blob: 3a3942a8301bde2984091dce6d12a40907738d3b [file] [log] [blame]
//===--- PlistDiagnostics.cpp - Plist Diagnostics for Paths -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the PlistDiagnostics object.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathDiagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/PlistSupport.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Version.h"
#include "clang/CrossTU/CrossTranslationUnit.h"
#include "clang/Frontend/ASTUnit.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/TokenConcatenation.h"
#include "clang/Rewrite/Core/HTMLRewrite.h"
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
#include "clang/StaticAnalyzer/Core/IssueHash.h"
#include "clang/StaticAnalyzer/Core/PathDiagnosticConsumers.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Casting.h"
using namespace clang;
using namespace ento;
using namespace markup;
//===----------------------------------------------------------------------===//
// Declarations of helper classes and functions for emitting bug reports in
// plist format.
//===----------------------------------------------------------------------===//
namespace {
class PlistDiagnostics : public PathDiagnosticConsumer {
const std::string OutputFile;
const Preprocessor &PP;
const cross_tu::CrossTranslationUnitContext &CTU;
AnalyzerOptions &AnOpts;
const bool SupportsCrossFileDiagnostics;
public:
PlistDiagnostics(AnalyzerOptions &AnalyzerOpts, const std::string &prefix,
const Preprocessor &PP,
const cross_tu::CrossTranslationUnitContext &CTU,
bool supportsMultipleFiles);
~PlistDiagnostics() override {}
void FlushDiagnosticsImpl(std::vector<const PathDiagnostic *> &Diags,
FilesMade *filesMade) override;
StringRef getName() const override {
return "PlistDiagnostics";
}
PathGenerationScheme getGenerationScheme() const override {
return Extensive;
}
bool supportsLogicalOpControlFlow() const override { return true; }
bool supportsCrossFileDiagnostics() const override {
return SupportsCrossFileDiagnostics;
}
};
} // end anonymous namespace
namespace {
/// A helper class for emitting a single report.
class PlistPrinter {
const FIDMap& FM;
AnalyzerOptions &AnOpts;
const Preprocessor &PP;
const cross_tu::CrossTranslationUnitContext &CTU;
llvm::SmallVector<const PathDiagnosticMacroPiece *, 0> MacroPieces;
public:
PlistPrinter(const FIDMap& FM, AnalyzerOptions &AnOpts,
const Preprocessor &PP,
const cross_tu::CrossTranslationUnitContext &CTU)
: FM(FM), AnOpts(AnOpts), PP(PP), CTU(CTU) {
}
void ReportDiag(raw_ostream &o, const PathDiagnosticPiece& P) {
ReportPiece(o, P, /*indent*/ 4, /*depth*/ 0, /*includeControlFlow*/ true);
// Don't emit a warning about an unused private field.
(void)AnOpts;
}
/// Print the expansions of the collected macro pieces.
///
/// Each time ReportDiag is called on a PathDiagnosticMacroPiece (or, if one
/// is found through a call piece, etc), it's subpieces are reported, and the
/// piece itself is collected. Call this function after the entire bugpath
/// was reported.
void ReportMacroExpansions(raw_ostream &o, unsigned indent);
private:
void ReportPiece(raw_ostream &o, const PathDiagnosticPiece &P,
unsigned indent, unsigned depth, bool includeControlFlow,
bool isKeyEvent = false) {
switch (P.getKind()) {
case PathDiagnosticPiece::ControlFlow:
if (includeControlFlow)
ReportControlFlow(o, cast<PathDiagnosticControlFlowPiece>(P), indent);
break;
case PathDiagnosticPiece::Call:
ReportCall(o, cast<PathDiagnosticCallPiece>(P), indent,
depth);
break;
case PathDiagnosticPiece::Event:
ReportEvent(o, cast<PathDiagnosticEventPiece>(P), indent, depth,
isKeyEvent);
break;
case PathDiagnosticPiece::Macro:
ReportMacroSubPieces(o, cast<PathDiagnosticMacroPiece>(P), indent,
depth);
break;
case PathDiagnosticPiece::Note:
ReportNote(o, cast<PathDiagnosticNotePiece>(P), indent);
break;
case PathDiagnosticPiece::PopUp:
ReportPopUp(o, cast<PathDiagnosticPopUpPiece>(P), indent);
break;
}
}
void EmitRanges(raw_ostream &o, const ArrayRef<SourceRange> Ranges,
unsigned indent);
void EmitMessage(raw_ostream &o, StringRef Message, unsigned indent);
void EmitFixits(raw_ostream &o, ArrayRef<FixItHint> fixits, unsigned indent);
void ReportControlFlow(raw_ostream &o,
const PathDiagnosticControlFlowPiece& P,
unsigned indent);
void ReportEvent(raw_ostream &o, const PathDiagnosticEventPiece& P,
unsigned indent, unsigned depth, bool isKeyEvent = false);
void ReportCall(raw_ostream &o, const PathDiagnosticCallPiece &P,
unsigned indent, unsigned depth);
void ReportMacroSubPieces(raw_ostream &o, const PathDiagnosticMacroPiece& P,
unsigned indent, unsigned depth);
void ReportNote(raw_ostream &o, const PathDiagnosticNotePiece& P,
unsigned indent);
void ReportPopUp(raw_ostream &o, const PathDiagnosticPopUpPiece &P,
unsigned indent);
};
} // end of anonymous namespace
namespace {
struct ExpansionInfo {
std::string MacroName;
std::string Expansion;
ExpansionInfo(std::string N, std::string E)
: MacroName(std::move(N)), Expansion(std::move(E)) {}
};
} // end of anonymous namespace
static void printBugPath(llvm::raw_ostream &o, const FIDMap& FM,
AnalyzerOptions &AnOpts, const Preprocessor &PP,
const cross_tu::CrossTranslationUnitContext &CTU,
const PathPieces &Path);
/// Print coverage information to output stream {@code o}.
/// May modify the used list of files {@code Fids} by inserting new ones.
static void printCoverage(const PathDiagnostic *D,
unsigned InputIndentLevel,
SmallVectorImpl<FileID> &Fids,
FIDMap &FM,
llvm::raw_fd_ostream &o);
static ExpansionInfo
getExpandedMacro(SourceLocation MacroLoc, const Preprocessor &PP,
const cross_tu::CrossTranslationUnitContext &CTU);
//===----------------------------------------------------------------------===//
// Methods of PlistPrinter.
//===----------------------------------------------------------------------===//
void PlistPrinter::EmitRanges(raw_ostream &o,
const ArrayRef<SourceRange> Ranges,
unsigned indent) {
if (Ranges.empty())
return;
Indent(o, indent) << "<key>ranges</key>\n";
Indent(o, indent) << "<array>\n";
++indent;
const SourceManager &SM = PP.getSourceManager();
const LangOptions &LangOpts = PP.getLangOpts();
for (auto &R : Ranges)
EmitRange(o, SM,
Lexer::getAsCharRange(SM.getExpansionRange(R), SM, LangOpts),
FM, indent + 1);
--indent;
Indent(o, indent) << "</array>\n";
}
void PlistPrinter::EmitMessage(raw_ostream &o, StringRef Message,
unsigned indent) {
// Output the text.
assert(!Message.empty());
Indent(o, indent) << "<key>extended_message</key>\n";
Indent(o, indent);
EmitString(o, Message) << '\n';
// Output the short text.
// FIXME: Really use a short string.
Indent(o, indent) << "<key>message</key>\n";
Indent(o, indent);
EmitString(o, Message) << '\n';
}
void PlistPrinter::EmitFixits(raw_ostream &o, ArrayRef<FixItHint> fixits,
unsigned indent) {
if (fixits.size() == 0)
return;
const SourceManager &SM = PP.getSourceManager();
const LangOptions &LangOpts = PP.getLangOpts();
Indent(o, indent) << "<key>fixits</key>\n";
Indent(o, indent) << "<array>\n";
for (const auto &fixit : fixits) {
assert(!fixit.isNull());
// FIXME: Add support for InsertFromRange and BeforePreviousInsertion.
assert(!fixit.InsertFromRange.isValid() && "Not implemented yet!");
assert(!fixit.BeforePreviousInsertions && "Not implemented yet!");
Indent(o, indent) << " <dict>\n";
Indent(o, indent) << " <key>remove_range</key>\n";
EmitRange(o, SM, Lexer::getAsCharRange(fixit.RemoveRange, SM, LangOpts),
FM, indent + 2);
Indent(o, indent) << " <key>insert_string</key>";
EmitString(o, fixit.CodeToInsert);
o << "\n";
Indent(o, indent) << " </dict>\n";
}
Indent(o, indent) << "</array>\n";
}
void PlistPrinter::ReportControlFlow(raw_ostream &o,
const PathDiagnosticControlFlowPiece& P,
unsigned indent) {
const SourceManager &SM = PP.getSourceManager();
const LangOptions &LangOpts = PP.getLangOpts();
Indent(o, indent) << "<dict>\n";
++indent;
Indent(o, indent) << "<key>kind</key><string>control</string>\n";
// Emit edges.
Indent(o, indent) << "<key>edges</key>\n";
++indent;
Indent(o, indent) << "<array>\n";
++indent;
for (PathDiagnosticControlFlowPiece::const_iterator I=P.begin(), E=P.end();
I!=E; ++I) {
Indent(o, indent) << "<dict>\n";
++indent;
// Make the ranges of the start and end point self-consistent with adjacent edges
// by forcing to use only the beginning of the range. This simplifies the layout
// logic for clients.
Indent(o, indent) << "<key>start</key>\n";
SourceRange StartEdge(
SM.getExpansionLoc(I->getStart().asRange().getBegin()));
EmitRange(o, SM, Lexer::getAsCharRange(StartEdge, SM, LangOpts), FM,
indent + 1);
Indent(o, indent) << "<key>end</key>\n";
SourceRange EndEdge(SM.getExpansionLoc(I->getEnd().asRange().getBegin()));
EmitRange(o, SM, Lexer::getAsCharRange(EndEdge, SM, LangOpts), FM,
indent + 1);
--indent;
Indent(o, indent) << "</dict>\n";
}
--indent;
Indent(o, indent) << "</array>\n";
--indent;
// Output any helper text.
const auto &s = P.getString();
if (!s.empty()) {
Indent(o, indent) << "<key>alternate</key>";
EmitString(o, s) << '\n';
}
assert(P.getFixits().size() == 0 &&
"Fixits on constrol flow pieces are not implemented yet!");
--indent;
Indent(o, indent) << "</dict>\n";
}
void PlistPrinter::ReportEvent(raw_ostream &o, const PathDiagnosticEventPiece& P,
unsigned indent, unsigned depth,
bool isKeyEvent) {
const SourceManager &SM = PP.getSourceManager();
Indent(o, indent) << "<dict>\n";
++indent;
Indent(o, indent) << "<key>kind</key><string>event</string>\n";
if (isKeyEvent) {
Indent(o, indent) << "<key>key_event</key><true/>\n";
}
// Output the location.
FullSourceLoc L = P.getLocation().asLocation();
Indent(o, indent) << "<key>location</key>\n";
EmitLocation(o, SM, L, FM, indent);
// Output the ranges (if any).
ArrayRef<SourceRange> Ranges = P.getRanges();
EmitRanges(o, Ranges, indent);
// Output the call depth.
Indent(o, indent) << "<key>depth</key>";
EmitInteger(o, depth) << '\n';
// Output the text.
EmitMessage(o, P.getString(), indent);
// Output the fixits.
EmitFixits(o, P.getFixits(), indent);
// Finish up.
--indent;
Indent(o, indent); o << "</dict>\n";
}
void PlistPrinter::ReportCall(raw_ostream &o, const PathDiagnosticCallPiece &P,
unsigned indent,
unsigned depth) {
if (auto callEnter = P.getCallEnterEvent())
ReportPiece(o, *callEnter, indent, depth, /*includeControlFlow*/ true,
P.isLastInMainSourceFile());
++depth;
if (auto callEnterWithinCaller = P.getCallEnterWithinCallerEvent())
ReportPiece(o, *callEnterWithinCaller, indent, depth,
/*includeControlFlow*/ true);
for (PathPieces::const_iterator I = P.path.begin(), E = P.path.end();I!=E;++I)
ReportPiece(o, **I, indent, depth, /*includeControlFlow*/ true);
--depth;
if (auto callExit = P.getCallExitEvent())
ReportPiece(o, *callExit, indent, depth, /*includeControlFlow*/ true);
assert(P.getFixits().size() == 0 &&
"Fixits on call pieces are not implemented yet!");
}
void PlistPrinter::ReportMacroSubPieces(raw_ostream &o,
const PathDiagnosticMacroPiece& P,
unsigned indent, unsigned depth) {
MacroPieces.push_back(&P);
for (PathPieces::const_iterator I = P.subPieces.begin(),
E = P.subPieces.end();
I != E; ++I) {
ReportPiece(o, **I, indent, depth, /*includeControlFlow*/ false);
}
assert(P.getFixits().size() == 0 &&
"Fixits on constrol flow pieces are not implemented yet!");
}
void PlistPrinter::ReportMacroExpansions(raw_ostream &o, unsigned indent) {
for (const PathDiagnosticMacroPiece *P : MacroPieces) {
const SourceManager &SM = PP.getSourceManager();
ExpansionInfo EI = getExpandedMacro(P->getLocation().asLocation(), PP, CTU);
Indent(o, indent) << "<dict>\n";
++indent;
// Output the location.
FullSourceLoc L = P->getLocation().asLocation();
Indent(o, indent) << "<key>location</key>\n";
EmitLocation(o, SM, L, FM, indent);
// Output the ranges (if any).
ArrayRef<SourceRange> Ranges = P->getRanges();
EmitRanges(o, Ranges, indent);
// Output the macro name.
Indent(o, indent) << "<key>name</key>";
EmitString(o, EI.MacroName) << '\n';
// Output what it expands into.
Indent(o, indent) << "<key>expansion</key>";
EmitString(o, EI.Expansion) << '\n';
// Finish up.
--indent;
Indent(o, indent);
o << "</dict>\n";
}
}
void PlistPrinter::ReportNote(raw_ostream &o, const PathDiagnosticNotePiece& P,
unsigned indent) {
const SourceManager &SM = PP.getSourceManager();
Indent(o, indent) << "<dict>\n";
++indent;
// Output the location.
FullSourceLoc L = P.getLocation().asLocation();
Indent(o, indent) << "<key>location</key>\n";
EmitLocation(o, SM, L, FM, indent);
// Output the ranges (if any).
ArrayRef<SourceRange> Ranges = P.getRanges();
EmitRanges(o, Ranges, indent);
// Output the text.
EmitMessage(o, P.getString(), indent);
// Output the fixits.
EmitFixits(o, P.getFixits(), indent);
// Finish up.
--indent;
Indent(o, indent); o << "</dict>\n";
}
void PlistPrinter::ReportPopUp(raw_ostream &o,
const PathDiagnosticPopUpPiece &P,
unsigned indent) {
const SourceManager &SM = PP.getSourceManager();
Indent(o, indent) << "<dict>\n";
++indent;
Indent(o, indent) << "<key>kind</key><string>pop-up</string>\n";
// Output the location.
FullSourceLoc L = P.getLocation().asLocation();
Indent(o, indent) << "<key>location</key>\n";
EmitLocation(o, SM, L, FM, indent);
// Output the ranges (if any).
ArrayRef<SourceRange> Ranges = P.getRanges();
EmitRanges(o, Ranges, indent);
// Output the text.
EmitMessage(o, P.getString(), indent);
assert(P.getFixits().size() == 0 &&
"Fixits on pop-up pieces are not implemented yet!");
// Finish up.
--indent;
Indent(o, indent) << "</dict>\n";
}
//===----------------------------------------------------------------------===//
// Static function definitions.
//===----------------------------------------------------------------------===//
/// Print coverage information to output stream {@code o}.
/// May modify the used list of files {@code Fids} by inserting new ones.
static void printCoverage(const PathDiagnostic *D,
unsigned InputIndentLevel,
SmallVectorImpl<FileID> &Fids,
FIDMap &FM,
llvm::raw_fd_ostream &o) {
unsigned IndentLevel = InputIndentLevel;
Indent(o, IndentLevel) << "<key>ExecutedLines</key>\n";
Indent(o, IndentLevel) << "<dict>\n";
IndentLevel++;
// Mapping from file IDs to executed lines.
const FilesToLineNumsMap &ExecutedLines = D->getExecutedLines();
for (auto I = ExecutedLines.begin(), E = ExecutedLines.end(); I != E; ++I) {
unsigned FileKey = AddFID(FM, Fids, I->first);
Indent(o, IndentLevel) << "<key>" << FileKey << "</key>\n";
Indent(o, IndentLevel) << "<array>\n";
IndentLevel++;
for (unsigned LineNo : I->second) {
Indent(o, IndentLevel);
EmitInteger(o, LineNo) << "\n";
}
IndentLevel--;
Indent(o, IndentLevel) << "</array>\n";
}
IndentLevel--;
Indent(o, IndentLevel) << "</dict>\n";
assert(IndentLevel == InputIndentLevel);
}
static void printBugPath(llvm::raw_ostream &o, const FIDMap& FM,
AnalyzerOptions &AnOpts, const Preprocessor &PP,
const cross_tu::CrossTranslationUnitContext &CTU,
const PathPieces &Path) {
PlistPrinter Printer(FM, AnOpts, PP, CTU);
assert(std::is_partitioned(Path.begin(), Path.end(),
[](const PathDiagnosticPieceRef &E) {
return E->getKind() == PathDiagnosticPiece::Note;
}) &&
"PathDiagnostic is not partitioned so that notes precede the rest");
PathPieces::const_iterator FirstNonNote = std::partition_point(
Path.begin(), Path.end(), [](const PathDiagnosticPieceRef &E) {
return E->getKind() == PathDiagnosticPiece::Note;
});
PathPieces::const_iterator I = Path.begin();
if (FirstNonNote != Path.begin()) {
o << " <key>notes</key>\n"
" <array>\n";
for (; I != FirstNonNote; ++I)
Printer.ReportDiag(o, **I);
o << " </array>\n";
}
o << " <key>path</key>\n";
o << " <array>\n";
for (PathPieces::const_iterator E = Path.end(); I != E; ++I)
Printer.ReportDiag(o, **I);
o << " </array>\n";
if (!AnOpts.ShouldDisplayMacroExpansions)
return;
o << " <key>macro_expansions</key>\n"
" <array>\n";
Printer.ReportMacroExpansions(o, /* indent */ 4);
o << " </array>\n";
}
//===----------------------------------------------------------------------===//
// Methods of PlistDiagnostics.
//===----------------------------------------------------------------------===//
PlistDiagnostics::PlistDiagnostics(
AnalyzerOptions &AnalyzerOpts, const std::string &output,
const Preprocessor &PP, const cross_tu::CrossTranslationUnitContext &CTU,
bool supportsMultipleFiles)
: OutputFile(output), PP(PP), CTU(CTU), AnOpts(AnalyzerOpts),
SupportsCrossFileDiagnostics(supportsMultipleFiles) {
// FIXME: Will be used by a later planned change.
(void)this->CTU;
}
void ento::createPlistDiagnosticConsumer(
AnalyzerOptions &AnalyzerOpts, PathDiagnosticConsumers &C,
const std::string &s, const Preprocessor &PP,
const cross_tu::CrossTranslationUnitContext &CTU) {
C.push_back(new PlistDiagnostics(AnalyzerOpts, s, PP, CTU,
/*supportsMultipleFiles*/ false));
}
void ento::createPlistMultiFileDiagnosticConsumer(
AnalyzerOptions &AnalyzerOpts, PathDiagnosticConsumers &C,
const std::string &s, const Preprocessor &PP,
const cross_tu::CrossTranslationUnitContext &CTU) {
C.push_back(new PlistDiagnostics(AnalyzerOpts, s, PP, CTU,
/*supportsMultipleFiles*/ true));
}
void PlistDiagnostics::FlushDiagnosticsImpl(
std::vector<const PathDiagnostic *> &Diags,
FilesMade *filesMade) {
// Build up a set of FIDs that we use by scanning the locations and
// ranges of the diagnostics.
FIDMap FM;
SmallVector<FileID, 10> Fids;
const SourceManager& SM = PP.getSourceManager();
const LangOptions &LangOpts = PP.getLangOpts();
auto AddPieceFID = [&FM, &Fids, &SM](const PathDiagnosticPiece &Piece) {
AddFID(FM, Fids, SM, Piece.getLocation().asLocation());
ArrayRef<SourceRange> Ranges = Piece.getRanges();
for (const SourceRange &Range : Ranges) {
AddFID(FM, Fids, SM, Range.getBegin());
AddFID(FM, Fids, SM, Range.getEnd());
}
};
for (const PathDiagnostic *D : Diags) {
SmallVector<const PathPieces *, 5> WorkList;
WorkList.push_back(&D->path);
while (!WorkList.empty()) {
const PathPieces &Path = *WorkList.pop_back_val();
for (const auto &Iter : Path) {
const PathDiagnosticPiece &Piece = *Iter;
AddPieceFID(Piece);
if (const PathDiagnosticCallPiece *Call =
dyn_cast<PathDiagnosticCallPiece>(&Piece)) {
if (auto CallEnterWithin = Call->getCallEnterWithinCallerEvent())
AddPieceFID(*CallEnterWithin);
if (auto CallEnterEvent = Call->getCallEnterEvent())
AddPieceFID(*CallEnterEvent);
WorkList.push_back(&Call->path);
} else if (const PathDiagnosticMacroPiece *Macro =
dyn_cast<PathDiagnosticMacroPiece>(&Piece)) {
WorkList.push_back(&Macro->subPieces);
}
}
}
}
// Open the file.
std::error_code EC;
llvm::raw_fd_ostream o(OutputFile, EC, llvm::sys::fs::OF_Text);
if (EC) {
llvm::errs() << "warning: could not create file: " << EC.message() << '\n';
return;
}
EmitPlistHeader(o);
// Write the root object: a <dict> containing...
// - "clang_version", the string representation of clang version
// - "files", an <array> mapping from FIDs to file names
// - "diagnostics", an <array> containing the path diagnostics
o << "<dict>\n" <<
" <key>clang_version</key>\n";
EmitString(o, getClangFullVersion()) << '\n';
o << " <key>diagnostics</key>\n"
" <array>\n";
for (std::vector<const PathDiagnostic*>::iterator DI=Diags.begin(),
DE = Diags.end(); DI!=DE; ++DI) {
o << " <dict>\n";
const PathDiagnostic *D = *DI;
printBugPath(o, FM, AnOpts, PP, CTU, D->path);
// Output the bug type and bug category.
o << " <key>description</key>";
EmitString(o, D->getShortDescription()) << '\n';
o << " <key>category</key>";
EmitString(o, D->getCategory()) << '\n';
o << " <key>type</key>";
EmitString(o, D->getBugType()) << '\n';
o << " <key>check_name</key>";
EmitString(o, D->getCheckerName()) << '\n';
o << " <!-- This hash is experimental and going to change! -->\n";
o << " <key>issue_hash_content_of_line_in_context</key>";
PathDiagnosticLocation UPDLoc = D->getUniqueingLoc();
FullSourceLoc L(SM.getExpansionLoc(UPDLoc.isValid()
? UPDLoc.asLocation()
: D->getLocation().asLocation()),
SM);
const Decl *DeclWithIssue = D->getDeclWithIssue();
EmitString(o, GetIssueHash(SM, L, D->getCheckerName(), D->getBugType(),
DeclWithIssue, LangOpts))
<< '\n';
// Output information about the semantic context where
// the issue occurred.
if (const Decl *DeclWithIssue = D->getDeclWithIssue()) {
// FIXME: handle blocks, which have no name.
if (const NamedDecl *ND = dyn_cast<NamedDecl>(DeclWithIssue)) {
StringRef declKind;
switch (ND->getKind()) {
case Decl::CXXRecord:
declKind = "C++ class";
break;
case Decl::CXXMethod:
declKind = "C++ method";
break;
case Decl::ObjCMethod:
declKind = "Objective-C method";
break;
case Decl::Function:
declKind = "function";
break;
default:
break;
}
if (!declKind.empty()) {
const std::string &declName = ND->getDeclName().getAsString();
o << " <key>issue_context_kind</key>";
EmitString(o, declKind) << '\n';
o << " <key>issue_context</key>";
EmitString(o, declName) << '\n';
}
// Output the bug hash for issue unique-ing. Currently, it's just an
// offset from the beginning of the function.
if (const Stmt *Body = DeclWithIssue->getBody()) {
// If the bug uniqueing location exists, use it for the hash.
// For example, this ensures that two leaks reported on the same line
// will have different issue_hashes and that the hash will identify
// the leak location even after code is added between the allocation
// site and the end of scope (leak report location).
if (UPDLoc.isValid()) {
FullSourceLoc UFunL(
SM.getExpansionLoc(
D->getUniqueingDecl()->getBody()->getBeginLoc()),
SM);
o << " <key>issue_hash_function_offset</key><string>"
<< L.getExpansionLineNumber() - UFunL.getExpansionLineNumber()
<< "</string>\n";
// Otherwise, use the location on which the bug is reported.
} else {
FullSourceLoc FunL(SM.getExpansionLoc(Body->getBeginLoc()), SM);
o << " <key>issue_hash_function_offset</key><string>"
<< L.getExpansionLineNumber() - FunL.getExpansionLineNumber()
<< "</string>\n";
}
}
}
}
// Output the location of the bug.
o << " <key>location</key>\n";
EmitLocation(o, SM, D->getLocation().asLocation(), FM, 2);
// Output the diagnostic to the sub-diagnostic client, if any.
if (!filesMade->empty()) {
StringRef lastName;
PDFileEntry::ConsumerFiles *files = filesMade->getFiles(*D);
if (files) {
for (PDFileEntry::ConsumerFiles::const_iterator CI = files->begin(),
CE = files->end(); CI != CE; ++CI) {
StringRef newName = CI->first;
if (newName != lastName) {
if (!lastName.empty()) {
o << " </array>\n";
}
lastName = newName;
o << " <key>" << lastName << "_files</key>\n";
o << " <array>\n";
}
o << " <string>" << CI->second << "</string>\n";
}
o << " </array>\n";
}
}
printCoverage(D, /*IndentLevel=*/2, Fids, FM, o);
// Close up the entry.
o << " </dict>\n";
}
o << " </array>\n";
o << " <key>files</key>\n"
" <array>\n";
for (FileID FID : Fids)
EmitString(o << " ", SM.getFileEntryForID(FID)->getName()) << '\n';
o << " </array>\n";
if (llvm::AreStatisticsEnabled() && AnOpts.ShouldSerializeStats) {
o << " <key>statistics</key>\n";
std::string stats;
llvm::raw_string_ostream os(stats);
llvm::PrintStatisticsJSON(os);
os.flush();
EmitString(o, html::EscapeText(stats)) << '\n';
}
// Finish.
o << "</dict>\n</plist>\n";
}
//===----------------------------------------------------------------------===//
// Declarations of helper functions and data structures for expanding macros.
//===----------------------------------------------------------------------===//
namespace {
using ExpArgTokens = llvm::SmallVector<Token, 2>;
/// Maps unexpanded macro arguments to expanded arguments. A macro argument may
/// need to expanded further when it is nested inside another macro.
class MacroArgMap : public std::map<const IdentifierInfo *, ExpArgTokens> {
public:
void expandFromPrevMacro(const MacroArgMap &Super);
};
struct MacroNameAndArgs {
std::string Name;
const MacroInfo *MI = nullptr;
MacroArgMap Args;
MacroNameAndArgs(std::string N, const MacroInfo *MI, MacroArgMap M)
: Name(std::move(N)), MI(MI), Args(std::move(M)) {}
};
class TokenPrinter {
llvm::raw_ostream &OS;
const Preprocessor &PP;
Token PrevTok, PrevPrevTok;
TokenConcatenation ConcatInfo;
public:
TokenPrinter(llvm::raw_ostream &OS, const Preprocessor &PP)
: OS(OS), PP(PP), ConcatInfo(PP) {
PrevTok.setKind(tok::unknown);
PrevPrevTok.setKind(tok::unknown);
}
void printToken(const Token &Tok);
};
} // end of anonymous namespace
/// The implementation method of getMacroExpansion: It prints the expansion of
/// a macro to \p Printer, and returns with the name of the macro.
///
/// Since macros can be nested in one another, this function may call itself
/// recursively.
///
/// Unfortunately, macro arguments have to expanded manually. To understand why,
/// observe the following example:
///
/// #define PRINT(x) print(x)
/// #define DO_SOMETHING(str) PRINT(str)
///
/// DO_SOMETHING("Cute panda cubs.");
///
/// As we expand the last line, we'll immediately replace PRINT(str) with
/// print(x). The information that both 'str' and 'x' refers to the same string
/// is an information we have to forward, hence the argument \p PrevArgs.
///
/// To avoid infinite recursion we maintain the already processed tokens in
/// a set. This is carried as a parameter through the recursive calls. The set
/// is extended with the currently processed token and after processing it, the
/// token is removed. If the token is already in the set, then recursion stops:
///
/// #define f(y) x
/// #define x f(x)
static std::string getMacroNameAndPrintExpansion(
TokenPrinter &Printer,
SourceLocation MacroLoc,
const Preprocessor &PP,
const MacroArgMap &PrevArgs,
llvm::SmallPtrSet<IdentifierInfo *, 8> &AlreadyProcessedTokens);
/// Retrieves the name of the macro and what it's arguments expand into
/// at \p ExpanLoc.
///
/// For example, for the following macro expansion:
///
/// #define SET_TO_NULL(x) x = 0
/// #define NOT_SUSPICIOUS(a) \
/// { \
/// int b = 0; \
/// } \
/// SET_TO_NULL(a)
///
/// int *ptr = new int(4);
/// NOT_SUSPICIOUS(&ptr);
/// *ptr = 5;
///
/// When \p ExpanLoc references the last line, the macro name "NOT_SUSPICIOUS"
/// and the MacroArgMap map { (a, &ptr) } will be returned.
///
/// When \p ExpanLoc references "SET_TO_NULL(a)" within the definition of
/// "NOT_SUSPICOUS", the macro name "SET_TO_NULL" and the MacroArgMap map
/// { (x, a) } will be returned.
static MacroNameAndArgs getMacroNameAndArgs(SourceLocation ExpanLoc,
const Preprocessor &PP);
/// Retrieves the ')' token that matches '(' \p It points to.
static MacroInfo::tokens_iterator getMatchingRParen(
MacroInfo::tokens_iterator It,
MacroInfo::tokens_iterator End);
/// Retrieves the macro info for \p II refers to at \p Loc. This is important
/// because macros can be redefined or undefined.
static const MacroInfo *getMacroInfoForLocation(const Preprocessor &PP,
const SourceManager &SM,
const IdentifierInfo *II,
SourceLocation Loc);
//===----------------------------------------------------------------------===//
// Definitions of helper functions and methods for expanding macros.
//===----------------------------------------------------------------------===//
static ExpansionInfo
getExpandedMacro(SourceLocation MacroLoc, const Preprocessor &PP,
const cross_tu::CrossTranslationUnitContext &CTU) {
const Preprocessor *PPToUse = &PP;
if (auto LocAndUnit = CTU.getImportedFromSourceLocation(MacroLoc)) {
MacroLoc = LocAndUnit->first;
PPToUse = &LocAndUnit->second->getPreprocessor();
}
llvm::SmallString<200> ExpansionBuf;
llvm::raw_svector_ostream OS(ExpansionBuf);
TokenPrinter Printer(OS, *PPToUse);
llvm::SmallPtrSet<IdentifierInfo*, 8> AlreadyProcessedTokens;
std::string MacroName = getMacroNameAndPrintExpansion(
Printer, MacroLoc, *PPToUse, MacroArgMap{}, AlreadyProcessedTokens);
return { MacroName, OS.str() };
}
static std::string getMacroNameAndPrintExpansion(
TokenPrinter &Printer,
SourceLocation MacroLoc,
const Preprocessor &PP,
const MacroArgMap &PrevArgs,
llvm::SmallPtrSet<IdentifierInfo *, 8> &AlreadyProcessedTokens) {
const SourceManager &SM = PP.getSourceManager();
MacroNameAndArgs Info = getMacroNameAndArgs(SM.getExpansionLoc(MacroLoc), PP);
IdentifierInfo* IDInfo = PP.getIdentifierInfo(Info.Name);
// TODO: If the macro definition contains another symbol then this function is
// called recursively. In case this symbol is the one being defined, it will
// be an infinite recursion which is stopped by this "if" statement. However,
// in this case we don't get the full expansion text in the Plist file. See
// the test file where "value" is expanded to "garbage_" instead of
// "garbage_value".
if (AlreadyProcessedTokens.find(IDInfo) != AlreadyProcessedTokens.end())
return Info.Name;
AlreadyProcessedTokens.insert(IDInfo);
if (!Info.MI)
return Info.Name;
// Manually expand its arguments from the previous macro.
Info.Args.expandFromPrevMacro(PrevArgs);
// Iterate over the macro's tokens and stringify them.
for (auto It = Info.MI->tokens_begin(), E = Info.MI->tokens_end(); It != E;
++It) {
Token T = *It;
// If this token is not an identifier, we only need to print it.
if (T.isNot(tok::identifier)) {
Printer.printToken(T);
continue;
}
const auto *II = T.getIdentifierInfo();
assert(II &&
"This token is an identifier but has no IdentifierInfo!");
// If this token is a macro that should be expanded inside the current
// macro.
if (getMacroInfoForLocation(PP, SM, II, T.getLocation())) {
getMacroNameAndPrintExpansion(Printer, T.getLocation(), PP, Info.Args,
AlreadyProcessedTokens);
// If this is a function-like macro, skip its arguments, as
// getExpandedMacro() already printed them. If this is the case, let's
// first jump to the '(' token.
auto N = std::next(It);
if (N != E && N->is(tok::l_paren))
It = getMatchingRParen(++It, E);
continue;
}
// If this token is the current macro's argument, we should expand it.
auto ArgMapIt = Info.Args.find(II);
if (ArgMapIt != Info.Args.end()) {
for (MacroInfo::tokens_iterator ArgIt = ArgMapIt->second.begin(),
ArgEnd = ArgMapIt->second.end();
ArgIt != ArgEnd; ++ArgIt) {
// These tokens may still be macros, if that is the case, handle it the
// same way we did above.
const auto *ArgII = ArgIt->getIdentifierInfo();
if (!ArgII) {
Printer.printToken(*ArgIt);
continue;
}
const auto *MI = PP.getMacroInfo(ArgII);
if (!MI) {
Printer.printToken(*ArgIt);
continue;
}
getMacroNameAndPrintExpansion(Printer, ArgIt->getLocation(), PP,
Info.Args, AlreadyProcessedTokens);
// Peek the next token if it is a tok::l_paren. This way we can decide
// if this is the application or just a reference to a function maxro
// symbol:
//
// #define apply(f) ...
// #define func(x) ...
// apply(func)
// apply(func(42))
auto N = std::next(ArgIt);
if (N != ArgEnd && N->is(tok::l_paren))
ArgIt = getMatchingRParen(++ArgIt, ArgEnd);
}
continue;
}
// If control reached here, then this token isn't a macro identifier, nor an
// unexpanded macro argument that we need to handle, print it.
Printer.printToken(T);
}
AlreadyProcessedTokens.erase(IDInfo);
return Info.Name;
}
static MacroNameAndArgs getMacroNameAndArgs(SourceLocation ExpanLoc,
const Preprocessor &PP) {
const SourceManager &SM = PP.getSourceManager();
const LangOptions &LangOpts = PP.getLangOpts();
// First, we create a Lexer to lex *at the expansion location* the tokens
// referring to the macro's name and its arguments.
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(ExpanLoc);
const llvm::MemoryBuffer *MB = SM.getBuffer(LocInfo.first);
const char *MacroNameTokenPos = MB->getBufferStart() + LocInfo.second;
Lexer RawLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
MB->getBufferStart(), MacroNameTokenPos, MB->getBufferEnd());
// Acquire the macro's name.
Token TheTok;
RawLexer.LexFromRawLexer(TheTok);
std::string MacroName = PP.getSpelling(TheTok);
const auto *II = PP.getIdentifierInfo(MacroName);
assert(II && "Failed to acquire the IndetifierInfo for the macro!");
const MacroInfo *MI = getMacroInfoForLocation(PP, SM, II, ExpanLoc);
// assert(MI && "The macro must've been defined at it's expansion location!");
//
// We should always be able to obtain the MacroInfo in a given TU, but if
// we're running the analyzer with CTU, the Preprocessor won't contain the
// directive history (or anything for that matter) from another TU.
// TODO: assert when we're not running with CTU.
if (!MI)
return { MacroName, MI, {} };
// Acquire the macro's arguments.
//
// The rough idea here is to lex from the first left parentheses to the last
// right parentheses, and map the macro's unexpanded arguments to what they
// will be expanded to. An expanded macro argument may contain several tokens
// (like '3 + 4'), so we'll lex until we find a tok::comma or tok::r_paren, at
// which point we start lexing the next argument or finish.
ArrayRef<const IdentifierInfo *> MacroArgs = MI->params();
if (MacroArgs.empty())
return { MacroName, MI, {} };
RawLexer.LexFromRawLexer(TheTok);
// When this is a token which expands to another macro function then its
// parentheses are not at its expansion locaiton. For example:
//
// #define foo(x) int bar() { return x; }
// #define apply_zero(f) f(0)
// apply_zero(foo)
// ^
// This is not a tok::l_paren, but foo is a function.
if (TheTok.isNot(tok::l_paren))
return { MacroName, MI, {} };
MacroArgMap Args;
// When the macro's argument is a function call, like
// CALL_FN(someFunctionName(param1, param2))
// we will find tok::l_paren, tok::r_paren, and tok::comma that do not divide
// actual macro arguments, or do not represent the macro argument's closing
// parentheses, so we'll count how many parentheses aren't closed yet.
// If ParanthesesDepth
// * = 0, then there are no more arguments to lex.
// * = 1, then if we find a tok::comma, we can start lexing the next arg.
// * > 1, then tok::comma is a part of the current arg.
int ParenthesesDepth = 1;
// If we encounter __VA_ARGS__, we will lex until the closing tok::r_paren,
// even if we lex a tok::comma and ParanthesesDepth == 1.
const IdentifierInfo *__VA_ARGS__II = PP.getIdentifierInfo("__VA_ARGS__");
for (const IdentifierInfo *UnexpArgII : MacroArgs) {
MacroArgMap::mapped_type ExpandedArgTokens;
// One could also simply not supply a single argument to __VA_ARGS__ -- this
// results in a preprocessor warning, but is not an error:
// #define VARIADIC(ptr, ...) \
// someVariadicTemplateFunction(__VA_ARGS__)
//
// int *ptr;
// VARIADIC(ptr); // Note that there are no commas, this isn't just an
// // empty parameter -- there are no parameters for '...'.
// In any other case, ParenthesesDepth mustn't be 0 here.
if (ParenthesesDepth != 0) {
// Lex the first token of the next macro parameter.
RawLexer.LexFromRawLexer(TheTok);
while (!(ParenthesesDepth == 1 &&
(UnexpArgII == __VA_ARGS__II ? false : TheTok.is(tok::comma)))) {
assert(TheTok.isNot(tok::eof) &&
"EOF encountered while looking for expanded macro args!");
if (TheTok.is(tok::l_paren))
++ParenthesesDepth;
if (TheTok.is(tok::r_paren))
--ParenthesesDepth;
if (ParenthesesDepth == 0)
break;
if (TheTok.is(tok::raw_identifier))
PP.LookUpIdentifierInfo(TheTok);
ExpandedArgTokens.push_back(TheTok);
RawLexer.LexFromRawLexer(TheTok);
}
} else {
assert(UnexpArgII == __VA_ARGS__II);
}
Args.emplace(UnexpArgII, std::move(ExpandedArgTokens));
}
assert(TheTok.is(tok::r_paren) &&
"Expanded macro argument acquisition failed! After the end of the loop"
" this token should be ')'!");
return { MacroName, MI, Args };
}
static MacroInfo::tokens_iterator getMatchingRParen(
MacroInfo::tokens_iterator It,
MacroInfo::tokens_iterator End) {
assert(It->is(tok::l_paren) && "This token should be '('!");
// Skip until we find the closing ')'.
int ParenthesesDepth = 1;
while (ParenthesesDepth != 0) {
++It;
assert(It->isNot(tok::eof) &&
"Encountered EOF while attempting to skip macro arguments!");
assert(It != End &&
"End of the macro definition reached before finding ')'!");
if (It->is(tok::l_paren))
++ParenthesesDepth;
if (It->is(tok::r_paren))
--ParenthesesDepth;
}
return It;
}
static const MacroInfo *getMacroInfoForLocation(const Preprocessor &PP,
const SourceManager &SM,
const IdentifierInfo *II,
SourceLocation Loc) {
const MacroDirective *MD = PP.getLocalMacroDirectiveHistory(II);
if (!MD)
return nullptr;
return MD->findDirectiveAtLoc(Loc, SM).getMacroInfo();
}
void MacroArgMap::expandFromPrevMacro(const MacroArgMap &Super) {
for (value_type &Pair : *this) {
ExpArgTokens &CurrExpArgTokens = Pair.second;
// For each token in the expanded macro argument.
auto It = CurrExpArgTokens.begin();
while (It != CurrExpArgTokens.end()) {
if (It->isNot(tok::identifier)) {
++It;
continue;
}
const auto *II = It->getIdentifierInfo();
assert(II);
// Is this an argument that "Super" expands further?
if (!Super.count(II)) {
++It;
continue;
}
const ExpArgTokens &SuperExpArgTokens = Super.at(II);
It = CurrExpArgTokens.insert(
It, SuperExpArgTokens.begin(), SuperExpArgTokens.end());
std::advance(It, SuperExpArgTokens.size());
It = CurrExpArgTokens.erase(It);
}
}
}
void TokenPrinter::printToken(const Token &Tok) {
// If this is the first token to be printed, don't print space.
if (PrevTok.isNot(tok::unknown)) {
// If the tokens were already space separated, or if they must be to avoid
// them being implicitly pasted, add a space between them.
if(Tok.hasLeadingSpace() || ConcatInfo.AvoidConcat(PrevPrevTok, PrevTok,
Tok)) {
// AvoidConcat doesn't check for ##, don't print a space around it.
if (PrevTok.isNot(tok::hashhash) && Tok.isNot(tok::hashhash)) {
OS << ' ';
}
}
}
if (!Tok.isOneOf(tok::hash, tok::hashhash)) {
if (PrevTok.is(tok::hash))
OS << '\"' << PP.getSpelling(Tok) << '\"';
else
OS << PP.getSpelling(Tok);
}
PrevPrevTok = PrevTok;
PrevTok = Tok;
}