
// space causes spurious diagnostic about __global address space
// qualifier, therefore do not deduce address space of file-scope sampler
// type variable.
(D.getContext() == DeclaratorContext::FileContext && T->isSamplerT()))
return;
LangAS ImpAddr = LangAS::Default;
// Put OpenCL automatic variable in private address space.
// OpenCL v1.2 s6.5:
// The default address space name for arguments to a function in a
// program, or local variables of a function is __private. All function
// arguments shall be in the __private address space.
if (State.getSema().getLangOpts().OpenCLVersion <= 120 &&
!State.getSema().getLangOpts().OpenCLCPlusPlus) {
ImpAddr = LangAS::opencl_private;
} else {
// If address space is not set, OpenCL 2.0 defines non private default
// address spaces for some cases:
// OpenCL 2.0, section 6.5:
// The address space for a variable at program scope or a static variable
// inside a function can either be __global or __constant, but defaults to
// __global if not specified.
// (...)
// Pointers that are declared without pointing to a named address space
// point to the generic address space.
if (IsPointee) {
ImpAddr = LangAS::opencl_generic;
} else {
if (D.getContext() == DeclaratorContext::TemplateArgContext) {
// Do not deduce address space for non-pointee type in template arg.
} else if (D.getContext() == DeclaratorContext::FileContext) {
ImpAddr = LangAS::opencl_global;
} else {
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) {
ImpAddr = LangAS::opencl_global;
} else {
ImpAddr = LangAS::opencl_private;
}
}
}
}
T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
}
static void HandleLifetimeBoundAttr(TypeProcessingState &State,
QualType &CurType,
ParsedAttr &Attr) {
if (State.getDeclarator().isDeclarationOfFunction()) {
CurType = State.getAttributedType(
createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
CurType, CurType);
} else {
Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
}
}
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
TypeAttrLocation TAL,
ParsedAttributesView &attrs) {
// Scan through and apply attributes to this type where it makes sense. Some
// attributes (such as __address_space__, __vector_size__, etc) apply to the
// type, but others can be present in the type specifiers even though they
// apply to the decl. Here we apply type attributes and ignore the rest.
// This loop modifies the list pretty frequently, but we still need to make
// sure we visit every element once. Copy the attributes list, and iterate
// over that.
ParsedAttributesView AttrsCopy{attrs};
state.setParsedNoDeref(false);
for (ParsedAttr &attr : AttrsCopy) {
// Skip attributes that were marked to be invalid.
if (attr.isInvalid())
continue;
if (attr.isCXX11Attribute()) {
// [[gnu::...]] attributes are treated as declaration attributes, so may
// not appertain to a DeclaratorChunk. If we handle them as type
// attributes, accept them in that position and diagnose the GCC
// incompatibility.
if (attr.isGNUScope()) {
bool IsTypeAttr = attr.isTypeAttr();
if (TAL == TAL_DeclChunk) {
state.getSema().Diag(attr.getLoc(),
IsTypeAttr
? diag::warn_gcc_ignores_type_attr
: diag::warn_cxx11_gnu_attribute_on_type)
<< attr;
if (!IsTypeAttr)
continue;
}
} else if (TAL != TAL_DeclChunk &&
attr.getKind() != ParsedAttr::AT_AddressSpace) {
// Otherwise, only consider type processing for a C++11 attribute if
// it's actually been applied to a type.
// We also allow C++11 address_space attributes to pass through.
continue;
}
}
// If this is an attribute we can handle, do so now,
// otherwise, add it to the FnAttrs list for rechaining.
switch (attr.getKind()) {
default:
// A C++11 attribute on a declarator chunk must appertain to a type.
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
<< attr;
attr.setUsedAsTypeAttr();
}
break;
case ParsedAttr::UnknownAttribute:
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
state.getSema().Diag(attr.getLoc(),
diag::warn_unknown_attribute_ignored)
<< attr;
break;
case ParsedAttr::IgnoredAttribute:
break;
case ParsedAttr::AT_MayAlias:
// FIXME: This attribute needs to actually be handled, but if we ignore
// it it breaks large amounts of Linux software.
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_OpenCLPrivateAddressSpace:
case ParsedAttr::AT_OpenCLGlobalAddressSpace:
case ParsedAttr::AT_OpenCLLocalAddressSpace:
case ParsedAttr::AT_OpenCLConstantAddressSpace:
case ParsedAttr::AT_OpenCLGenericAddressSpace:
case ParsedAttr::AT_AddressSpace:
HandleAddressSpaceTypeAttribute(type, attr, state);
attr.setUsedAsTypeAttr();
break;
OBJC_POINTER_TYPE_ATTRS_CASELIST:
if (!handleObjCPointerTypeAttr(state, attr, type))
distributeObjCPointerTypeAttr(state, attr, type);
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_VectorSize:
HandleVectorSizeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_ExtVectorType:
HandleExtVectorTypeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_NeonVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonVector);
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_NeonPolyVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonPolyVector);
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_OpenCLAccess:
HandleOpenCLAccessAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_LifetimeBound:
if (TAL == TAL_DeclChunk)
HandleLifetimeBoundAttr(state, type, attr);
break;
case ParsedAttr::AT_NoDeref: {
ASTContext &Ctx = state.getSema().Context;
type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
type, type);
attr.setUsedAsTypeAttr();
state.setParsedNoDeref(true);
break;
}
MS_TYPE_ATTRS_CASELIST:
if (!handleMSPointerTypeQualifierAttr(state, attr, type))
attr.setUsedAsTypeAttr();
break;
NULLABILITY_TYPE_ATTRS_CASELIST:
// Either add nullability here or try to distribute it. We
// don't want to distribute the nullability specifier past any
// dependent type, because that complicates the user model.
if (type->canHaveNullability() || type->isDependentType() ||
type->isArrayType() ||
!distributeNullabilityTypeAttr(state, type, attr)) {
unsigned endIndex;
if (TAL == TAL_DeclChunk)
endIndex = state.getCurrentChunkIndex();
else
endIndex = state.getDeclarator().getNumTypeObjects();
bool allowOnArrayType =
state.getDeclarator().isPrototypeContext() &&
!hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
if (checkNullabilityTypeSpecifier(
state,
type,
attr,
allowOnArrayType)) {
attr.setInvalid();
}
attr.setUsedAsTypeAttr();
}
break;
case ParsedAttr::AT_ObjCKindOf:
// '__kindof' must be part of the decl-specifiers.
switch (TAL) {
case TAL_DeclSpec:
break;
case TAL_DeclChunk:
case TAL_DeclName:
state.getSema().Diag(attr.getLoc(),
diag::err_objc_kindof_wrong_position)
<< FixItHint::CreateRemoval(attr.getLoc())
<< FixItHint::CreateInsertion(
state.getDeclarator().getDeclSpec().getBeginLoc(),
"__kindof ");
break;
}
// Apply it regardless.
if (checkObjCKindOfType(state, type, attr))
attr.setInvalid();
break;
case ParsedAttr::AT_NoThrow:
// Exception Specifications aren't generally supported in C mode throughout
// clang, so revert to attribute-based handling for C.
if (!state.getSema().getLangOpts().CPlusPlus)
break;
LLVM_FALLTHROUGH;
FUNCTION_TYPE_ATTRS_CASELIST:
attr.setUsedAsTypeAttr();
// Never process function type attributes as part of the
// declaration-specifiers.
if (TAL == TAL_DeclSpec)
distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
// Otherwise, handle the possible delays.
else if (!handleFunctionTypeAttr(state, attr, type))
distributeFunctionTypeAttr(state, attr, type);
break;
}
// Handle attributes that are defined in a macro. We do not want this to be
// applied to ObjC builtin attributes.
if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
!type.getQualifiers().hasObjCLifetime() &&
!type.getQualifiers().hasObjCGCAttr() &&
attr.getKind() != ParsedAttr::AT_ObjCGC &&
attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
const IdentifierInfo *MacroII = attr.getMacroIdentifier();
type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
state.setExpansionLocForMacroQualifiedType(
cast<MacroQualifiedType>(type.getTypePtr()),
attr.getMacroExpansionLoc());
}
}
if (!state.getSema().getLangOpts().OpenCL ||
type.getAddressSpace() != LangAS::Default)
return;
deduceOpenCLImplicitAddrSpace(state, type, TAL);
}
void Sema::completeExprArrayBound(Expr *E) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
auto *Def = Var->getDefinition();
if (!Def) {
SourceLocation PointOfInstantiation = E->getExprLoc();
runWithSufficientStackSpace(PointOfInstantiation, [&] {
InstantiateVariableDefinition(PointOfInstantiation, Var);
});
Def = Var->getDefinition();
// If we don't already have a point of instantiation, and we managed
// to instantiate a definition, this is the point of instantiation.
// Otherwise, we don't request an end-of-TU instantiation, so this is
// not a point of instantiation.
// FIXME: Is this really the right behavior?
if (Var->getPointOfInstantiation().isInvalid() && Def) {
assert(Var->getTemplateSpecializationKind() ==
TSK_ImplicitInstantiation &&
"explicit instantiation with no point of instantiation");
Var->setTemplateSpecializationKind(
Var->getTemplateSpecializationKind(), PointOfInstantiation);
}
}
// Update the type to the definition's type both here and within the
// expression.
if (Def) {
DRE->setDecl(Def);
QualType T = Def->getType();
DRE->setType(T);
// FIXME: Update the type on all intervening expressions.
E->setType(T);
}
// We still go on to try to complete the type independently, as it
// may also require instantiations or diagnostics if it remains
// incomplete.
}
}
}
}
/// Ensure that the type of the given expression is complete.
///
/// This routine checks whether the expression \p E has a complete type. If the
/// expression refers to an instantiable construct, that instantiation is
/// performed as needed to complete its type. Furthermore
/// Sema::RequireCompleteType is called for the expression's type (or in the
/// case of a reference type, the referred-to type).
///
/// \param E The expression whose type is required to be complete.
/// \param Diagnoser The object that will emit a diagnostic if the type is
/// incomplete.
///
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
/// otherwise.
bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
QualType T = E->getType();
// Incomplete array types may be completed by the initializer attached to
// their definitions. For static data members of class templates and for
// variable templates, we need to instantiate the definition to get this
// initializer and complete the type.
if (T->isIncompleteArrayType()) {
completeExprArrayBound(E);
T = E->getType();
}
// FIXME: Are there other cases which require instantiating something other
// than the type to complete the type of an expression?
return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
}
bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
BoundTypeDiagnoser<> Diagnoser(DiagID);
return RequireCompleteExprType(E, Diagnoser);
}
/// Ensure that the type T is a complete type.
///
/// This routine checks whether the type @p T is complete in any
/// context where a complete type is required. If @p T is a complete
/// type, returns false. If @p T is a class template specialization,
/// this routine then attempts to perform class template
/// instantiation. If instantiation fails, or if @p T is incomplete
/// and cannot be completed, issues the diagnostic @p diag (giving it
/// the type @p T) and returns true.
///
/// @param Loc The location in the source that the incomplete type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for completeness.
///
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
return true;
if (const TagType *Tag = T->getAs<TagType>()) {
if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
Tag->getDecl()->setCompleteDefinitionRequired();
Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
}
}
return false;
}
bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
if (!Suggested)
return false;
// FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
// and isolate from other C++ specific checks.
StructuralEquivalenceContext Ctx(
D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
StructuralEquivalenceKind::Default,
false /*StrictTypeSpelling*/, true /*Complain*/,
true /*ErrorOnTagTypeMismatch*/);
return Ctx.IsEquivalent(D, Suggested);
}
/// Determine whether there is any declaration of \p D that was ever a
/// definition (perhaps before module merging) and is currently visible.
/// \param D The definition of the entity.
/// \param Suggested Filled in with the declaration that should be made visible
/// in order to provide a definition of this entity.
/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
/// not defined. This only matters for enums with a fixed underlying
/// type, since in all other cases, a type is complete if and only if it
/// is defined.
bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
bool OnlyNeedComplete) {
// Easy case: if we don't have modules, all declarations are visible.
if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
return true;
// If this definition was instantiated from a template, map back to the
// pattern from which it was instantiated.
if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
// We're in the middle of defining it; this definition should be treated
// as visible.
return true;
} else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
if (auto *Pattern = RD->getTemplateInstantiationPattern())
RD = Pattern;
D = RD->getDefinition();
} else if (auto *ED = dyn_cast<EnumDecl>(D)) {
if (auto *Pattern = ED->getTemplateInstantiationPattern())
ED = Pattern;
if (OnlyNeedComplete && ED->isFixed()) {
// If the enum has a fixed underlying type, and we're only looking for a
// complete type (not a definition), any visible declaration of it will
// do.
*Suggested = nullptr;
for (auto *Redecl : ED->redecls()) {
if (isVisible(Redecl))
return true;
if (Redecl->isThisDeclarationADefinition() ||
(Redecl->isCanonicalDecl() && !*Suggested))
*Suggested = Redecl;
}
return false;
}
D = ED->getDefinition();
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
if (auto *Pattern = FD->getTemplateInstantiationPattern())
FD = Pattern;
D = FD->getDefinition();
} else if (auto *VD = dyn_cast<VarDecl>(D)) {
if (auto *Pattern = VD->getTemplateInstantiationPattern())
VD = Pattern;
D = VD->getDefinition();
}
assert(D && "missing definition for pattern of instantiated definition");
*Suggested = D;
auto DefinitionIsVisible = [&] {
// The (primary) definition might be in a visible module.
if (isVisible(D))
return true;
// A visible module might have a merged definition instead.
if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
: hasVisibleMergedDefinition(D)) {
if (CodeSynthesisContexts.empty() &&
!getLangOpts().ModulesLocalVisibility) {
// Cache the fact that this definition is implicitly visible because
// there is a visible merged definition.
D->setVisibleDespiteOwningModule();
}
return true;
}
return false;
};
if (DefinitionIsVisible())
return true;
// The external source may have additional definitions of this entity that are
// visible, so complete the redeclaration chain now and ask again.
if (auto *Source = Context.getExternalSource()) {
Source->CompleteRedeclChain(D);
return DefinitionIsVisible();
}
return false;
}
/// Locks in the inheritance model for the given class and all of its bases.
static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
RD = RD->getMostRecentNonInjectedDecl();
if (!RD->hasAttr<MSInheritanceAttr>()) {
MSInheritanceAttr::Spelling IM;
switch (S.MSPointerToMemberRepresentationMethod) {
case LangOptions::PPTMK_BestCase:
IM = RD->calculateInheritanceModel();
break;
case LangOptions::PPTMK_FullGeneralitySingleInheritance:
IM = MSInheritanceAttr::Keyword_single_inheritance;
break;
case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
IM = MSInheritanceAttr::Keyword_multiple_inheritance;
break;
case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
break;
}
SourceRange Loc =
S.ImplicitMSInheritanceAttrLoc.isValid()
? S.ImplicitMSInheritanceAttrLoc
: RD->getSourceRange();
RD->addAttr(MSInheritanceAttr::CreateImplicit(
S.getASTContext(),
/*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
LangOptions::PPTMK_BestCase,
Loc, AttributeCommonInfo::AS_Microsoft, IM));
S.Consumer.AssignInheritanceModel(RD);
}
}
/// The implementation of RequireCompleteType
bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
TypeDiagnoser *Diagnoser) {
// FIXME: Add this assertion to make sure we always get instantiation points.
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
// FIXME: Add this assertion to help us flush out problems with
// checking for dependent types and type-dependent expressions.
//
// assert(!T->isDependentType() &&
// "Can't ask whether a dependent type is complete");
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
if (!MPTy->getClass()->isDependentType()) {
if (getLangOpts().CompleteMemberPointers &&
!MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
diag::err_memptr_incomplete))
return true;
// We lock in the inheritance model once somebody has asked us to ensure
// that a pointer-to-member type is complete.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
(void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
}
}
}
NamedDecl *Def = nullptr;
bool Incomplete = T->isIncompleteType(&Def);
// Check that any necessary explicit specializations are visible. For an
// enum, we just need the declaration, so don't check this.
if (Def && !isa<EnumDecl>(Def))
checkSpecializationVisibility(Loc, Def);
// If we have a complete type, we're done.
if (!Incomplete) {
// If we know about the definition but it is not visible, complain.
NamedDecl *SuggestedDef = nullptr;
if (Def &&
!hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
// If the user is going to see an error here, recover by making the
// definition visible.
bool TreatAsComplete = Diagnoser && !isSFINAEContext();
if (Diagnoser && SuggestedDef)
diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
/*Recover*/TreatAsComplete);
return !TreatAsComplete;
} else if (Def && !TemplateInstCallbacks.empty()) {
CodeSynthesisContext TempInst;
TempInst.Kind = CodeSynthesisContext::Memoization;
TempInst.Template = Def;
TempInst.Entity = Def;
TempInst.PointOfInstantiation = Loc;
atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
}
return false;
}
TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
// Give the external source a chance to provide a definition of the type.
// This is kept separate from completing the redeclaration chain so that
// external sources such as LLDB can avoid synthesizing a type definition
// unless it's actually needed.
if (Tag || IFace) {
// Avoid diagnosing invalid decls as incomplete.
if (Def->isInvalidDecl())
return true;
// Give the external AST source a chance to complete the type.
if (auto *Source = Context.getExternalSource()) {
if (Tag && Tag->hasExternalLexicalStorage())
Source->CompleteType(Tag);
if (IFace && IFace->hasExternalLexicalStorage())
Source->CompleteType(IFace);
// If the external source completed the type, go through the motions
// again to ensure we're allowed to use the completed type.
if (!T->isIncompleteType())
return RequireCompleteTypeImpl(Loc, T, Diagnoser);
}
}
// If we have a class template specialization or a class member of a
// class template specialization, or an array with known size of such,
// try to instantiate it.
if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
bool Instantiated = false;
bool Diagnosed = false;
if (RD->isDependentContext()) {
// Don't try to instantiate a dependent class (eg, a member template of
// an instantiated class template specialization).
// FIXME: Can this ever happen?
} else if (auto *ClassTemplateSpec =
dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
runWithSufficientStackSpace(Loc, [&] {
Diagnosed = InstantiateClassTemplateSpecialization(
Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
/*Complain=*/Diagnoser);
});
Instantiated = true;
}
} else {
CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
if (!RD->isBeingDefined() && Pattern) {
MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
assert(MSI && "Missing member specialization information?");
// This record was instantiated from a class within a template.
if (MSI->getTemplateSpecializationKind() !=
TSK_ExplicitSpecialization) {
runWithSufficientStackSpace(Loc, [&] {
Diagnosed = InstantiateClass(Loc, RD, Pattern,
getTemplateInstantiationArgs(RD),
TSK_ImplicitInstantiation,
/*Complain=*/Diagnoser);
});
Instantiated = true;
}
}
}
if (Instantiated) {
// Instantiate* might have already complained that the template is not
// defined, if we asked it to.
if (Diagnoser && Diagnosed)
return true;
// If we instantiated a definition, check that it's usable, even if
// instantiation produced an error, so that repeated calls to this
// function give consistent answers.
if (!T->isIncompleteType())
return RequireCompleteTypeImpl(Loc, T, Diagnoser);
}
}
// FIXME: If we didn't instantiate a definition because of an explicit
// specialization declaration, check that it's visible.
if (!Diagnoser)
return true;
Diagnoser->diagnose(*this, Loc, T);
// If the type was a forward declaration of a class/struct/union
// type, produce a note.
if (Tag && !Tag->isInvalidDecl())
Diag(Tag->getLocation(),
Tag->isBeingDefined() ? diag::note_type_being_defined
: diag::note_forward_declaration)
<< Context.getTagDeclType(Tag);
// If the Objective-C class was a forward declaration, produce a note.
if (IFace && !IFace->isInvalidDecl())
Diag(IFace->getLocation(), diag::note_forward_class);
// If we have external information that we can use to suggest a fix,
// produce a note.
if (ExternalSource)
ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
return true;
}
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
unsigned DiagID) {
BoundTypeDiagnoser<> Diagnoser(DiagID);
return RequireCompleteType(Loc, T, Diagnoser);
}
/// Get diagnostic %select index for tag kind for
/// literal type diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
switch (Tag) {
case TTK_Struct: return 0;
case TTK_Interface: return 1;
case TTK_Class: return 2;
default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
}
}
/// Ensure that the type T is a literal type.
///
/// This routine checks whether the type @p T is a literal type. If @p T is an
/// incomplete type, an attempt is made to complete it. If @p T is a literal
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
/// it the type @p T), along with notes explaining why the type is not a
/// literal type, and returns true.
///
/// @param Loc The location in the source that the non-literal type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for literalness.
///
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
///
/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
assert(!T->isDependentType() && "type should not be dependent");
QualType ElemType = Context.getBaseElementType(T);
if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
T->isLiteralType(Context))
return false;
Diagnoser.diagnose(*this, Loc, T);
if (T->isVariableArrayType())
return true;
const RecordType *RT = ElemType->getAs<RecordType>();
if (!RT)
return true;
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
// A partially-defined class type can't be a literal type, because a literal
// class type must have a trivial destructor (which can't be checked until
// the class definition is complete).
if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
return true;
// [expr.prim.lambda]p3:
// This class type is [not] a literal type.
if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
Diag(RD->getLocation(), diag::note_non_literal_lambda);
return true;
}
// If the class has virtual base classes, then it's not an aggregate, and
// cannot have any constexpr constructors or a trivial default constructor,
// so is non-literal. This is better to diagnose than the resulting absence
// of constexpr constructors.
if (RD->getNumVBases()) {
Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
<< getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
for (const auto &I : RD->vbases())
Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
<< I.getSourceRange();
} else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
!RD->hasTrivialDefaultConstructor()) {
Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
} else if (RD->hasNonLiteralTypeFieldsOrBases()) {
for (const auto &I : RD->bases()) {
if (!I.getType()->isLiteralType(Context)) {
Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
<< RD << I.getType() << I.getSourceRange();
return true;
}
}
for (const auto *I : RD->fields()) {
if (!I->getType()->isLiteralType(Context) ||
I->getType().isVolatileQualified()) {
Diag(I->getLocation(), diag::note_non_literal_field)
<< RD << I << I->getType()
<< I->getType().isVolatileQualified();
return true;
}
}
} else if (getLangOpts().CPlusPlus2a ? !RD->hasConstexprDestructor()
: !RD->hasTrivialDestructor()) {
// All fields and bases are of literal types, so have trivial or constexpr
// destructors. If this class's destructor is non-trivial / non-constexpr,
// it must be user-declared.
CXXDestructorDecl *Dtor = RD->getDestructor();
assert(Dtor && "class has literal fields and bases but no dtor?");
if (!Dtor)
return true;
if (getLangOpts().CPlusPlus2a) {
Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
<< RD;
} else {
Diag(Dtor->getLocation(), Dtor->isUserProvided()
? diag::note_non_literal_user_provided_dtor
: diag::note_non_literal_nontrivial_dtor)
<< RD;
if (!Dtor->isUserProvided())
SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
/*Diagnose*/ true);
}
}
return true;
}
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
BoundTypeDiagnoser<> Diagnoser(DiagID);
return RequireLiteralType(Loc, T, Diagnoser);
}
/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
/// by the nested-name-specifier contained in SS, and that is (re)declared by
/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T,
TagDecl *OwnedTagDecl) {
if (T.isNull())
return T;
NestedNameSpecifier *NNS;
if (SS.isValid())
NNS = SS.getScopeRep();
else {
if (Keyword == ETK_None)
return T;
NNS = nullptr;
}
return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
}
QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
assert(!E->hasPlaceholderType() && "unexpected placeholder");
if (!getLangOpts().CPlusPlus && E->refersToBitField())
Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
if (!E->isTypeDependent()) {
QualType T = E->getType();
if (const TagType *TT = T->getAs<TagType>())
DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
}
return Context.getTypeOfExprType(E);
}
/// getDecltypeForExpr - Given an expr, will return the decltype for
/// that expression, according to the rules in C++11
/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
static QualType getDecltypeForExpr(Sema &S, Expr *E) {
if (E->isTypeDependent())
return S.Context.DependentTy;
// C++11 [dcl.type.simple]p4:
// The type denoted by decltype(e) is defined as follows:
//
// - if e is an unparenthesized id-expression or an unparenthesized class
// member access (5.2.5), decltype(e) is the type of the entity named
// by e. If there is no such entity, or if e names a set of overloaded
// functions, the program is ill-formed;
//
// We apply the same rules for Objective-C ivar and property references.
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
const ValueDecl *VD = DRE->getDecl();
return VD->getType();
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (const ValueDecl *VD = ME->getMemberDecl())
if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
return VD->getType();
} else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
return IR->getDecl()->getType();
} else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
if (PR->isExplicitProperty())
return PR->getExplicitProperty()->getType();
} else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
return PE->getType();
}
// C++11 [expr.lambda.prim]p18:
// Every occurrence of decltype((x)) where x is a possibly
// parenthesized id-expression that names an entity of automatic
// storage duration is treated as if x were transformed into an
// access to a corresponding data member of the closure type that
// would have been declared if x were an odr-use of the denoted
// entity.
using namespace sema;
if (S.getCurLambda()) {
if (isa<ParenExpr>(E)) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
if (!T.isNull())
return S.Context.getLValueReferenceType(T);
}
}
}
}
// C++11 [dcl.type.simple]p4:
// [...]
QualType T = E->getType();
switch (E->getValueKind()) {
// - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
// type of e;
case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
// - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
// type of e;
case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
// - otherwise, decltype(e) is the type of e.
case VK_RValue: break;
}
return T;
}
QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
bool AsUnevaluated) {
assert(!E->hasPlaceholderType() && "unexpected placeholder");
if (AsUnevaluated && CodeSynthesisContexts.empty() &&
E->HasSideEffects(Context, false)) {
// The expression operand for decltype is in an unevaluated expression
// context, so side effects could result in unintended consequences.
Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
}
return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
}
QualType Sema::BuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc) {
switch (UKind) {
case UnaryTransformType::EnumUnderlyingType:
if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
Diag(Loc, diag::err_only_enums_have_underlying_types);
return QualType();
} else {
QualType Underlying = BaseType;
if (!BaseType->isDependentType()) {
// The enum could be incomplete if we're parsing its definition or
// recovering from an error.
NamedDecl *FwdDecl = nullptr;
if (BaseType->isIncompleteType(&FwdDecl)) {
Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
return QualType();
}
EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
assert(ED && "EnumType has no EnumDecl");
DiagnoseUseOfDecl(ED, Loc);
Underlying = ED->getIntegerType();
assert(!Underlying.isNull());
}
return Context.getUnaryTransformType(BaseType, Underlying,
UnaryTransformType::EnumUnderlyingType);
}
}
llvm_unreachable("unknown unary transform type");
}
QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
if (!T->isDependentType()) {
// FIXME: It isn't entirely clear whether incomplete atomic types
// are allowed or not; for simplicity, ban them for the moment.
if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
return QualType();
int DisallowedKind = -1;
if (T->isArrayType())
DisallowedKind = 1;
else if (T->isFunctionType())
DisallowedKind = 2;
else if (T->isReferenceType())
DisallowedKind = 3;
else if (T->isAtomicType())
DisallowedKind = 4;
else if (T.hasQualifiers())
DisallowedKind = 5;
else if (!T.isTriviallyCopyableType(Context))
// Some other non-trivially-copyable type (probably a C++ class)
DisallowedKind = 6;
if (DisallowedKind != -1) {
Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
return QualType();
}
// FIXME: Do we need any handling for ARC here?
}
// Build the pointer type.
return Context.getAtomicType(T);
}