| //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines SValBuilder, the base class for all (complete) SValBuilder |
| // implementations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Analysis/AnalysisDeclContext.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include <cassert> |
| #include <tuple> |
| |
| using namespace clang; |
| using namespace ento; |
| |
| //===----------------------------------------------------------------------===// |
| // Basic SVal creation. |
| //===----------------------------------------------------------------------===// |
| |
| void SValBuilder::anchor() {} |
| |
| DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) { |
| if (Loc::isLocType(type)) |
| return makeNull(); |
| |
| if (type->isIntegralOrEnumerationType()) |
| return makeIntVal(0, type); |
| |
| if (type->isArrayType() || type->isRecordType() || type->isVectorType() || |
| type->isAnyComplexType()) |
| return makeCompoundVal(type, BasicVals.getEmptySValList()); |
| |
| // FIXME: Handle floats. |
| return UnknownVal(); |
| } |
| |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, |
| const llvm::APSInt& rhs, QualType type) { |
| // The Environment ensures we always get a persistent APSInt in |
| // BasicValueFactory, so we don't need to get the APSInt from |
| // BasicValueFactory again. |
| assert(lhs); |
| assert(!Loc::isLocType(type)); |
| return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type)); |
| } |
| |
| NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs, |
| BinaryOperator::Opcode op, const SymExpr *rhs, |
| QualType type) { |
| assert(rhs); |
| assert(!Loc::isLocType(type)); |
| return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type)); |
| } |
| |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, |
| const SymExpr *rhs, QualType type) { |
| assert(lhs && rhs); |
| assert(!Loc::isLocType(type)); |
| return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type)); |
| } |
| |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, |
| QualType fromTy, QualType toTy) { |
| assert(operand); |
| assert(!Loc::isLocType(toTy)); |
| return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy)); |
| } |
| |
| SVal SValBuilder::convertToArrayIndex(SVal val) { |
| if (val.isUnknownOrUndef()) |
| return val; |
| |
| // Common case: we have an appropriately sized integer. |
| if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) { |
| const llvm::APSInt& I = CI->getValue(); |
| if (I.getBitWidth() == ArrayIndexWidth && I.isSigned()) |
| return val; |
| } |
| |
| return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy); |
| } |
| |
| nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){ |
| return makeTruthVal(boolean->getValue()); |
| } |
| |
| DefinedOrUnknownSVal |
| SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) { |
| QualType T = region->getValueType(); |
| |
| if (T->isNullPtrType()) |
| return makeZeroVal(T); |
| |
| if (!SymbolManager::canSymbolicate(T)) |
| return UnknownVal(); |
| |
| SymbolRef sym = SymMgr.getRegionValueSymbol(region); |
| |
| if (Loc::isLocType(T)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag, |
| const Expr *Ex, |
| const LocationContext *LCtx, |
| unsigned Count) { |
| QualType T = Ex->getType(); |
| |
| if (T->isNullPtrType()) |
| return makeZeroVal(T); |
| |
| // Compute the type of the result. If the expression is not an R-value, the |
| // result should be a location. |
| QualType ExType = Ex->getType(); |
| if (Ex->isGLValue()) |
| T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType); |
| |
| return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count); |
| } |
| |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag, |
| const Expr *expr, |
| const LocationContext *LCtx, |
| QualType type, |
| unsigned count) { |
| if (type->isNullPtrType()) |
| return makeZeroVal(type); |
| |
| if (!SymbolManager::canSymbolicate(type)) |
| return UnknownVal(); |
| |
| SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag); |
| |
| if (Loc::isLocType(type)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt, |
| const LocationContext *LCtx, |
| QualType type, |
| unsigned visitCount) { |
| if (type->isNullPtrType()) |
| return makeZeroVal(type); |
| |
| if (!SymbolManager::canSymbolicate(type)) |
| return UnknownVal(); |
| |
| SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount); |
| |
| if (Loc::isLocType(type)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedOrUnknownSVal |
| SValBuilder::getConjuredHeapSymbolVal(const Expr *E, |
| const LocationContext *LCtx, |
| unsigned VisitCount) { |
| QualType T = E->getType(); |
| assert(Loc::isLocType(T)); |
| assert(SymbolManager::canSymbolicate(T)); |
| if (T->isNullPtrType()) |
| return makeZeroVal(T); |
| |
| SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount); |
| return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym)); |
| } |
| |
| DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag, |
| const MemRegion *region, |
| const Expr *expr, QualType type, |
| const LocationContext *LCtx, |
| unsigned count) { |
| assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type"); |
| |
| SymbolRef sym = |
| SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag); |
| |
| if (Loc::isLocType(type)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedOrUnknownSVal |
| SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, |
| const TypedValueRegion *region) { |
| QualType T = region->getValueType(); |
| |
| if (T->isNullPtrType()) |
| return makeZeroVal(T); |
| |
| if (!SymbolManager::canSymbolicate(T)) |
| return UnknownVal(); |
| |
| SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region); |
| |
| if (Loc::isLocType(T)) |
| return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| |
| return nonloc::SymbolVal(sym); |
| } |
| |
| DefinedSVal SValBuilder::getMemberPointer(const DeclaratorDecl *DD) { |
| assert(!DD || isa<CXXMethodDecl>(DD) || isa<FieldDecl>(DD)); |
| |
| if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DD)) { |
| // Sema treats pointers to static member functions as have function pointer |
| // type, so return a function pointer for the method. |
| // We don't need to play a similar trick for static member fields |
| // because these are represented as plain VarDecls and not FieldDecls |
| // in the AST. |
| if (MD->isStatic()) |
| return getFunctionPointer(MD); |
| } |
| |
| return nonloc::PointerToMember(DD); |
| } |
| |
| DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) { |
| return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func)); |
| } |
| |
| DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block, |
| CanQualType locTy, |
| const LocationContext *locContext, |
| unsigned blockCount) { |
| const BlockCodeRegion *BC = |
| MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext()); |
| const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext, |
| blockCount); |
| return loc::MemRegionVal(BD); |
| } |
| |
| /// Return a memory region for the 'this' object reference. |
| loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D, |
| const StackFrameContext *SFC) { |
| return loc::MemRegionVal( |
| getRegionManager().getCXXThisRegion(D->getThisType(), SFC)); |
| } |
| |
| /// Return a memory region for the 'this' object reference. |
| loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D, |
| const StackFrameContext *SFC) { |
| const Type *T = D->getTypeForDecl(); |
| QualType PT = getContext().getPointerType(QualType(T, 0)); |
| return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC)); |
| } |
| |
| Optional<SVal> SValBuilder::getConstantVal(const Expr *E) { |
| E = E->IgnoreParens(); |
| |
| switch (E->getStmtClass()) { |
| // Handle expressions that we treat differently from the AST's constant |
| // evaluator. |
| case Stmt::AddrLabelExprClass: |
| return makeLoc(cast<AddrLabelExpr>(E)); |
| |
| case Stmt::CXXScalarValueInitExprClass: |
| case Stmt::ImplicitValueInitExprClass: |
| return makeZeroVal(E->getType()); |
| |
| case Stmt::ObjCStringLiteralClass: { |
| const auto *SL = cast<ObjCStringLiteral>(E); |
| return makeLoc(getRegionManager().getObjCStringRegion(SL)); |
| } |
| |
| case Stmt::StringLiteralClass: { |
| const auto *SL = cast<StringLiteral>(E); |
| return makeLoc(getRegionManager().getStringRegion(SL)); |
| } |
| |
| // Fast-path some expressions to avoid the overhead of going through the AST's |
| // constant evaluator |
| case Stmt::CharacterLiteralClass: { |
| const auto *C = cast<CharacterLiteral>(E); |
| return makeIntVal(C->getValue(), C->getType()); |
| } |
| |
| case Stmt::CXXBoolLiteralExprClass: |
| return makeBoolVal(cast<CXXBoolLiteralExpr>(E)); |
| |
| case Stmt::TypeTraitExprClass: { |
| const auto *TE = cast<TypeTraitExpr>(E); |
| return makeTruthVal(TE->getValue(), TE->getType()); |
| } |
| |
| case Stmt::IntegerLiteralClass: |
| return makeIntVal(cast<IntegerLiteral>(E)); |
| |
| case Stmt::ObjCBoolLiteralExprClass: |
| return makeBoolVal(cast<ObjCBoolLiteralExpr>(E)); |
| |
| case Stmt::CXXNullPtrLiteralExprClass: |
| return makeNull(); |
| |
| case Stmt::CStyleCastExprClass: |
| case Stmt::CXXFunctionalCastExprClass: |
| case Stmt::CXXConstCastExprClass: |
| case Stmt::CXXReinterpretCastExprClass: |
| case Stmt::CXXStaticCastExprClass: |
| case Stmt::ImplicitCastExprClass: { |
| const auto *CE = cast<CastExpr>(E); |
| switch (CE->getCastKind()) { |
| default: |
| break; |
| case CK_ArrayToPointerDecay: |
| case CK_IntegralToPointer: |
| case CK_NoOp: |
| case CK_BitCast: { |
| const Expr *SE = CE->getSubExpr(); |
| Optional<SVal> Val = getConstantVal(SE); |
| if (!Val) |
| return None; |
| return evalCast(*Val, CE->getType(), SE->getType()); |
| } |
| } |
| // FALLTHROUGH |
| LLVM_FALLTHROUGH; |
| } |
| |
| // If we don't have a special case, fall back to the AST's constant evaluator. |
| default: { |
| // Don't try to come up with a value for materialized temporaries. |
| if (E->isGLValue()) |
| return None; |
| |
| ASTContext &Ctx = getContext(); |
| Expr::EvalResult Result; |
| if (E->EvaluateAsInt(Result, Ctx)) |
| return makeIntVal(Result.Val.getInt()); |
| |
| if (Loc::isLocType(E->getType())) |
| if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) |
| return makeNull(); |
| |
| return None; |
| } |
| } |
| } |
| |
| SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op, |
| NonLoc LHS, NonLoc RHS, |
| QualType ResultTy) { |
| const SymExpr *symLHS = LHS.getAsSymExpr(); |
| const SymExpr *symRHS = RHS.getAsSymExpr(); |
| |
| // TODO: When the Max Complexity is reached, we should conjure a symbol |
| // instead of generating an Unknown value and propagate the taint info to it. |
| const unsigned MaxComp = StateMgr.getOwningEngine() |
| .getAnalysisManager() |
| .options.MaxSymbolComplexity; |
| |
| if (symLHS && symRHS && |
| (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp) |
| return makeNonLoc(symLHS, Op, symRHS, ResultTy); |
| |
| if (symLHS && symLHS->computeComplexity() < MaxComp) |
| if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>()) |
| return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy); |
| |
| if (symRHS && symRHS->computeComplexity() < MaxComp) |
| if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>()) |
| return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy); |
| |
| return UnknownVal(); |
| } |
| |
| SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op, |
| SVal lhs, SVal rhs, QualType type) { |
| if (lhs.isUndef() || rhs.isUndef()) |
| return UndefinedVal(); |
| |
| if (lhs.isUnknown() || rhs.isUnknown()) |
| return UnknownVal(); |
| |
| if (lhs.getAs<nonloc::LazyCompoundVal>() || |
| rhs.getAs<nonloc::LazyCompoundVal>()) { |
| return UnknownVal(); |
| } |
| |
| if (Optional<Loc> LV = lhs.getAs<Loc>()) { |
| if (Optional<Loc> RV = rhs.getAs<Loc>()) |
| return evalBinOpLL(state, op, *LV, *RV, type); |
| |
| return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type); |
| } |
| |
| if (Optional<Loc> RV = rhs.getAs<Loc>()) { |
| // Support pointer arithmetic where the addend is on the left |
| // and the pointer on the right. |
| assert(op == BO_Add); |
| |
| // Commute the operands. |
| return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type); |
| } |
| |
| return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(), |
| type); |
| } |
| |
| ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs, |
| SVal rhs) { |
| return state->isNonNull(evalEQ(state, lhs, rhs)); |
| } |
| |
| SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) { |
| return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType()); |
| } |
| |
| DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state, |
| DefinedOrUnknownSVal lhs, |
| DefinedOrUnknownSVal rhs) { |
| return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs)) |
| .castAs<DefinedOrUnknownSVal>(); |
| } |
| |
| /// Recursively check if the pointer types are equal modulo const, volatile, |
| /// and restrict qualifiers. Also, assume that all types are similar to 'void'. |
| /// Assumes the input types are canonical. |
| static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy, |
| QualType FromTy) { |
| while (Context.UnwrapSimilarTypes(ToTy, FromTy)) { |
| Qualifiers Quals1, Quals2; |
| ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1); |
| FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2); |
| |
| // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address |
| // spaces) are identical. |
| Quals1.removeCVRQualifiers(); |
| Quals2.removeCVRQualifiers(); |
| if (Quals1 != Quals2) |
| return false; |
| } |
| |
| // If we are casting to void, the 'From' value can be used to represent the |
| // 'To' value. |
| // |
| // FIXME: Doing this after unwrapping the types doesn't make any sense. A |
| // cast from 'int**' to 'void**' is not special in the way that a cast from |
| // 'int*' to 'void*' is. |
| if (ToTy->isVoidType()) |
| return true; |
| |
| if (ToTy != FromTy) |
| return false; |
| |
| return true; |
| } |
| |
| // Handles casts of type CK_IntegralCast. |
| // At the moment, this function will redirect to evalCast, except when the range |
| // of the original value is known to be greater than the max of the target type. |
| SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val, |
| QualType castTy, QualType originalTy) { |
| // No truncations if target type is big enough. |
| if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy)) |
| return evalCast(val, castTy, originalTy); |
| |
| const SymExpr *se = val.getAsSymbolicExpression(); |
| if (!se) // Let evalCast handle non symbolic expressions. |
| return evalCast(val, castTy, originalTy); |
| |
| // Find the maximum value of the target type. |
| APSIntType ToType(getContext().getTypeSize(castTy), |
| castTy->isUnsignedIntegerType()); |
| llvm::APSInt ToTypeMax = ToType.getMaxValue(); |
| NonLoc ToTypeMaxVal = |
| makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue() |
| : ToTypeMax.getSExtValue(), |
| castTy) |
| .castAs<NonLoc>(); |
| // Check the range of the symbol being casted against the maximum value of the |
| // target type. |
| NonLoc FromVal = val.castAs<NonLoc>(); |
| QualType CmpTy = getConditionType(); |
| NonLoc CompVal = |
| evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>(); |
| ProgramStateRef IsNotTruncated, IsTruncated; |
| std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal); |
| if (!IsNotTruncated && IsTruncated) { |
| // Symbol is truncated so we evaluate it as a cast. |
| NonLoc CastVal = makeNonLoc(se, originalTy, castTy); |
| return CastVal; |
| } |
| return evalCast(val, castTy, originalTy); |
| } |
| |
| // FIXME: should rewrite according to the cast kind. |
| SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) { |
| castTy = Context.getCanonicalType(castTy); |
| originalTy = Context.getCanonicalType(originalTy); |
| if (val.isUnknownOrUndef() || castTy == originalTy) |
| return val; |
| |
| if (castTy->isBooleanType()) { |
| if (val.isUnknownOrUndef()) |
| return val; |
| if (val.isConstant()) |
| return makeTruthVal(!val.isZeroConstant(), castTy); |
| if (!Loc::isLocType(originalTy) && |
| !originalTy->isIntegralOrEnumerationType() && |
| !originalTy->isMemberPointerType()) |
| return UnknownVal(); |
| if (SymbolRef Sym = val.getAsSymbol(true)) { |
| BasicValueFactory &BVF = getBasicValueFactory(); |
| // FIXME: If we had a state here, we could see if the symbol is known to |
| // be zero, but we don't. |
| return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy); |
| } |
| // Loc values are not always true, they could be weakly linked functions. |
| if (Optional<Loc> L = val.getAs<Loc>()) |
| return evalCastFromLoc(*L, castTy); |
| |
| Loc L = val.castAs<nonloc::LocAsInteger>().getLoc(); |
| return evalCastFromLoc(L, castTy); |
| } |
| |
| // For const casts, casts to void, just propagate the value. |
| if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType()) |
| if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy), |
| Context.getPointerType(originalTy))) |
| return val; |
| |
| // Check for casts from pointers to integers. |
| if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy)) |
| return evalCastFromLoc(val.castAs<Loc>(), castTy); |
| |
| // Check for casts from integers to pointers. |
| if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) { |
| if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) { |
| if (const MemRegion *R = LV->getLoc().getAsRegion()) { |
| StoreManager &storeMgr = StateMgr.getStoreManager(); |
| R = storeMgr.castRegion(R, castTy); |
| return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); |
| } |
| return LV->getLoc(); |
| } |
| return dispatchCast(val, castTy); |
| } |
| |
| // Just pass through function and block pointers. |
| if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) { |
| assert(Loc::isLocType(castTy)); |
| return val; |
| } |
| |
| // Check for casts from array type to another type. |
| if (const auto *arrayT = |
| dyn_cast<ArrayType>(originalTy.getCanonicalType())) { |
| // We will always decay to a pointer. |
| QualType elemTy = arrayT->getElementType(); |
| val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy); |
| |
| // Are we casting from an array to a pointer? If so just pass on |
| // the decayed value. |
| if (castTy->isPointerType() || castTy->isReferenceType()) |
| return val; |
| |
| // Are we casting from an array to an integer? If so, cast the decayed |
| // pointer value to an integer. |
| assert(castTy->isIntegralOrEnumerationType()); |
| |
| // FIXME: Keep these here for now in case we decide soon that we |
| // need the original decayed type. |
| // QualType elemTy = cast<ArrayType>(originalTy)->getElementType(); |
| // QualType pointerTy = C.getPointerType(elemTy); |
| return evalCastFromLoc(val.castAs<Loc>(), castTy); |
| } |
| |
| // Check for casts from a region to a specific type. |
| if (const MemRegion *R = val.getAsRegion()) { |
| // Handle other casts of locations to integers. |
| if (castTy->isIntegralOrEnumerationType()) |
| return evalCastFromLoc(loc::MemRegionVal(R), castTy); |
| |
| // FIXME: We should handle the case where we strip off view layers to get |
| // to a desugared type. |
| if (!Loc::isLocType(castTy)) { |
| // FIXME: There can be gross cases where one casts the result of a function |
| // (that returns a pointer) to some other value that happens to fit |
| // within that pointer value. We currently have no good way to |
| // model such operations. When this happens, the underlying operation |
| // is that the caller is reasoning about bits. Conceptually we are |
| // layering a "view" of a location on top of those bits. Perhaps |
| // we need to be more lazy about mutual possible views, even on an |
| // SVal? This may be necessary for bit-level reasoning as well. |
| return UnknownVal(); |
| } |
| |
| // We get a symbolic function pointer for a dereference of a function |
| // pointer, but it is of function type. Example: |
| |
| // struct FPRec { |
| // void (*my_func)(int * x); |
| // }; |
| // |
| // int bar(int x); |
| // |
| // int f1_a(struct FPRec* foo) { |
| // int x; |
| // (*foo->my_func)(&x); |
| // return bar(x)+1; // no-warning |
| // } |
| |
| assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() || |
| originalTy->isBlockPointerType() || castTy->isReferenceType()); |
| |
| StoreManager &storeMgr = StateMgr.getStoreManager(); |
| |
| // Delegate to store manager to get the result of casting a region to a |
| // different type. If the MemRegion* returned is NULL, this expression |
| // Evaluates to UnknownVal. |
| R = storeMgr.castRegion(R, castTy); |
| return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); |
| } |
| |
| return dispatchCast(val, castTy); |
| } |