| //===- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a meta-engine for path-sensitive dataflow analysis that |
| // is built on GREngine, but provides the boilerplate to execute transfer |
| // functions and build the ExplodedGraph at the expression level. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| #include "PrettyStackTraceLocationContext.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/AST/PrettyPrinter.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Analysis/AnalysisDeclContext.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Analysis/ConstructionContext.h" |
| #include "clang/Analysis/ProgramPoint.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/JsonSupport.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/PrettyStackTrace.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/LoopWidening.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/ImmutableMap.h" |
| #include "llvm/ADT/ImmutableSet.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/DOTGraphTraits.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace clang; |
| using namespace ento; |
| |
| #define DEBUG_TYPE "ExprEngine" |
| |
| STATISTIC(NumRemoveDeadBindings, |
| "The # of times RemoveDeadBindings is called"); |
| STATISTIC(NumMaxBlockCountReached, |
| "The # of aborted paths due to reaching the maximum block count in " |
| "a top level function"); |
| STATISTIC(NumMaxBlockCountReachedInInlined, |
| "The # of aborted paths due to reaching the maximum block count in " |
| "an inlined function"); |
| STATISTIC(NumTimesRetriedWithoutInlining, |
| "The # of times we re-evaluated a call without inlining"); |
| |
| //===----------------------------------------------------------------------===// |
| // Internal program state traits. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| // When modeling a C++ constructor, for a variety of reasons we need to track |
| // the location of the object for the duration of its ConstructionContext. |
| // ObjectsUnderConstruction maps statements within the construction context |
| // to the object's location, so that on every such statement the location |
| // could have been retrieved. |
| |
| /// ConstructedObjectKey is used for being able to find the path-sensitive |
| /// memory region of a freshly constructed object while modeling the AST node |
| /// that syntactically represents the object that is being constructed. |
| /// Semantics of such nodes may sometimes require access to the region that's |
| /// not otherwise present in the program state, or to the very fact that |
| /// the construction context was present and contained references to these |
| /// AST nodes. |
| class ConstructedObjectKey { |
| typedef std::pair<ConstructionContextItem, const LocationContext *> |
| ConstructedObjectKeyImpl; |
| |
| const ConstructedObjectKeyImpl Impl; |
| |
| const void *getAnyASTNodePtr() const { |
| if (const Stmt *S = getItem().getStmtOrNull()) |
| return S; |
| else |
| return getItem().getCXXCtorInitializer(); |
| } |
| |
| public: |
| explicit ConstructedObjectKey(const ConstructionContextItem &Item, |
| const LocationContext *LC) |
| : Impl(Item, LC) {} |
| |
| const ConstructionContextItem &getItem() const { return Impl.first; } |
| const LocationContext *getLocationContext() const { return Impl.second; } |
| |
| ASTContext &getASTContext() const { |
| return getLocationContext()->getDecl()->getASTContext(); |
| } |
| |
| void printJson(llvm::raw_ostream &Out, PrinterHelper *Helper, |
| PrintingPolicy &PP) const { |
| const Stmt *S = getItem().getStmtOrNull(); |
| const CXXCtorInitializer *I = nullptr; |
| if (!S) |
| I = getItem().getCXXCtorInitializer(); |
| |
| if (S) |
| Out << "\"stmt_id\": " << S->getID(getASTContext()); |
| else |
| Out << "\"init_id\": " << I->getID(getASTContext()); |
| |
| // Kind |
| Out << ", \"kind\": \"" << getItem().getKindAsString() |
| << "\", \"argument_index\": "; |
| |
| if (getItem().getKind() == ConstructionContextItem::ArgumentKind) |
| Out << getItem().getIndex(); |
| else |
| Out << "null"; |
| |
| // Pretty-print |
| Out << ", \"pretty\": "; |
| |
| if (S) { |
| S->printJson(Out, Helper, PP, /*AddQuotes=*/true); |
| } else { |
| Out << '\"' << I->getAnyMember()->getNameAsString() << '\"'; |
| } |
| } |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const { |
| ID.Add(Impl.first); |
| ID.AddPointer(Impl.second); |
| } |
| |
| bool operator==(const ConstructedObjectKey &RHS) const { |
| return Impl == RHS.Impl; |
| } |
| |
| bool operator<(const ConstructedObjectKey &RHS) const { |
| return Impl < RHS.Impl; |
| } |
| }; |
| } // namespace |
| |
| typedef llvm::ImmutableMap<ConstructedObjectKey, SVal> |
| ObjectsUnderConstructionMap; |
| REGISTER_TRAIT_WITH_PROGRAMSTATE(ObjectsUnderConstruction, |
| ObjectsUnderConstructionMap) |
| |
| //===----------------------------------------------------------------------===// |
| // Engine construction and deletion. |
| //===----------------------------------------------------------------------===// |
| |
| static const char* TagProviderName = "ExprEngine"; |
| |
| ExprEngine::ExprEngine(cross_tu::CrossTranslationUnitContext &CTU, |
| AnalysisManager &mgr, |
| SetOfConstDecls *VisitedCalleesIn, |
| FunctionSummariesTy *FS, |
| InliningModes HowToInlineIn) |
| : CTU(CTU), AMgr(mgr), |
| AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()), |
| Engine(*this, FS, mgr.getAnalyzerOptions()), G(Engine.getGraph()), |
| StateMgr(getContext(), mgr.getStoreManagerCreator(), |
| mgr.getConstraintManagerCreator(), G.getAllocator(), |
| this), |
| SymMgr(StateMgr.getSymbolManager()), |
| MRMgr(StateMgr.getRegionManager()), |
| svalBuilder(StateMgr.getSValBuilder()), |
| ObjCNoRet(mgr.getASTContext()), |
| BR(mgr, *this), |
| VisitedCallees(VisitedCalleesIn), |
| HowToInline(HowToInlineIn) |
| { |
| unsigned TrimInterval = mgr.options.GraphTrimInterval; |
| if (TrimInterval != 0) { |
| // Enable eager node reclamation when constructing the ExplodedGraph. |
| G.enableNodeReclamation(TrimInterval); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility methods. |
| //===----------------------------------------------------------------------===// |
| |
| ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) { |
| ProgramStateRef state = StateMgr.getInitialState(InitLoc); |
| const Decl *D = InitLoc->getDecl(); |
| |
| // Preconditions. |
| // FIXME: It would be nice if we had a more general mechanism to add |
| // such preconditions. Some day. |
| do { |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| // Precondition: the first argument of 'main' is an integer guaranteed |
| // to be > 0. |
| const IdentifierInfo *II = FD->getIdentifier(); |
| if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) |
| break; |
| |
| const ParmVarDecl *PD = FD->getParamDecl(0); |
| QualType T = PD->getType(); |
| const auto *BT = dyn_cast<BuiltinType>(T); |
| if (!BT || !BT->isInteger()) |
| break; |
| |
| const MemRegion *R = state->getRegion(PD, InitLoc); |
| if (!R) |
| break; |
| |
| SVal V = state->getSVal(loc::MemRegionVal(R)); |
| SVal Constraint_untested = evalBinOp(state, BO_GT, V, |
| svalBuilder.makeZeroVal(T), |
| svalBuilder.getConditionType()); |
| |
| Optional<DefinedOrUnknownSVal> Constraint = |
| Constraint_untested.getAs<DefinedOrUnknownSVal>(); |
| |
| if (!Constraint) |
| break; |
| |
| if (ProgramStateRef newState = state->assume(*Constraint, true)) |
| state = newState; |
| } |
| break; |
| } |
| while (false); |
| |
| if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| // Precondition: 'self' is always non-null upon entry to an Objective-C |
| // method. |
| const ImplicitParamDecl *SelfD = MD->getSelfDecl(); |
| const MemRegion *R = state->getRegion(SelfD, InitLoc); |
| SVal V = state->getSVal(loc::MemRegionVal(R)); |
| |
| if (Optional<Loc> LV = V.getAs<Loc>()) { |
| // Assume that the pointer value in 'self' is non-null. |
| state = state->assume(*LV, true); |
| assert(state && "'self' cannot be null"); |
| } |
| } |
| |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if (!MD->isStatic()) { |
| // Precondition: 'this' is always non-null upon entry to the |
| // top-level function. This is our starting assumption for |
| // analyzing an "open" program. |
| const StackFrameContext *SFC = InitLoc->getStackFrame(); |
| if (SFC->getParent() == nullptr) { |
| loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC); |
| SVal V = state->getSVal(L); |
| if (Optional<Loc> LV = V.getAs<Loc>()) { |
| state = state->assume(*LV, true); |
| assert(state && "'this' cannot be null"); |
| } |
| } |
| } |
| } |
| |
| return state; |
| } |
| |
| ProgramStateRef ExprEngine::createTemporaryRegionIfNeeded( |
| ProgramStateRef State, const LocationContext *LC, |
| const Expr *InitWithAdjustments, const Expr *Result, |
| const SubRegion **OutRegionWithAdjustments) { |
| // FIXME: This function is a hack that works around the quirky AST |
| // we're often having with respect to C++ temporaries. If only we modelled |
| // the actual execution order of statements properly in the CFG, |
| // all the hassle with adjustments would not be necessary, |
| // and perhaps the whole function would be removed. |
| SVal InitValWithAdjustments = State->getSVal(InitWithAdjustments, LC); |
| if (!Result) { |
| // If we don't have an explicit result expression, we're in "if needed" |
| // mode. Only create a region if the current value is a NonLoc. |
| if (!InitValWithAdjustments.getAs<NonLoc>()) { |
| if (OutRegionWithAdjustments) |
| *OutRegionWithAdjustments = nullptr; |
| return State; |
| } |
| Result = InitWithAdjustments; |
| } else { |
| // We need to create a region no matter what. For sanity, make sure we don't |
| // try to stuff a Loc into a non-pointer temporary region. |
| assert(!InitValWithAdjustments.getAs<Loc>() || |
| Loc::isLocType(Result->getType()) || |
| Result->getType()->isMemberPointerType()); |
| } |
| |
| ProgramStateManager &StateMgr = State->getStateManager(); |
| MemRegionManager &MRMgr = StateMgr.getRegionManager(); |
| StoreManager &StoreMgr = StateMgr.getStoreManager(); |
| |
| // MaterializeTemporaryExpr may appear out of place, after a few field and |
| // base-class accesses have been made to the object, even though semantically |
| // it is the whole object that gets materialized and lifetime-extended. |
| // |
| // For example: |
| // |
| // `-MaterializeTemporaryExpr |
| // `-MemberExpr |
| // `-CXXTemporaryObjectExpr |
| // |
| // instead of the more natural |
| // |
| // `-MemberExpr |
| // `-MaterializeTemporaryExpr |
| // `-CXXTemporaryObjectExpr |
| // |
| // Use the usual methods for obtaining the expression of the base object, |
| // and record the adjustments that we need to make to obtain the sub-object |
| // that the whole expression 'Ex' refers to. This trick is usual, |
| // in the sense that CodeGen takes a similar route. |
| |
| SmallVector<const Expr *, 2> CommaLHSs; |
| SmallVector<SubobjectAdjustment, 2> Adjustments; |
| |
| const Expr *Init = InitWithAdjustments->skipRValueSubobjectAdjustments( |
| CommaLHSs, Adjustments); |
| |
| // Take the region for Init, i.e. for the whole object. If we do not remember |
| // the region in which the object originally was constructed, come up with |
| // a new temporary region out of thin air and copy the contents of the object |
| // (which are currently present in the Environment, because Init is an rvalue) |
| // into that region. This is not correct, but it is better than nothing. |
| const TypedValueRegion *TR = nullptr; |
| if (const auto *MT = dyn_cast<MaterializeTemporaryExpr>(Result)) { |
| if (Optional<SVal> V = getObjectUnderConstruction(State, MT, LC)) { |
| State = finishObjectConstruction(State, MT, LC); |
| State = State->BindExpr(Result, LC, *V); |
| return State; |
| } else { |
| StorageDuration SD = MT->getStorageDuration(); |
| // If this object is bound to a reference with static storage duration, we |
| // put it in a different region to prevent "address leakage" warnings. |
| if (SD == SD_Static || SD == SD_Thread) { |
| TR = MRMgr.getCXXStaticTempObjectRegion(Init); |
| } else { |
| TR = MRMgr.getCXXTempObjectRegion(Init, LC); |
| } |
| } |
| } else { |
| TR = MRMgr.getCXXTempObjectRegion(Init, LC); |
| } |
| |
| SVal Reg = loc::MemRegionVal(TR); |
| SVal BaseReg = Reg; |
| |
| // Make the necessary adjustments to obtain the sub-object. |
| for (auto I = Adjustments.rbegin(), E = Adjustments.rend(); I != E; ++I) { |
| const SubobjectAdjustment &Adj = *I; |
| switch (Adj.Kind) { |
| case SubobjectAdjustment::DerivedToBaseAdjustment: |
| Reg = StoreMgr.evalDerivedToBase(Reg, Adj.DerivedToBase.BasePath); |
| break; |
| case SubobjectAdjustment::FieldAdjustment: |
| Reg = StoreMgr.getLValueField(Adj.Field, Reg); |
| break; |
| case SubobjectAdjustment::MemberPointerAdjustment: |
| // FIXME: Unimplemented. |
| State = State->invalidateRegions(Reg, InitWithAdjustments, |
| currBldrCtx->blockCount(), LC, true, |
| nullptr, nullptr, nullptr); |
| return State; |
| } |
| } |
| |
| // What remains is to copy the value of the object to the new region. |
| // FIXME: In other words, what we should always do is copy value of the |
| // Init expression (which corresponds to the bigger object) to the whole |
| // temporary region TR. However, this value is often no longer present |
| // in the Environment. If it has disappeared, we instead invalidate TR. |
| // Still, what we can do is assign the value of expression Ex (which |
| // corresponds to the sub-object) to the TR's sub-region Reg. At least, |
| // values inside Reg would be correct. |
| SVal InitVal = State->getSVal(Init, LC); |
| if (InitVal.isUnknown()) { |
| InitVal = getSValBuilder().conjureSymbolVal(Result, LC, Init->getType(), |
| currBldrCtx->blockCount()); |
| State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false); |
| |
| // Then we'd need to take the value that certainly exists and bind it |
| // over. |
| if (InitValWithAdjustments.isUnknown()) { |
| // Try to recover some path sensitivity in case we couldn't |
| // compute the value. |
| InitValWithAdjustments = getSValBuilder().conjureSymbolVal( |
| Result, LC, InitWithAdjustments->getType(), |
| currBldrCtx->blockCount()); |
| } |
| State = |
| State->bindLoc(Reg.castAs<Loc>(), InitValWithAdjustments, LC, false); |
| } else { |
| State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false); |
| } |
| |
| // The result expression would now point to the correct sub-region of the |
| // newly created temporary region. Do this last in order to getSVal of Init |
| // correctly in case (Result == Init). |
| if (Result->isGLValue()) { |
| State = State->BindExpr(Result, LC, Reg); |
| } else { |
| State = State->BindExpr(Result, LC, InitValWithAdjustments); |
| } |
| |
| // Notify checkers once for two bindLoc()s. |
| State = processRegionChange(State, TR, LC); |
| |
| if (OutRegionWithAdjustments) |
| *OutRegionWithAdjustments = cast<SubRegion>(Reg.getAsRegion()); |
| return State; |
| } |
| |
| ProgramStateRef |
| ExprEngine::addObjectUnderConstruction(ProgramStateRef State, |
| const ConstructionContextItem &Item, |
| const LocationContext *LC, SVal V) { |
| ConstructedObjectKey Key(Item, LC->getStackFrame()); |
| // FIXME: Currently the state might already contain the marker due to |
| // incorrect handling of temporaries bound to default parameters. |
| assert(!State->get<ObjectsUnderConstruction>(Key) || |
| Key.getItem().getKind() == |
| ConstructionContextItem::TemporaryDestructorKind); |
| return State->set<ObjectsUnderConstruction>(Key, V); |
| } |
| |
| Optional<SVal> |
| ExprEngine::getObjectUnderConstruction(ProgramStateRef State, |
| const ConstructionContextItem &Item, |
| const LocationContext *LC) { |
| ConstructedObjectKey Key(Item, LC->getStackFrame()); |
| return Optional<SVal>::create(State->get<ObjectsUnderConstruction>(Key)); |
| } |
| |
| ProgramStateRef |
| ExprEngine::finishObjectConstruction(ProgramStateRef State, |
| const ConstructionContextItem &Item, |
| const LocationContext *LC) { |
| ConstructedObjectKey Key(Item, LC->getStackFrame()); |
| assert(State->contains<ObjectsUnderConstruction>(Key)); |
| return State->remove<ObjectsUnderConstruction>(Key); |
| } |
| |
| ProgramStateRef ExprEngine::elideDestructor(ProgramStateRef State, |
| const CXXBindTemporaryExpr *BTE, |
| const LocationContext *LC) { |
| ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); |
| // FIXME: Currently the state might already contain the marker due to |
| // incorrect handling of temporaries bound to default parameters. |
| return State->set<ObjectsUnderConstruction>(Key, UnknownVal()); |
| } |
| |
| ProgramStateRef |
| ExprEngine::cleanupElidedDestructor(ProgramStateRef State, |
| const CXXBindTemporaryExpr *BTE, |
| const LocationContext *LC) { |
| ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); |
| assert(State->contains<ObjectsUnderConstruction>(Key)); |
| return State->remove<ObjectsUnderConstruction>(Key); |
| } |
| |
| bool ExprEngine::isDestructorElided(ProgramStateRef State, |
| const CXXBindTemporaryExpr *BTE, |
| const LocationContext *LC) { |
| ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); |
| return State->contains<ObjectsUnderConstruction>(Key); |
| } |
| |
| bool ExprEngine::areAllObjectsFullyConstructed(ProgramStateRef State, |
| const LocationContext *FromLC, |
| const LocationContext *ToLC) { |
| const LocationContext *LC = FromLC; |
| while (LC != ToLC) { |
| assert(LC && "ToLC must be a parent of FromLC!"); |
| for (auto I : State->get<ObjectsUnderConstruction>()) |
| if (I.first.getLocationContext() == LC) |
| return false; |
| |
| LC = LC->getParent(); |
| } |
| return true; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Top-level transfer function logic (Dispatcher). |
| //===----------------------------------------------------------------------===// |
| |
| /// evalAssume - Called by ConstraintManager. Used to call checker-specific |
| /// logic for handling assumptions on symbolic values. |
| ProgramStateRef ExprEngine::processAssume(ProgramStateRef state, |
| SVal cond, bool assumption) { |
| return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); |
| } |
| |
| ProgramStateRef |
| ExprEngine::processRegionChanges(ProgramStateRef state, |
| const InvalidatedSymbols *invalidated, |
| ArrayRef<const MemRegion *> Explicits, |
| ArrayRef<const MemRegion *> Regions, |
| const LocationContext *LCtx, |
| const CallEvent *Call) { |
| return getCheckerManager().runCheckersForRegionChanges(state, invalidated, |
| Explicits, Regions, |
| LCtx, Call); |
| } |
| |
| static void |
| printObjectsUnderConstructionJson(raw_ostream &Out, ProgramStateRef State, |
| const char *NL, const LocationContext *LCtx, |
| unsigned int Space = 0, bool IsDot = false) { |
| PrintingPolicy PP = |
| LCtx->getAnalysisDeclContext()->getASTContext().getPrintingPolicy(); |
| |
| ++Space; |
| bool HasItem = false; |
| |
| // Store the last key. |
| const ConstructedObjectKey *LastKey = nullptr; |
| for (const auto &I : State->get<ObjectsUnderConstruction>()) { |
| const ConstructedObjectKey &Key = I.first; |
| if (Key.getLocationContext() != LCtx) |
| continue; |
| |
| if (!HasItem) { |
| Out << "[" << NL; |
| HasItem = true; |
| } |
| |
| LastKey = &Key; |
| } |
| |
| for (const auto &I : State->get<ObjectsUnderConstruction>()) { |
| const ConstructedObjectKey &Key = I.first; |
| SVal Value = I.second; |
| if (Key.getLocationContext() != LCtx) |
| continue; |
| |
| Indent(Out, Space, IsDot) << "{ "; |
| Key.printJson(Out, nullptr, PP); |
| Out << ", \"value\": \"" << Value << "\" }"; |
| |
| if (&Key != LastKey) |
| Out << ','; |
| Out << NL; |
| } |
| |
| if (HasItem) |
| Indent(Out, --Space, IsDot) << ']'; // End of "location_context". |
| else { |
| Out << "null "; |
| } |
| } |
| |
| void ExprEngine::printJson(raw_ostream &Out, ProgramStateRef State, |
| const LocationContext *LCtx, const char *NL, |
| unsigned int Space, bool IsDot) const { |
| Indent(Out, Space, IsDot) << "\"constructing_objects\": "; |
| |
| if (LCtx && !State->get<ObjectsUnderConstruction>().isEmpty()) { |
| ++Space; |
| Out << '[' << NL; |
| LCtx->printJson(Out, NL, Space, IsDot, [&](const LocationContext *LC) { |
| printObjectsUnderConstructionJson(Out, State, NL, LC, Space, IsDot); |
| }); |
| |
| --Space; |
| Indent(Out, Space, IsDot) << "]," << NL; // End of "constructing_objects". |
| } else { |
| Out << "null," << NL; |
| } |
| |
| getCheckerManager().runCheckersForPrintStateJson(Out, State, NL, Space, |
| IsDot); |
| } |
| |
| void ExprEngine::processEndWorklist() { |
| getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); |
| } |
| |
| void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred, |
| unsigned StmtIdx, NodeBuilderContext *Ctx) { |
| PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); |
| currStmtIdx = StmtIdx; |
| currBldrCtx = Ctx; |
| |
| switch (E.getKind()) { |
| case CFGElement::Statement: |
| case CFGElement::Constructor: |
| case CFGElement::CXXRecordTypedCall: |
| ProcessStmt(E.castAs<CFGStmt>().getStmt(), Pred); |
| return; |
| case CFGElement::Initializer: |
| ProcessInitializer(E.castAs<CFGInitializer>(), Pred); |
| return; |
| case CFGElement::NewAllocator: |
| ProcessNewAllocator(E.castAs<CFGNewAllocator>().getAllocatorExpr(), |
| Pred); |
| return; |
| case CFGElement::AutomaticObjectDtor: |
| case CFGElement::DeleteDtor: |
| case CFGElement::BaseDtor: |
| case CFGElement::MemberDtor: |
| case CFGElement::TemporaryDtor: |
| ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred); |
| return; |
| case CFGElement::LoopExit: |
| ProcessLoopExit(E.castAs<CFGLoopExit>().getLoopStmt(), Pred); |
| return; |
| case CFGElement::LifetimeEnds: |
| case CFGElement::ScopeBegin: |
| case CFGElement::ScopeEnd: |
| return; |
| } |
| } |
| |
| static bool shouldRemoveDeadBindings(AnalysisManager &AMgr, |
| const Stmt *S, |
| const ExplodedNode *Pred, |
| const LocationContext *LC) { |
| // Are we never purging state values? |
| if (AMgr.options.AnalysisPurgeOpt == PurgeNone) |
| return false; |
| |
| // Is this the beginning of a basic block? |
| if (Pred->getLocation().getAs<BlockEntrance>()) |
| return true; |
| |
| // Is this on a non-expression? |
| if (!isa<Expr>(S)) |
| return true; |
| |
| // Run before processing a call. |
| if (CallEvent::isCallStmt(S)) |
| return true; |
| |
| // Is this an expression that is consumed by another expression? If so, |
| // postpone cleaning out the state. |
| ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap(); |
| return !PM.isConsumedExpr(cast<Expr>(S)); |
| } |
| |
| void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out, |
| const Stmt *ReferenceStmt, |
| const LocationContext *LC, |
| const Stmt *DiagnosticStmt, |
| ProgramPoint::Kind K) { |
| assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind || |
| ReferenceStmt == nullptr || isa<ReturnStmt>(ReferenceStmt)) |
| && "PostStmt is not generally supported by the SymbolReaper yet"); |
| assert(LC && "Must pass the current (or expiring) LocationContext"); |
| |
| if (!DiagnosticStmt) { |
| DiagnosticStmt = ReferenceStmt; |
| assert(DiagnosticStmt && "Required for clearing a LocationContext"); |
| } |
| |
| NumRemoveDeadBindings++; |
| ProgramStateRef CleanedState = Pred->getState(); |
| |
| // LC is the location context being destroyed, but SymbolReaper wants a |
| // location context that is still live. (If this is the top-level stack |
| // frame, this will be null.) |
| if (!ReferenceStmt) { |
| assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind && |
| "Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext"); |
| LC = LC->getParent(); |
| } |
| |
| const StackFrameContext *SFC = LC ? LC->getStackFrame() : nullptr; |
| SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager()); |
| |
| for (auto I : CleanedState->get<ObjectsUnderConstruction>()) { |
| if (SymbolRef Sym = I.second.getAsSymbol()) |
| SymReaper.markLive(Sym); |
| if (const MemRegion *MR = I.second.getAsRegion()) |
| SymReaper.markLive(MR); |
| } |
| |
| getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper); |
| |
| // Create a state in which dead bindings are removed from the environment |
| // and the store. TODO: The function should just return new env and store, |
| // not a new state. |
| CleanedState = StateMgr.removeDeadBindings(CleanedState, SFC, SymReaper); |
| |
| // Process any special transfer function for dead symbols. |
| // A tag to track convenience transitions, which can be removed at cleanup. |
| static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node"); |
| // Call checkers with the non-cleaned state so that they could query the |
| // values of the soon to be dead symbols. |
| ExplodedNodeSet CheckedSet; |
| getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper, |
| DiagnosticStmt, *this, K); |
| |
| // For each node in CheckedSet, generate CleanedNodes that have the |
| // environment, the store, and the constraints cleaned up but have the |
| // user-supplied states as the predecessors. |
| StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx); |
| for (const auto I : CheckedSet) { |
| ProgramStateRef CheckerState = I->getState(); |
| |
| // The constraint manager has not been cleaned up yet, so clean up now. |
| CheckerState = |
| getConstraintManager().removeDeadBindings(CheckerState, SymReaper); |
| |
| assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) && |
| "Checkers are not allowed to modify the Environment as a part of " |
| "checkDeadSymbols processing."); |
| assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) && |
| "Checkers are not allowed to modify the Store as a part of " |
| "checkDeadSymbols processing."); |
| |
| // Create a state based on CleanedState with CheckerState GDM and |
| // generate a transition to that state. |
| ProgramStateRef CleanedCheckerSt = |
| StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState); |
| Bldr.generateNode(DiagnosticStmt, I, CleanedCheckerSt, &cleanupTag, K); |
| } |
| } |
| |
| void ExprEngine::ProcessStmt(const Stmt *currStmt, ExplodedNode *Pred) { |
| // Reclaim any unnecessary nodes in the ExplodedGraph. |
| G.reclaimRecentlyAllocatedNodes(); |
| |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| currStmt->getBeginLoc(), |
| "Error evaluating statement"); |
| |
| // Remove dead bindings and symbols. |
| ExplodedNodeSet CleanedStates; |
| if (shouldRemoveDeadBindings(AMgr, currStmt, Pred, |
| Pred->getLocationContext())) { |
| removeDead(Pred, CleanedStates, currStmt, |
| Pred->getLocationContext()); |
| } else |
| CleanedStates.Add(Pred); |
| |
| // Visit the statement. |
| ExplodedNodeSet Dst; |
| for (const auto I : CleanedStates) { |
| ExplodedNodeSet DstI; |
| // Visit the statement. |
| Visit(currStmt, I, DstI); |
| Dst.insert(DstI); |
| } |
| |
| // Enqueue the new nodes onto the work list. |
| Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); |
| } |
| |
| void ExprEngine::ProcessLoopExit(const Stmt* S, ExplodedNode *Pred) { |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| S->getBeginLoc(), |
| "Error evaluating end of the loop"); |
| ExplodedNodeSet Dst; |
| Dst.Add(Pred); |
| NodeBuilder Bldr(Pred, Dst, *currBldrCtx); |
| ProgramStateRef NewState = Pred->getState(); |
| |
| if(AMgr.options.ShouldUnrollLoops) |
| NewState = processLoopEnd(S, NewState); |
| |
| LoopExit PP(S, Pred->getLocationContext()); |
| Bldr.generateNode(PP, NewState, Pred); |
| // Enqueue the new nodes onto the work list. |
| Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); |
| } |
| |
| void ExprEngine::ProcessInitializer(const CFGInitializer CFGInit, |
| ExplodedNode *Pred) { |
| const CXXCtorInitializer *BMI = CFGInit.getInitializer(); |
| const Expr *Init = BMI->getInit()->IgnoreImplicit(); |
| const LocationContext *LC = Pred->getLocationContext(); |
| |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| BMI->getSourceLocation(), |
| "Error evaluating initializer"); |
| |
| // We don't clean up dead bindings here. |
| const auto *stackFrame = cast<StackFrameContext>(Pred->getLocationContext()); |
| const auto *decl = cast<CXXConstructorDecl>(stackFrame->getDecl()); |
| |
| ProgramStateRef State = Pred->getState(); |
| SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame)); |
| |
| ExplodedNodeSet Tmp; |
| SVal FieldLoc; |
| |
| // Evaluate the initializer, if necessary |
| if (BMI->isAnyMemberInitializer()) { |
| // Constructors build the object directly in the field, |
| // but non-objects must be copied in from the initializer. |
| if (getObjectUnderConstruction(State, BMI, LC)) { |
| // The field was directly constructed, so there is no need to bind. |
| // But we still need to stop tracking the object under construction. |
| State = finishObjectConstruction(State, BMI, LC); |
| NodeBuilder Bldr(Pred, Tmp, *currBldrCtx); |
| PostStore PS(Init, LC, /*Loc*/ nullptr, /*tag*/ nullptr); |
| Bldr.generateNode(PS, State, Pred); |
| } else { |
| const ValueDecl *Field; |
| if (BMI->isIndirectMemberInitializer()) { |
| Field = BMI->getIndirectMember(); |
| FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal); |
| } else { |
| Field = BMI->getMember(); |
| FieldLoc = State->getLValue(BMI->getMember(), thisVal); |
| } |
| |
| SVal InitVal; |
| if (Init->getType()->isArrayType()) { |
| // Handle arrays of trivial type. We can represent this with a |
| // primitive load/copy from the base array region. |
| const ArraySubscriptExpr *ASE; |
| while ((ASE = dyn_cast<ArraySubscriptExpr>(Init))) |
| Init = ASE->getBase()->IgnoreImplicit(); |
| |
| SVal LValue = State->getSVal(Init, stackFrame); |
| if (!Field->getType()->isReferenceType()) |
| if (Optional<Loc> LValueLoc = LValue.getAs<Loc>()) |
| InitVal = State->getSVal(*LValueLoc); |
| |
| // If we fail to get the value for some reason, use a symbolic value. |
| if (InitVal.isUnknownOrUndef()) { |
| SValBuilder &SVB = getSValBuilder(); |
| InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame, |
| Field->getType(), |
| currBldrCtx->blockCount()); |
| } |
| } else { |
| InitVal = State->getSVal(BMI->getInit(), stackFrame); |
| } |
| |
| PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame); |
| evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP); |
| } |
| } else { |
| assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer()); |
| Tmp.insert(Pred); |
| // We already did all the work when visiting the CXXConstructExpr. |
| } |
| |
| // Construct PostInitializer nodes whether the state changed or not, |
| // so that the diagnostics don't get confused. |
| PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame); |
| ExplodedNodeSet Dst; |
| NodeBuilder Bldr(Tmp, Dst, *currBldrCtx); |
| for (const auto I : Tmp) { |
| ProgramStateRef State = I->getState(); |
| Bldr.generateNode(PP, State, I); |
| } |
| |
| // Enqueue the new nodes onto the work list. |
| Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); |
| } |
| |
| void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, |
| ExplodedNode *Pred) { |
| ExplodedNodeSet Dst; |
| switch (D.getKind()) { |
| case CFGElement::AutomaticObjectDtor: |
| ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst); |
| break; |
| case CFGElement::BaseDtor: |
| ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst); |
| break; |
| case CFGElement::MemberDtor: |
| ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst); |
| break; |
| case CFGElement::TemporaryDtor: |
| ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst); |
| break; |
| case CFGElement::DeleteDtor: |
| ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst); |
| break; |
| default: |
| llvm_unreachable("Unexpected dtor kind."); |
| } |
| |
| // Enqueue the new nodes onto the work list. |
| Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); |
| } |
| |
| void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE, |
| ExplodedNode *Pred) { |
| ExplodedNodeSet Dst; |
| AnalysisManager &AMgr = getAnalysisManager(); |
| AnalyzerOptions &Opts = AMgr.options; |
| // TODO: We're not evaluating allocators for all cases just yet as |
| // we're not handling the return value correctly, which causes false |
| // positives when the alpha.cplusplus.NewDeleteLeaks check is on. |
| if (Opts.MayInlineCXXAllocator) |
| VisitCXXNewAllocatorCall(NE, Pred, Dst); |
| else { |
| NodeBuilder Bldr(Pred, Dst, *currBldrCtx); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| PostImplicitCall PP(NE->getOperatorNew(), NE->getBeginLoc(), LCtx); |
| Bldr.generateNode(PP, Pred->getState(), Pred); |
| } |
| Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); |
| } |
| |
| void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| const VarDecl *varDecl = Dtor.getVarDecl(); |
| QualType varType = varDecl->getType(); |
| |
| ProgramStateRef state = Pred->getState(); |
| SVal dest = state->getLValue(varDecl, Pred->getLocationContext()); |
| const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion(); |
| |
| if (varType->isReferenceType()) { |
| const MemRegion *ValueRegion = state->getSVal(Region).getAsRegion(); |
| if (!ValueRegion) { |
| // FIXME: This should not happen. The language guarantees a presence |
| // of a valid initializer here, so the reference shall not be undefined. |
| // It seems that we're calling destructors over variables that |
| // were not initialized yet. |
| return; |
| } |
| Region = ValueRegion->getBaseRegion(); |
| varType = cast<TypedValueRegion>(Region)->getValueType(); |
| } |
| |
| // FIXME: We need to run the same destructor on every element of the array. |
| // This workaround will just run the first destructor (which will still |
| // invalidate the entire array). |
| EvalCallOptions CallOpts; |
| Region = makeZeroElementRegion(state, loc::MemRegionVal(Region), varType, |
| CallOpts.IsArrayCtorOrDtor).getAsRegion(); |
| |
| VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(), |
| /*IsBase=*/false, Pred, Dst, CallOpts); |
| } |
| |
| void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| ProgramStateRef State = Pred->getState(); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| const CXXDeleteExpr *DE = Dtor.getDeleteExpr(); |
| const Stmt *Arg = DE->getArgument(); |
| QualType DTy = DE->getDestroyedType(); |
| SVal ArgVal = State->getSVal(Arg, LCtx); |
| |
| // If the argument to delete is known to be a null value, |
| // don't run destructor. |
| if (State->isNull(ArgVal).isConstrainedTrue()) { |
| QualType BTy = getContext().getBaseElementType(DTy); |
| const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl(); |
| const CXXDestructorDecl *Dtor = RD->getDestructor(); |
| |
| PostImplicitCall PP(Dtor, DE->getBeginLoc(), LCtx); |
| NodeBuilder Bldr(Pred, Dst, *currBldrCtx); |
| Bldr.generateNode(PP, Pred->getState(), Pred); |
| return; |
| } |
| |
| EvalCallOptions CallOpts; |
| const MemRegion *ArgR = ArgVal.getAsRegion(); |
| if (DE->isArrayForm()) { |
| // FIXME: We need to run the same destructor on every element of the array. |
| // This workaround will just run the first destructor (which will still |
| // invalidate the entire array). |
| CallOpts.IsArrayCtorOrDtor = true; |
| // Yes, it may even be a multi-dimensional array. |
| while (const auto *AT = getContext().getAsArrayType(DTy)) |
| DTy = AT->getElementType(); |
| if (ArgR) |
| ArgR = getStoreManager().GetElementZeroRegion(cast<SubRegion>(ArgR), DTy); |
| } |
| |
| VisitCXXDestructor(DTy, ArgR, DE, /*IsBase=*/false, Pred, Dst, CallOpts); |
| } |
| |
| void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, |
| ExplodedNode *Pred, ExplodedNodeSet &Dst) { |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| |
| const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl()); |
| Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor, |
| LCtx->getStackFrame()); |
| SVal ThisVal = Pred->getState()->getSVal(ThisPtr); |
| |
| // Create the base object region. |
| const CXXBaseSpecifier *Base = D.getBaseSpecifier(); |
| QualType BaseTy = Base->getType(); |
| SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy, |
| Base->isVirtual()); |
| |
| EvalCallOptions CallOpts; |
| VisitCXXDestructor(BaseTy, BaseVal.getAsRegion(), CurDtor->getBody(), |
| /*IsBase=*/true, Pred, Dst, CallOpts); |
| } |
| |
| void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, |
| ExplodedNode *Pred, ExplodedNodeSet &Dst) { |
| const FieldDecl *Member = D.getFieldDecl(); |
| QualType T = Member->getType(); |
| ProgramStateRef State = Pred->getState(); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| |
| const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl()); |
| Loc ThisStorageLoc = |
| getSValBuilder().getCXXThis(CurDtor, LCtx->getStackFrame()); |
| Loc ThisLoc = State->getSVal(ThisStorageLoc).castAs<Loc>(); |
| SVal FieldVal = State->getLValue(Member, ThisLoc); |
| |
| // FIXME: We need to run the same destructor on every element of the array. |
| // This workaround will just run the first destructor (which will still |
| // invalidate the entire array). |
| EvalCallOptions CallOpts; |
| FieldVal = makeZeroElementRegion(State, FieldVal, T, |
| CallOpts.IsArrayCtorOrDtor); |
| |
| VisitCXXDestructor(T, FieldVal.getAsRegion(), CurDtor->getBody(), |
| /*IsBase=*/false, Pred, Dst, CallOpts); |
| } |
| |
| void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| const CXXBindTemporaryExpr *BTE = D.getBindTemporaryExpr(); |
| ProgramStateRef State = Pred->getState(); |
| const LocationContext *LC = Pred->getLocationContext(); |
| const MemRegion *MR = nullptr; |
| |
| if (Optional<SVal> V = |
| getObjectUnderConstruction(State, D.getBindTemporaryExpr(), |
| Pred->getLocationContext())) { |
| // FIXME: Currently we insert temporary destructors for default parameters, |
| // but we don't insert the constructors, so the entry in |
| // ObjectsUnderConstruction may be missing. |
| State = finishObjectConstruction(State, D.getBindTemporaryExpr(), |
| Pred->getLocationContext()); |
| MR = V->getAsRegion(); |
| } |
| |
| // If copy elision has occurred, and the constructor corresponding to the |
| // destructor was elided, we need to skip the destructor as well. |
| if (isDestructorElided(State, BTE, LC)) { |
| State = cleanupElidedDestructor(State, BTE, LC); |
| NodeBuilder Bldr(Pred, Dst, *currBldrCtx); |
| PostImplicitCall PP(D.getDestructorDecl(getContext()), |
| D.getBindTemporaryExpr()->getBeginLoc(), |
| Pred->getLocationContext()); |
| Bldr.generateNode(PP, State, Pred); |
| return; |
| } |
| |
| ExplodedNodeSet CleanDtorState; |
| StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx); |
| StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State); |
| |
| QualType T = D.getBindTemporaryExpr()->getSubExpr()->getType(); |
| // FIXME: Currently CleanDtorState can be empty here due to temporaries being |
| // bound to default parameters. |
| assert(CleanDtorState.size() <= 1); |
| ExplodedNode *CleanPred = |
| CleanDtorState.empty() ? Pred : *CleanDtorState.begin(); |
| |
| EvalCallOptions CallOpts; |
| CallOpts.IsTemporaryCtorOrDtor = true; |
| if (!MR) { |
| // If we have no MR, we still need to unwrap the array to avoid destroying |
| // the whole array at once. Regardless, we'd eventually need to model array |
| // destructors properly, element-by-element. |
| while (const ArrayType *AT = getContext().getAsArrayType(T)) { |
| T = AT->getElementType(); |
| CallOpts.IsArrayCtorOrDtor = true; |
| } |
| } else { |
| // We'd eventually need to makeZeroElementRegion() trick here, |
| // but for now we don't have the respective construction contexts, |
| // so MR would always be null in this case. Do nothing for now. |
| } |
| VisitCXXDestructor(T, MR, D.getBindTemporaryExpr(), |
| /*IsBase=*/false, CleanPred, Dst, CallOpts); |
| } |
| |
| void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE, |
| NodeBuilderContext &BldCtx, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst, |
| const CFGBlock *DstT, |
| const CFGBlock *DstF) { |
| BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF); |
| ProgramStateRef State = Pred->getState(); |
| const LocationContext *LC = Pred->getLocationContext(); |
| if (getObjectUnderConstruction(State, BTE, LC)) { |
| TempDtorBuilder.markInfeasible(false); |
| TempDtorBuilder.generateNode(State, true, Pred); |
| } else { |
| TempDtorBuilder.markInfeasible(true); |
| TempDtorBuilder.generateNode(State, false, Pred); |
| } |
| } |
| |
| void ExprEngine::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE, |
| ExplodedNodeSet &PreVisit, |
| ExplodedNodeSet &Dst) { |
| // This is a fallback solution in case we didn't have a construction |
| // context when we were constructing the temporary. Otherwise the map should |
| // have been populated there. |
| if (!getAnalysisManager().options.ShouldIncludeTemporaryDtorsInCFG) { |
| // In case we don't have temporary destructors in the CFG, do not mark |
| // the initialization - we would otherwise never clean it up. |
| Dst = PreVisit; |
| return; |
| } |
| StmtNodeBuilder StmtBldr(PreVisit, Dst, *currBldrCtx); |
| for (ExplodedNode *Node : PreVisit) { |
| ProgramStateRef State = Node->getState(); |
| const LocationContext *LC = Node->getLocationContext(); |
| if (!getObjectUnderConstruction(State, BTE, LC)) { |
| // FIXME: Currently the state might also already contain the marker due to |
| // incorrect handling of temporaries bound to default parameters; for |
| // those, we currently skip the CXXBindTemporaryExpr but rely on adding |
| // temporary destructor nodes. |
| State = addObjectUnderConstruction(State, BTE, LC, UnknownVal()); |
| } |
| StmtBldr.generateNode(BTE, Node, State); |
| } |
| } |
| |
| ProgramStateRef ExprEngine::escapeValue(ProgramStateRef State, SVal V, |
| PointerEscapeKind K) const { |
| class CollectReachableSymbolsCallback final : public SymbolVisitor { |
| InvalidatedSymbols Symbols; |
| |
| public: |
| explicit CollectReachableSymbolsCallback(ProgramStateRef) {} |
| |
| const InvalidatedSymbols &getSymbols() const { return Symbols; } |
| |
| bool VisitSymbol(SymbolRef Sym) override { |
| Symbols.insert(Sym); |
| return true; |
| } |
| }; |
| |
| const CollectReachableSymbolsCallback &Scanner = |
| State->scanReachableSymbols<CollectReachableSymbolsCallback>(V); |
| return getCheckerManager().runCheckersForPointerEscape( |
| State, Scanner.getSymbols(), /*CallEvent*/ nullptr, K, nullptr); |
| } |
| |
| void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred, |
| ExplodedNodeSet &DstTop) { |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| S->getBeginLoc(), "Error evaluating statement"); |
| ExplodedNodeSet Dst; |
| StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx); |
| |
| assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens()); |
| |
| switch (S->getStmtClass()) { |
| // C++, OpenMP and ARC stuff we don't support yet. |
| case Expr::ObjCIndirectCopyRestoreExprClass: |
| case Stmt::CXXDependentScopeMemberExprClass: |
| case Stmt::CXXInheritedCtorInitExprClass: |
| case Stmt::CXXTryStmtClass: |
| case Stmt::CXXTypeidExprClass: |
| case Stmt::CXXUuidofExprClass: |
| case Stmt::CXXFoldExprClass: |
| case Stmt::MSPropertyRefExprClass: |
| case Stmt::MSPropertySubscriptExprClass: |
| case Stmt::CXXUnresolvedConstructExprClass: |
| case Stmt::DependentScopeDeclRefExprClass: |
| case Stmt::ArrayTypeTraitExprClass: |
| case Stmt::ExpressionTraitExprClass: |
| case Stmt::UnresolvedLookupExprClass: |
| case Stmt::UnresolvedMemberExprClass: |
| case Stmt::TypoExprClass: |
| case Stmt::CXXNoexceptExprClass: |
| case Stmt::PackExpansionExprClass: |
| case Stmt::SubstNonTypeTemplateParmPackExprClass: |
| case Stmt::FunctionParmPackExprClass: |
| case Stmt::CoroutineBodyStmtClass: |
| case Stmt::CoawaitExprClass: |
| case Stmt::DependentCoawaitExprClass: |
| case Stmt::CoreturnStmtClass: |
| case Stmt::CoyieldExprClass: |
| case Stmt::SEHTryStmtClass: |
| case Stmt::SEHExceptStmtClass: |
| case Stmt::SEHLeaveStmtClass: |
| case Stmt::SEHFinallyStmtClass: |
| case Stmt::OMPParallelDirectiveClass: |
| case Stmt::OMPSimdDirectiveClass: |
| case Stmt::OMPForDirectiveClass: |
| case Stmt::OMPForSimdDirectiveClass: |
| case Stmt::OMPSectionsDirectiveClass: |
| case Stmt::OMPSectionDirectiveClass: |
| case Stmt::OMPSingleDirectiveClass: |
| case Stmt::OMPMasterDirectiveClass: |
| case Stmt::OMPCriticalDirectiveClass: |
| case Stmt::OMPParallelForDirectiveClass: |
| case Stmt::OMPParallelForSimdDirectiveClass: |
| case Stmt::OMPParallelSectionsDirectiveClass: |
| case Stmt::OMPTaskDirectiveClass: |
| case Stmt::OMPTaskyieldDirectiveClass: |
| case Stmt::OMPBarrierDirectiveClass: |
| case Stmt::OMPTaskwaitDirectiveClass: |
| case Stmt::OMPTaskgroupDirectiveClass: |
| case Stmt::OMPFlushDirectiveClass: |
| case Stmt::OMPOrderedDirectiveClass: |
| case Stmt::OMPAtomicDirectiveClass: |
| case Stmt::OMPTargetDirectiveClass: |
| case Stmt::OMPTargetDataDirectiveClass: |
| case Stmt::OMPTargetEnterDataDirectiveClass: |
| case Stmt::OMPTargetExitDataDirectiveClass: |
| case Stmt::OMPTargetParallelDirectiveClass: |
| case Stmt::OMPTargetParallelForDirectiveClass: |
| case Stmt::OMPTargetUpdateDirectiveClass: |
| case Stmt::OMPTeamsDirectiveClass: |
| case Stmt::OMPCancellationPointDirectiveClass: |
| case Stmt::OMPCancelDirectiveClass: |
| case Stmt::OMPTaskLoopDirectiveClass: |
| case Stmt::OMPTaskLoopSimdDirectiveClass: |
| case Stmt::OMPMasterTaskLoopDirectiveClass: |
| case Stmt::OMPMasterTaskLoopSimdDirectiveClass: |
| case Stmt::OMPParallelMasterTaskLoopDirectiveClass: |
| case Stmt::OMPDistributeDirectiveClass: |
| case Stmt::OMPDistributeParallelForDirectiveClass: |
| case Stmt::OMPDistributeParallelForSimdDirectiveClass: |
| case Stmt::OMPDistributeSimdDirectiveClass: |
| case Stmt::OMPTargetParallelForSimdDirectiveClass: |
| case Stmt::OMPTargetSimdDirectiveClass: |
| case Stmt::OMPTeamsDistributeDirectiveClass: |
| case Stmt::OMPTeamsDistributeSimdDirectiveClass: |
| case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: |
| case Stmt::OMPTeamsDistributeParallelForDirectiveClass: |
| case Stmt::OMPTargetTeamsDirectiveClass: |
| case Stmt::OMPTargetTeamsDistributeDirectiveClass: |
| case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: |
| case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: |
| case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: |
| case Stmt::CapturedStmtClass: { |
| const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState()); |
| Engine.addAbortedBlock(node, currBldrCtx->getBlock()); |
| break; |
| } |
| |
| case Stmt::ParenExprClass: |
| llvm_unreachable("ParenExprs already handled."); |
| case Stmt::GenericSelectionExprClass: |
| llvm_unreachable("GenericSelectionExprs already handled."); |
| // Cases that should never be evaluated simply because they shouldn't |
| // appear in the CFG. |
| case Stmt::BreakStmtClass: |
| case Stmt::CaseStmtClass: |
| case Stmt::CompoundStmtClass: |
| case Stmt::ContinueStmtClass: |
| case Stmt::CXXForRangeStmtClass: |
| case Stmt::DefaultStmtClass: |
| case Stmt::DoStmtClass: |
| case Stmt::ForStmtClass: |
| case Stmt::GotoStmtClass: |
| case Stmt::IfStmtClass: |
| case Stmt::IndirectGotoStmtClass: |
| case Stmt::LabelStmtClass: |
| case Stmt::NoStmtClass: |
| case Stmt::NullStmtClass: |
| case Stmt::SwitchStmtClass: |
| case Stmt::WhileStmtClass: |
| case Expr::MSDependentExistsStmtClass: |
| llvm_unreachable("Stmt should not be in analyzer evaluation loop"); |
| |
| case Stmt::ObjCSubscriptRefExprClass: |
| case Stmt::ObjCPropertyRefExprClass: |
| llvm_unreachable("These are handled by PseudoObjectExpr"); |
| |
| case Stmt::GNUNullExprClass: { |
| // GNU __null is a pointer-width integer, not an actual pointer. |
| ProgramStateRef state = Pred->getState(); |
| state = state->BindExpr(S, Pred->getLocationContext(), |
| svalBuilder.makeIntValWithPtrWidth(0, false)); |
| Bldr.generateNode(S, Pred, state); |
| break; |
| } |
| |
| case Stmt::ObjCAtSynchronizedStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Expr::ConstantExprClass: |
| case Stmt::ExprWithCleanupsClass: |
| // Handled due to fully linearised CFG. |
| break; |
| |
| case Stmt::CXXBindTemporaryExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet PreVisit; |
| getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); |
| ExplodedNodeSet Next; |
| VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), PreVisit, Next); |
| getCheckerManager().runCheckersForPostStmt(Dst, Next, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| // Cases not handled yet; but will handle some day. |
| case Stmt::DesignatedInitExprClass: |
| case Stmt::DesignatedInitUpdateExprClass: |
| case Stmt::ArrayInitLoopExprClass: |
| case Stmt::ArrayInitIndexExprClass: |
| case Stmt::ExtVectorElementExprClass: |
| case Stmt::ImaginaryLiteralClass: |
| case Stmt::ObjCAtCatchStmtClass: |
| case Stmt::ObjCAtFinallyStmtClass: |
| case Stmt::ObjCAtTryStmtClass: |
| case Stmt::ObjCAutoreleasePoolStmtClass: |
| case Stmt::ObjCEncodeExprClass: |
| case Stmt::ObjCIsaExprClass: |
| case Stmt::ObjCProtocolExprClass: |
| case Stmt::ObjCSelectorExprClass: |
| case Stmt::ParenListExprClass: |
| case Stmt::ShuffleVectorExprClass: |
| case Stmt::ConvertVectorExprClass: |
| case Stmt::VAArgExprClass: |
| case Stmt::CUDAKernelCallExprClass: |
| case Stmt::OpaqueValueExprClass: |
| case Stmt::AsTypeExprClass: |
| case Stmt::ConceptSpecializationExprClass: |
| case Stmt::CXXRewrittenBinaryOperatorClass: |
| // Fall through. |
| |
| // Cases we intentionally don't evaluate, since they don't need |
| // to be explicitly evaluated. |
| case Stmt::PredefinedExprClass: |
| case Stmt::AddrLabelExprClass: |
| case Stmt::AttributedStmtClass: |
| case Stmt::IntegerLiteralClass: |
| case Stmt::FixedPointLiteralClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::ImplicitValueInitExprClass: |
| case Stmt::CXXScalarValueInitExprClass: |
| case Stmt::CXXBoolLiteralExprClass: |
| case Stmt::ObjCBoolLiteralExprClass: |
| case Stmt::ObjCAvailabilityCheckExprClass: |
| case Stmt::FloatingLiteralClass: |
| case Stmt::NoInitExprClass: |
| case Stmt::SizeOfPackExprClass: |
| case Stmt::StringLiteralClass: |
| case Stmt::SourceLocExprClass: |
| case Stmt::ObjCStringLiteralClass: |
| case Stmt::CXXPseudoDestructorExprClass: |
| case Stmt::SubstNonTypeTemplateParmExprClass: |
| case Stmt::CXXNullPtrLiteralExprClass: |
| case Stmt::OMPArraySectionExprClass: |
| case Stmt::TypeTraitExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet preVisit; |
| getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this); |
| getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXDefaultArgExprClass: |
| case Stmt::CXXDefaultInitExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet PreVisit; |
| getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); |
| |
| ExplodedNodeSet Tmp; |
| StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx); |
| |
| const Expr *ArgE; |
| if (const auto *DefE = dyn_cast<CXXDefaultArgExpr>(S)) |
| ArgE = DefE->getExpr(); |
| else if (const auto *DefE = dyn_cast<CXXDefaultInitExpr>(S)) |
| ArgE = DefE->getExpr(); |
| else |
| llvm_unreachable("unknown constant wrapper kind"); |
| |
| bool IsTemporary = false; |
| if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(ArgE)) { |
| ArgE = MTE->GetTemporaryExpr(); |
| IsTemporary = true; |
| } |
| |
| Optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE); |
| if (!ConstantVal) |
| ConstantVal = UnknownVal(); |
| |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| for (const auto I : PreVisit) { |
| ProgramStateRef State = I->getState(); |
| State = State->BindExpr(S, LCtx, *ConstantVal); |
| if (IsTemporary) |
| State = createTemporaryRegionIfNeeded(State, LCtx, |
| cast<Expr>(S), |
| cast<Expr>(S)); |
| Bldr2.generateNode(S, I, State); |
| } |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| // Cases we evaluate as opaque expressions, conjuring a symbol. |
| case Stmt::CXXStdInitializerListExprClass: |
| case Expr::ObjCArrayLiteralClass: |
| case Expr::ObjCDictionaryLiteralClass: |
| case Expr::ObjCBoxedExprClass: { |
| Bldr.takeNodes(Pred); |
| |
| ExplodedNodeSet preVisit; |
| getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this); |
| |
| ExplodedNodeSet Tmp; |
| StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx); |
| |
| const auto *Ex = cast<Expr>(S); |
| QualType resultType = Ex->getType(); |
| |
| for (const auto N : preVisit) { |
| const LocationContext *LCtx = N->getLocationContext(); |
| SVal result = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, |
| resultType, |
| currBldrCtx->blockCount()); |
| ProgramStateRef State = N->getState()->BindExpr(Ex, LCtx, result); |
| |
| // Escape pointers passed into the list, unless it's an ObjC boxed |
| // expression which is not a boxable C structure. |
| if (!(isa<ObjCBoxedExpr>(Ex) && |
| !cast<ObjCBoxedExpr>(Ex)->getSubExpr() |
| ->getType()->isRecordType())) |
| for (auto Child : Ex->children()) { |
| assert(Child); |
| SVal Val = State->getSVal(Child, LCtx); |
| State = escapeValue(State, Val, PSK_EscapeOther); |
| } |
| |
| Bldr2.generateNode(S, N, State); |
| } |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::ArraySubscriptExprClass: |
| Bldr.takeNodes(Pred); |
| VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::GCCAsmStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitGCCAsmStmt(cast<GCCAsmStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::MSAsmStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::BlockExprClass: |
| Bldr.takeNodes(Pred); |
| VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::LambdaExprClass: |
| if (AMgr.options.ShouldInlineLambdas) { |
| Bldr.takeNodes(Pred); |
| VisitLambdaExpr(cast<LambdaExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| } else { |
| const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState()); |
| Engine.addAbortedBlock(node, currBldrCtx->getBlock()); |
| } |
| break; |
| |
| case Stmt::BinaryOperatorClass: { |
| const auto *B = cast<BinaryOperator>(S); |
| if (B->isLogicalOp()) { |
| Bldr.takeNodes(Pred); |
| VisitLogicalExpr(B, Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| else if (B->getOpcode() == BO_Comma) { |
| ProgramStateRef state = Pred->getState(); |
| Bldr.generateNode(B, Pred, |
| state->BindExpr(B, Pred->getLocationContext(), |
| state->getSVal(B->getRHS(), |
| Pred->getLocationContext()))); |
| break; |
| } |
| |
| Bldr.takeNodes(Pred); |
| |
| if (AMgr.options.ShouldEagerlyAssume && |
| (B->isRelationalOp() || B->isEqualityOp())) { |
| ExplodedNodeSet Tmp; |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); |
| evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, cast<Expr>(S)); |
| } |
| else |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); |
| |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXOperatorCallExprClass: { |
| const auto *OCE = cast<CXXOperatorCallExpr>(S); |
| |
| // For instance method operators, make sure the 'this' argument has a |
| // valid region. |
| const Decl *Callee = OCE->getCalleeDecl(); |
| if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) { |
| if (MD->isInstance()) { |
| ProgramStateRef State = Pred->getState(); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| ProgramStateRef NewState = |
| createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0)); |
| if (NewState != State) { |
| Pred = Bldr.generateNode(OCE, Pred, NewState, /*tag=*/nullptr, |
| ProgramPoint::PreStmtKind); |
| // Did we cache out? |
| if (!Pred) |
| break; |
| } |
| } |
| } |
| // FALLTHROUGH |
| LLVM_FALLTHROUGH; |
| } |
| |
| case Stmt::CallExprClass: |
| case Stmt::CXXMemberCallExprClass: |
| case Stmt::UserDefinedLiteralClass: |
| Bldr.takeNodes(Pred); |
| VisitCallExpr(cast<CallExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::CXXCatchStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::CXXTemporaryObjectExprClass: |
| case Stmt::CXXConstructExprClass: |
| Bldr.takeNodes(Pred); |
| VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::CXXNewExprClass: { |
| Bldr.takeNodes(Pred); |
| |
| ExplodedNodeSet PreVisit; |
| getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); |
| |
| ExplodedNodeSet PostVisit; |
| for (const auto i : PreVisit) |
| VisitCXXNewExpr(cast<CXXNewExpr>(S), i, PostVisit); |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXDeleteExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet PreVisit; |
| const auto *CDE = cast<CXXDeleteExpr>(S); |
| getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); |
| |
| for (const auto i : PreVisit) |
| VisitCXXDeleteExpr(CDE, i, Dst); |
| |
| Bldr.addNodes(Dst); |
| break; |
| } |
| // FIXME: ChooseExpr is really a constant. We need to fix |
| // the CFG do not model them as explicit control-flow. |
| |
| case Stmt::ChooseExprClass: { // __builtin_choose_expr |
| Bldr.takeNodes(Pred); |
| const auto *C = cast<ChooseExpr>(S); |
| VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CompoundAssignOperatorClass: |
| Bldr.takeNodes(Pred); |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::CompoundLiteralExprClass: |
| Bldr.takeNodes(Pred); |
| VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: { // '?' operator |
| Bldr.takeNodes(Pred); |
| const auto *C = cast<AbstractConditionalOperator>(S); |
| VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXThisExprClass: |
| Bldr.takeNodes(Pred); |
| VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::DeclRefExprClass: { |
| Bldr.takeNodes(Pred); |
| const auto *DE = cast<DeclRefExpr>(S); |
| VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::DeclStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ImplicitCastExprClass: |
| case Stmt::CStyleCastExprClass: |
| case Stmt::CXXStaticCastExprClass: |
| case Stmt::CXXDynamicCastExprClass: |
| case Stmt::CXXReinterpretCastExprClass: |
| case Stmt::CXXConstCastExprClass: |
| case Stmt::CXXFunctionalCastExprClass: |
| case Stmt::BuiltinBitCastExprClass: |
| case Stmt::ObjCBridgedCastExprClass: { |
| Bldr.takeNodes(Pred); |
| const auto *C = cast<CastExpr>(S); |
| ExplodedNodeSet dstExpr; |
| VisitCast(C, C->getSubExpr(), Pred, dstExpr); |
| |
| // Handle the postvisit checks. |
| getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Expr::MaterializeTemporaryExprClass: { |
| Bldr.takeNodes(Pred); |
| const auto *MTE = cast<MaterializeTemporaryExpr>(S); |
| ExplodedNodeSet dstPrevisit; |
| getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, MTE, *this); |
| ExplodedNodeSet dstExpr; |
| for (const auto i : dstPrevisit) |
| CreateCXXTemporaryObject(MTE, i, dstExpr); |
| getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, MTE, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::InitListExprClass: |
| Bldr.takeNodes(Pred); |
| VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::MemberExprClass: |
| Bldr.takeNodes(Pred); |
| VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::AtomicExprClass: |
| Bldr.takeNodes(Pred); |
| VisitAtomicExpr(cast<AtomicExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ObjCIvarRefExprClass: |
| Bldr.takeNodes(Pred); |
| VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ObjCForCollectionStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ObjCMessageExprClass: |
| Bldr.takeNodes(Pred); |
| VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ObjCAtThrowStmtClass: |
| case Stmt::CXXThrowExprClass: |
| // FIXME: This is not complete. We basically treat @throw as |
| // an abort. |
| Bldr.generateSink(S, Pred, Pred->getState()); |
| break; |
| |
| case Stmt::ReturnStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::OffsetOfExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet PreVisit; |
| getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); |
| |
| ExplodedNodeSet PostVisit; |
| for (const auto Node : PreVisit) |
| VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Node, PostVisit); |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::UnaryExprOrTypeTraitExprClass: |
| Bldr.takeNodes(Pred); |
| VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), |
| Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::StmtExprClass: { |
| const auto *SE = cast<StmtExpr>(S); |
| |
| if (SE->getSubStmt()->body_empty()) { |
| // Empty statement expression. |
| assert(SE->getType() == getContext().VoidTy |
| && "Empty statement expression must have void type."); |
| break; |
| } |
| |
| if (const auto *LastExpr = |
| dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { |
| ProgramStateRef state = Pred->getState(); |
| Bldr.generateNode(SE, Pred, |
| state->BindExpr(SE, Pred->getLocationContext(), |
| state->getSVal(LastExpr, |
| Pred->getLocationContext()))); |
| } |
| break; |
| } |
| |
| case Stmt::UnaryOperatorClass: { |
| Bldr.takeNodes(Pred); |
| const auto *U = cast<UnaryOperator>(S); |
| if (AMgr.options.ShouldEagerlyAssume && (U->getOpcode() == UO_LNot)) { |
| ExplodedNodeSet Tmp; |
| VisitUnaryOperator(U, Pred, Tmp); |
| evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, U); |
| } |
| else |
| VisitUnaryOperator(U, Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::PseudoObjectExprClass: { |
| Bldr.takeNodes(Pred); |
| ProgramStateRef state = Pred->getState(); |
| const auto *PE = cast<PseudoObjectExpr>(S); |
| if (const Expr *Result = PE->getResultExpr()) { |
| SVal V = state->getSVal(Result, Pred->getLocationContext()); |
| Bldr.generateNode(S, Pred, |
| state->BindExpr(S, Pred->getLocationContext(), V)); |
| } |
| else |
| Bldr.generateNode(S, Pred, |
| state->BindExpr(S, Pred->getLocationContext(), |
| UnknownVal())); |
| |
| Bldr.addNodes(Dst); |
| break; |
| } |
| } |
| } |
| |
| bool ExprEngine::replayWithoutInlining(ExplodedNode *N, |
| const LocationContext *CalleeLC) { |
| const StackFrameContext *CalleeSF = CalleeLC->getStackFrame(); |
| const StackFrameContext *CallerSF = CalleeSF->getParent()->getStackFrame(); |
| assert(CalleeSF && CallerSF); |
| ExplodedNode *BeforeProcessingCall = nullptr; |
| const Stmt *CE = CalleeSF->getCallSite(); |
| |
| // Find the first node before we started processing the call expression. |
| while (N) { |
| ProgramPoint L = N->getLocation(); |
| BeforeProcessingCall = N; |
| N = N->pred_empty() ? nullptr : *(N->pred_begin()); |
| |
| // Skip the nodes corresponding to the inlined code. |
| if (L.getStackFrame() != CallerSF) |
| continue; |
| // We reached the caller. Find the node right before we started |
| // processing the call. |
| if (L.isPurgeKind()) |
| continue; |
| if (L.getAs<PreImplicitCall>()) |
| continue; |
| if (L.getAs<CallEnter>()) |
| continue; |
| if (Optional<StmtPoint> SP = L.getAs<StmtPoint>()) |
| if (SP->getStmt() == CE) |
| continue; |
| break; |
| } |
| |
| if (!BeforeProcessingCall) |
| return false; |
| |
| // TODO: Clean up the unneeded nodes. |
| |
| // Build an Epsilon node from which we will restart the analyzes. |
| // Note that CE is permitted to be NULL! |
| ProgramPoint NewNodeLoc = |
| EpsilonPoint(BeforeProcessingCall->getLocationContext(), CE); |
| // Add the special flag to GDM to signal retrying with no inlining. |
| // Note, changing the state ensures that we are not going to cache out. |
| ProgramStateRef NewNodeState = BeforeProcessingCall->getState(); |
| NewNodeState = |
| NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE)); |
| |
| // Make the new node a successor of BeforeProcessingCall. |
| bool IsNew = false; |
| ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew); |
| // We cached out at this point. Caching out is common due to us backtracking |
| // from the inlined function, which might spawn several paths. |
| if (!IsNew) |
| return true; |
| |
| NewNode->addPredecessor(BeforeProcessingCall, G); |
| |
| // Add the new node to the work list. |
| Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(), |
| CalleeSF->getIndex()); |
| NumTimesRetriedWithoutInlining++; |
| return true; |
| } |
| |
| /// Block entrance. (Update counters). |
| void ExprEngine::processCFGBlockEntrance(const BlockEdge &L, |
| NodeBuilderWithSinks &nodeBuilder, |
| ExplodedNode *Pred) { |
| PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); |
| // If we reach a loop which has a known bound (and meets |
| // other constraints) then consider completely unrolling it. |
| if(AMgr.options.ShouldUnrollLoops) { |
| unsigned maxBlockVisitOnPath = AMgr.options.maxBlockVisitOnPath; |
| const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt(); |
| if (Term) { |
| ProgramStateRef NewState = updateLoopStack(Term, AMgr.getASTContext(), |
| Pred, maxBlockVisitOnPath); |
| if (NewState != Pred->getState()) { |
| ExplodedNode *UpdatedNode = nodeBuilder.generateNode(NewState, Pred); |
| if (!UpdatedNode) |
| return; |
| Pred = UpdatedNode; |
| } |
| } |
| // Is we are inside an unrolled loop then no need the check the counters. |
| if(isUnrolledState(Pred->getState())) |
| return; |
| } |
| |
| // If this block is terminated by a loop and it has already been visited the |
| // maximum number of times, widen the loop. |
| unsigned int BlockCount = nodeBuilder.getContext().blockCount(); |
| if (BlockCount == AMgr.options.maxBlockVisitOnPath - 1 && |
| AMgr.options.ShouldWidenLoops) { |
| const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt(); |
| if (!(Term && |
| (isa<ForStmt>(Term) || isa<WhileStmt>(Term) || isa<DoStmt>(Term)))) |
| return; |
| // Widen. |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| ProgramStateRef WidenedState = |
| getWidenedLoopState(Pred->getState(), LCtx, BlockCount, Term); |
| nodeBuilder.generateNode(WidenedState, Pred); |
| return; |
| } |
| |
| // FIXME: Refactor this into a checker. |
| if (BlockCount >= AMgr.options.maxBlockVisitOnPath) { |
| static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded"); |
| const ExplodedNode *Sink = |
| nodeBuilder.generateSink(Pred->getState(), Pred, &tag); |
| |
| // Check if we stopped at the top level function or not. |
| // Root node should have the location context of the top most function. |
| const LocationContext *CalleeLC = Pred->getLocation().getLocationContext(); |
| const LocationContext *CalleeSF = CalleeLC->getStackFrame(); |
| const LocationContext *RootLC = |
| (*G.roots_begin())->getLocation().getLocationContext(); |
| if (RootLC->getStackFrame() != CalleeSF) { |
| Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl()); |
| |
| // Re-run the call evaluation without inlining it, by storing the |
| // no-inlining policy in the state and enqueuing the new work item on |
| // the list. Replay should almost never fail. Use the stats to catch it |
| // if it does. |
| if ((!AMgr.options.NoRetryExhausted && |
| replayWithoutInlining(Pred, CalleeLC))) |
| return; |
| NumMaxBlockCountReachedInInlined++; |
| } else |
| NumMaxBlockCountReached++; |
| |
| // Make sink nodes as exhausted(for stats) only if retry failed. |
| Engine.blocksExhausted.push_back(std::make_pair(L, Sink)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Branch processing. |
| //===----------------------------------------------------------------------===// |
| |
| /// RecoverCastedSymbol - A helper function for ProcessBranch that is used |
| /// to try to recover some path-sensitivity for casts of symbolic |
| /// integers that promote their values (which are currently not tracked well). |
| /// This function returns the SVal bound to Condition->IgnoreCasts if all the |
| // cast(s) did was sign-extend the original value. |
| static SVal RecoverCastedSymbol(ProgramStateRef state, |
| const Stmt *Condition, |
| const LocationContext *LCtx, |
| ASTContext &Ctx) { |
| |
| const auto *Ex = dyn_cast<Expr>(Condition); |
| if (!Ex) |
| return UnknownVal(); |
| |
| uint64_t bits = 0; |
| bool bitsInit = false; |
| |
| while (const auto *CE = dyn_cast<CastExpr>(Ex)) { |
| QualType T = CE->getType(); |
| |
| if (!T->isIntegralOrEnumerationType()) |
| return UnknownVal(); |
| |
| uint64_t newBits = Ctx.getTypeSize(T); |
| if (!bitsInit || newBits < bits) { |
| bitsInit = true; |
| bits = newBits; |
| } |
| |
| Ex = CE->getSubExpr(); |
| } |
| |
| // We reached a non-cast. Is it a symbolic value? |
| QualType T = Ex->getType(); |
| |
| if (!bitsInit || !T->isIntegralOrEnumerationType() || |
| Ctx.getTypeSize(T) > bits) |
| return UnknownVal(); |
| |
| return state->getSVal(Ex, LCtx); |
| } |
| |
| #ifndef NDEBUG |
| static const Stmt *getRightmostLeaf(const Stmt *Condition) { |
| while (Condition) { |
| const auto *BO = dyn_cast<BinaryOperator>(Condition); |
| if (!BO || !BO->isLogicalOp()) { |
| return Condition; |
| } |
| Condition = BO->getRHS()->IgnoreParens(); |
| } |
| return nullptr; |
| } |
| #endif |
| |
| // Returns the condition the branch at the end of 'B' depends on and whose value |
| // has been evaluated within 'B'. |
| // In most cases, the terminator condition of 'B' will be evaluated fully in |
| // the last statement of 'B'; in those cases, the resolved condition is the |
| // given 'Condition'. |
| // If the condition of the branch is a logical binary operator tree, the CFG is |
| // optimized: in that case, we know that the expression formed by all but the |
| // rightmost leaf of the logical binary operator tree must be true, and thus |
| // the branch condition is at this point equivalent to the truth value of that |
| // rightmost leaf; the CFG block thus only evaluates this rightmost leaf |
| // expression in its final statement. As the full condition in that case was |
| // not evaluated, and is thus not in the SVal cache, we need to use that leaf |
| // expression to evaluate the truth value of the condition in the current state |
| // space. |
| static const Stmt *ResolveCondition(const Stmt *Condition, |
| const CFGBlock *B) { |
| if (const auto *Ex = dyn_cast<Expr>(Condition)) |
| Condition = Ex->IgnoreParens(); |
| |
| const auto *BO = dyn_cast<BinaryOperator>(Condition); |
| if (!BO || !BO->isLogicalOp()) |
| return Condition; |
| |
| assert(B->getTerminator().isStmtBranch() && |
| "Other kinds of branches are handled separately!"); |
| |
| // For logical operations, we still have the case where some branches |
| // use the traditional "merge" approach and others sink the branch |
| // directly into the basic blocks representing the logical operation. |
| // We need to distinguish between those two cases here. |
| |
| // The invariants are still shifting, but it is possible that the |
| // last element in a CFGBlock is not a CFGStmt. Look for the last |
| // CFGStmt as the value of the condition. |
| CFGBlock::const_reverse_iterator I = B->rbegin(), E = B->rend(); |
| for (; I != E; ++I) { |
| CFGElement Elem = *I; |
| Optional<CFGStmt> CS = Elem.getAs<CFGStmt>(); |
| if (!CS) |
| continue; |
| const Stmt *LastStmt = CS->getStmt(); |
| assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition)); |
| return LastStmt; |
| } |
| llvm_unreachable("could not resolve condition"); |
| } |
| |
| void ExprEngine::processBranch(const Stmt *Condition, |
| NodeBuilderContext& BldCtx, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst, |
| const CFGBlock *DstT, |
| const CFGBlock *DstF) { |
| assert((!Condition || !isa<CXXBindTemporaryExpr>(Condition)) && |
| "CXXBindTemporaryExprs are handled by processBindTemporary."); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| PrettyStackTraceLocationContext StackCrashInfo(LCtx); |
| currBldrCtx = &BldCtx; |
| |
| // Check for NULL conditions; e.g. "for(;;)" |
| if (!Condition) { |
| BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF); |
| NullCondBldr.markInfeasible(false); |
| NullCondBldr.generateNode(Pred->getState(), true, Pred); |
| return; |
| } |
| |
| if (const auto *Ex = dyn_cast<Expr>(Condition)) |
| Condition = Ex->IgnoreParens(); |
| |
| Condition = ResolveCondition(Condition, BldCtx.getBlock()); |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| Condition->getBeginLoc(), |
| "Error evaluating branch"); |
| |
| ExplodedNodeSet CheckersOutSet; |
| getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet, |
| Pred, *this); |
| // We generated only sinks. |
| if (CheckersOutSet.empty()) |
| return; |
| |
| BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF); |
| for (const auto PredI : CheckersOutSet) { |
| if (PredI->isSink()) |
| continue; |
| |
| ProgramStateRef PrevState = PredI->getState(); |
| SVal X = PrevState->getSVal(Condition, PredI->getLocationContext()); |
| |
| if (X.isUnknownOrUndef()) { |
| // Give it a chance to recover from unknown. |
| if (const auto *Ex = dyn_cast<Expr>(Condition)) { |
| if (Ex->getType()->isIntegralOrEnumerationType()) { |
| // Try to recover some path-sensitivity. Right now casts of symbolic |
| // integers that promote their values are currently not tracked well. |
| // If 'Condition' is such an expression, try and recover the |
| // underlying value and use that instead. |
| SVal recovered = RecoverCastedSymbol(PrevState, Condition, |
| PredI->getLocationContext(), |
| getContext()); |
| |
| if (!recovered.isUnknown()) { |
| X = recovered; |
| } |
| } |
| } |
| } |
| |
| // If the condition is still unknown, give up. |
| if (X.isUnknownOrUndef()) { |
| builder.generateNode(PrevState, true, PredI); |
| builder.generateNode(PrevState, false, PredI); |
| continue; |
| } |
| |
| DefinedSVal V = X.castAs<DefinedSVal>(); |
| |
| ProgramStateRef StTrue, StFalse; |
| std::tie(StTrue, StFalse) = PrevState->assume(V); |
| |
| // Process the true branch. |
| if (builder.isFeasible(true)) { |
| if (StTrue) |
| builder.generateNode(StTrue, true, PredI); |
| else |
| builder.markInfeasible(true); |
| } |
| |
| // Process the false branch. |
| if (builder.isFeasible(false)) { |
| if (StFalse) |
| builder.generateNode(StFalse, false, PredI); |
| else |
| builder.markInfeasible(false); |
| } |
| } |
| currBldrCtx = nullptr; |
| } |
| |
| /// The GDM component containing the set of global variables which have been |
| /// previously initialized with explicit initializers. |
| REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet, |
| llvm::ImmutableSet<const VarDecl *>) |
| |
| void ExprEngine::processStaticInitializer(const DeclStmt *DS, |
| NodeBuilderContext &BuilderCtx, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst, |
| const CFGBlock *DstT, |
| const CFGBlock *DstF) { |
| PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); |
| currBldrCtx = &BuilderCtx; |
| |
| const auto *VD = cast<VarDecl>(DS->getSingleDecl()); |
| ProgramStateRef state = Pred->getState(); |
| bool initHasRun = state->contains<InitializedGlobalsSet>(VD); |
| BranchNodeBuilder builder(Pred, Dst, BuilderCtx, DstT, DstF); |
| |
| if (!initHasRun) { |
| state = state->add<InitializedGlobalsSet>(VD); |
| } |
| |
| builder.generateNode(state, initHasRun, Pred); |
| builder.markInfeasible(!initHasRun); |
| |
| currBldrCtx = nullptr; |
| } |
| |
| /// processIndirectGoto - Called by CoreEngine. Used to generate successor |
| /// nodes by processing the 'effects' of a computed goto jump. |
| void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { |
| ProgramStateRef state = builder.getState(); |
| SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext()); |
| |
| // Three possibilities: |
| // |
| // (1) We know the computed label. |
| // (2) The label is NULL (or some other constant), or Undefined. |
| // (3) We have no clue about the label. Dispatch to all targets. |
| // |
| |
| using iterator = IndirectGotoNodeBuilder::iterator; |
| |
| if (Optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) { |
| const LabelDecl *L = LV->getLabel(); |
| |
| for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) { |
| if (I.getLabel() == L) { |
| builder.generateNode(I, state); |
| return; |
| } |
| } |
| |
| llvm_unreachable("No block with label."); |
| } |
| |
| if (V.getAs<loc::ConcreteInt>() || V.getAs<UndefinedVal>()) { |
| // Dispatch to the first target and mark it as a sink. |
| //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); |
| // FIXME: add checker visit. |
| // UndefBranches.insert(N); |
| return; |
| } |
| |
| // This is really a catch-all. We don't support symbolics yet. |
| // FIXME: Implement dispatch for symbolic pointers. |
| |
| for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) |
| builder.generateNode(I, state); |
| } |
| |
| void ExprEngine::processBeginOfFunction(NodeBuilderContext &BC, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst, |
| const BlockEdge &L) { |
| SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC); |
| getCheckerManager().runCheckersForBeginFunction(Dst, L, Pred, *this); |
| } |
| |
| /// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path |
| /// nodes when the control reaches the end of a function. |
| void ExprEngine::processEndOfFunction(NodeBuilderContext& BC, |
| ExplodedNode *Pred, |
| const ReturnStmt *RS) { |
| ProgramStateRef State = Pred->getState(); |
| |
| if (!Pred->getStackFrame()->inTopFrame()) |
| State = finishArgumentConstruction( |
| State, *getStateManager().getCallEventManager().getCaller( |
| Pred->getStackFrame(), Pred->getState())); |
| |
| // FIXME: We currently cannot assert that temporaries are clear, because |
| // lifetime extended temporaries are not always modelled correctly. In some |
| // cases when we materialize the temporary, we do |
| // createTemporaryRegionIfNeeded(), and the region changes, and also the |
| // respective destructor becomes automatic from temporary. So for now clean up |
| // the state manually before asserting. Ideally, this braced block of code |
| // should go away. |
| { |
| const LocationContext *FromLC = Pred->getLocationContext(); |
| const LocationContext *ToLC = FromLC->getStackFrame()->getParent(); |
| const LocationContext *LC = FromLC; |
| while (LC != ToLC) { |
| assert(LC && "ToLC must be a parent of FromLC!"); |
| for (auto I : State->get<ObjectsUnderConstruction>()) |
| if (I.first.getLocationContext() == LC) { |
| // The comment above only pardons us for not cleaning up a |
| // temporary destructor. If any other statements are found here, |
| // it must be a separate problem. |
| assert(I.first.getItem().getKind() == |
| ConstructionContextItem::TemporaryDestructorKind || |
| I.first.getItem().getKind() == |
| ConstructionContextItem::ElidedDestructorKind); |
| State = State->remove<ObjectsUnderConstruction>(I.first); |
| } |
| LC = LC->getParent(); |
| } |
| } |
| |
| // Perform the transition with cleanups. |
| if (State != Pred->getState()) { |
| ExplodedNodeSet PostCleanup; |
| NodeBuilder Bldr(Pred, PostCleanup, BC); |
| Pred = Bldr.generateNode(Pred->getLocation(), State, Pred); |
| if (!Pred) { |
| // The node with clean temporaries already exists. We might have reached |
| // it on a path on which we initialize different temporaries. |
| return; |
| } |
| } |
| |
| assert(areAllObjectsFullyConstructed(Pred->getState(), |
| Pred->getLocationContext(), |
| Pred->getStackFrame()->getParent())); |
| |
| PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); |
| |
| ExplodedNodeSet Dst; |
| if (Pred->getLocationContext()->inTopFrame()) { |
| // Remove dead symbols. |
| ExplodedNodeSet AfterRemovedDead; |
| removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead); |
| |
| // Notify checkers. |
| for (const auto I : AfterRemovedDead) |
| getCheckerManager().runCheckersForEndFunction(BC, Dst, I, *this, RS); |
| } else { |
| getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this, RS); |
| } |
| |
| Engine.enqueueEndOfFunction(Dst, RS); |
| } |
| |
| /// ProcessSwitch - Called by CoreEngine. Used to generate successor |
| /// nodes by processing the 'effects' of a switch statement. |
| void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { |
| using iterator = SwitchNodeBuilder::iterator; |
| |
| ProgramStateRef state = builder.getState(); |
| const Expr *CondE = builder.getCondition(); |
| SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext()); |
| |
| if (CondV_untested.isUndef()) { |
| //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); |
| // FIXME: add checker |
| //UndefBranches.insert(N); |
| |
| return; |
| } |
| DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>(); |
| |
| ProgramStateRef DefaultSt = state; |
| |
| iterator I = builder.begin(), EI = builder.end(); |
| bool defaultIsFeasible = I == EI; |
| |
| for ( ; I != EI; ++I) { |
| // Successor may be pruned out during CFG construction. |
| if (!I.getBlock()) |
| continue; |
| |
| const CaseStmt *Case = I.getCase(); |
| |
| // Evaluate the LHS of the case value. |
| llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext()); |
| assert(V1.getBitWidth() == getContext().getIntWidth(CondE->getType())); |
| |
| // Get the RHS of the case, if it exists. |
| llvm::APSInt V2; |
| if (const Expr *E = Case->getRHS()) |
| V2 = E->EvaluateKnownConstInt(getContext()); |
| else |
| V2 = V1; |
| |
| ProgramStateRef StateCase; |
| if (Optional<NonLoc> NL = CondV.getAs<NonLoc>()) |
| std::tie(StateCase, DefaultSt) = |
| DefaultSt->assumeInclusiveRange(*NL, V1, V2); |
| else // UnknownVal |
| StateCase = DefaultSt; |
| |
| if (StateCase) |
| builder.generateCaseStmtNode(I, StateCase); |
| |
| // Now "assume" that the case doesn't match. Add this state |
| // to the default state (if it is feasible). |
| if (DefaultSt) |
| defaultIsFeasible = true; |
| else { |
| defaultIsFeasible = false; |
| break; |
| } |
| } |
| |
| if (!defaultIsFeasible) |
| return; |
| |
| // If we have switch(enum value), the default branch is not |
| // feasible if all of the enum constants not covered by 'case:' statements |
| // are not feasible values for the switch condition. |
| // |
| // Note that this isn't as accurate as it could be. Even if there isn't |
| // a case for a particular enum value as long as that enum value isn't |
| // feasible then it shouldn't be considered for making 'default:' reachable. |
| const SwitchStmt *SS = builder.getSwitch(); |
| const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); |
| if (CondExpr->getType()->getAs<EnumType>()) { |
| if (SS->isAllEnumCasesCovered()) |
| return; |
| } |
| |
| builder.generateDefaultCaseNode(DefaultSt); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer functions: Loads and stores. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); |
| |
| ProgramStateRef state = Pred->getState(); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| // C permits "extern void v", and if you cast the address to a valid type, |
| // you can even do things with it. We simply pretend |
| assert(Ex->isGLValue() || VD->getType()->isVoidType()); |
| const LocationContext *LocCtxt = Pred->getLocationContext(); |
| const Decl *D = LocCtxt->getDecl(); |
| const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); |
| const auto *DeclRefEx = dyn_cast<DeclRefExpr>(Ex); |
| Optional<std::pair<SVal, QualType>> VInfo; |
| |
| if (AMgr.options.ShouldInlineLambdas && DeclRefEx && |
| DeclRefEx->refersToEnclosingVariableOrCapture() && MD && |
| MD->getParent()->isLambda()) { |
| // Lookup the field of the lambda. |
| const CXXRecordDecl *CXXRec = MD->getParent(); |
| llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; |
| FieldDecl *LambdaThisCaptureField; |
| CXXRec->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField); |
| |
| // Sema follows a sequence of complex rules to determine whether the |
| // variable should be captured. |
| if (const FieldDecl *FD = LambdaCaptureFields[VD]) { |
| Loc CXXThis = |
| svalBuilder.getCXXThis(MD, LocCtxt->getStackFrame()); |
| SVal CXXThisVal = state->getSVal(CXXThis); |
| VInfo = std::make_pair(state->getLValue(FD, CXXThisVal), FD->getType()); |
| } |
| } |
| |
| if (!VInfo) |
| VInfo = std::make_pair(state->getLValue(VD, LocCtxt), VD->getType()); |
| |
| SVal V = VInfo->first; |
| bool IsReference = VInfo->second->isReferenceType(); |
| |
| // For references, the 'lvalue' is the pointer address stored in the |
| // reference region. |
| if (IsReference) { |
| if (const MemRegion *R = V.getAsRegion()) |
| V = state->getSVal(R); |
| else |
| V = UnknownVal(); |
| } |
| |
| Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, |
| ProgramPoint::PostLValueKind); |
| return; |
| } |
| if (const auto *ED = dyn_cast<EnumConstantDecl>(D)) { |
| assert(!Ex->isGLValue()); |
| SVal V = svalBuilder.makeIntVal(ED->getInitVal()); |
| Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V)); |
| return; |
| } |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| SVal V = svalBuilder.getFunctionPointer(FD); |
| Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, |
| ProgramPoint::PostLValueKind); |
| return; |
| } |
| if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) { |
| // FIXME: Compute lvalue of field pointers-to-member. |
| // Right now we just use a non-null void pointer, so that it gives proper |
| // results in boolean contexts. |
| // FIXME: Maybe delegate this to the surrounding operator&. |
| // Note how this expression is lvalue, however pointer-to-member is NonLoc. |
| SVal V = svalBuilder.conjureSymbolVal(Ex, LCtx, getContext().VoidPtrTy, |
| currBldrCtx->blockCount()); |
| state = state->assume(V.castAs<DefinedOrUnknownSVal>(), true); |
| Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, |
| ProgramPoint::PostLValueKind); |
| return; |
| } |
| if (isa<BindingDecl>(D)) { |
| // FIXME: proper support for bound declarations. |
| // For now, let's just prevent crashing. |
| return; |
| } |
| |
| llvm_unreachable("Support for this Decl not implemented."); |
| } |
| |
| /// VisitArraySubscriptExpr - Transfer function for array accesses |
| void ExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr *A, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst){ |
| const Expr *Base = A->getBase()->IgnoreParens(); |
| const Expr *Idx = A->getIdx()->IgnoreParens(); |
| |
| ExplodedNodeSet CheckerPreStmt; |
| getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, A, *this); |
| |
| ExplodedNodeSet EvalSet; |
| StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx); |
| |
| bool IsVectorType = A->getBase()->getType()->isVectorType(); |
| |
| // The "like" case is for situations where C standard prohibits the type to |
| // be an lvalue, e.g. taking the address of a subscript of an expression of |
| // type "void *". |
| bool IsGLValueLike = A->isGLValue() || |
| (A->getType().isCForbiddenLValueType() && !AMgr.getLangOpts().CPlusPlus); |
| |
| for (auto *Node : CheckerPreStmt) { |
| const LocationContext *LCtx = Node->getLocationContext(); |
| ProgramStateRef state = Node->getState(); |
| |
| if (IsGLValueLike) { |
| QualType T = A->getType(); |
| |
| // One of the forbidden LValue types! We still need to have sensible |
| // symbolic locations to represent this stuff. Note that arithmetic on |
| // void pointers is a GCC extension. |
| if (T->isVoidType()) |
| T = getContext().CharTy; |
| |
| SVal V = state->getLValue(T, |
| state->getSVal(Idx, LCtx), |
| state->getSVal(Base, LCtx)); |
| Bldr.generateNode(A, Node, state->BindExpr(A, LCtx, V), nullptr, |
| ProgramPoint::PostLValueKind); |
| } else if (IsVectorType) { |
| // FIXME: non-glvalue vector reads are not modelled. |
| Bldr.generateNode(A, Node, state, nullptr); |
| } else { |
| llvm_unreachable("Array subscript should be an lValue when not \ |
| a vector and not a forbidden lvalue type"); |
| } |
| } |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, A, *this); |
| } |
| |
| /// VisitMemberExpr - Transfer function for member expressions. |
| void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| // FIXME: Prechecks eventually go in ::Visit(). |
| ExplodedNodeSet CheckedSet; |
| getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this); |
| |
| ExplodedNodeSet EvalSet; |
| ValueDecl *Member = M->getMemberDecl(); |
| |
| // Handle static member variables and enum constants accessed via |
| // member syntax. |
| if (isa<VarDecl>(Member) || isa<EnumConstantDecl>(Member)) { |
| for (const auto I : CheckedSet) |
| VisitCommonDeclRefExpr(M, Member, I, EvalSet); |
| } else { |
| StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); |
| ExplodedNodeSet Tmp; |
| |
| for (const auto I : CheckedSet) { |
| ProgramStateRef state = I->getState(); |
| const LocationContext *LCtx = I->getLocationContext(); |
| Expr *BaseExpr = M->getBase(); |
| |
| // Handle C++ method calls. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(Member)) { |
| if (MD->isInstance()) |
| state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr); |
| |
| SVal MDVal = svalBuilder.getFunctionPointer(MD); |
| state = state->BindExpr(M, LCtx, MDVal); |
| |
| Bldr.generateNode(M, I, state); |
| continue; |
| } |
| |
| // Handle regular struct fields / member variables. |
| const SubRegion *MR = nullptr; |
| state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr, |
| /*Result=*/nullptr, |
| /*OutRegionWithAdjustments=*/&MR); |
| SVal baseExprVal = |
| MR ? loc::MemRegionVal(MR) : state->getSVal(BaseExpr, LCtx); |
| |
| const auto *field = cast<FieldDecl>(Member); |
| SVal L = state->getLValue(field, baseExprVal); |
| |
| if (M->isGLValue() || M->getType()->isArrayType()) { |
| // We special-case rvalues of array type because the analyzer cannot |
| // reason about them, since we expect all regions to be wrapped in Locs. |
| // We instead treat these as lvalues and assume that they will decay to |
| // pointers as soon as they are used. |
| if (!M->isGLValue()) { |
| assert(M->getType()->isArrayType()); |
| const auto *PE = |
| dyn_cast<ImplicitCastExpr>(I->getParentMap().getParentIgnoreParens(M)); |
| if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) { |
| llvm_unreachable("should always be wrapped in ArrayToPointerDecay"); |
| } |
| } |
| |
| if (field->getType()->isReferenceType()) { |
| if (const MemRegion *R = L.getAsRegion()) |
| L = state->getSVal(R); |
| else |
| L = UnknownVal(); |
| } |
| |
| Bldr.generateNode(M, I, state->BindExpr(M, LCtx, L), nullptr, |
| ProgramPoint::PostLValueKind); |
| } else { |
| Bldr.takeNodes(I); |
| evalLoad(Tmp, M, M, I, state, L); |
| Bldr.addNodes(Tmp); |
| } |
| } |
| } |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this); |
| } |
| |
| void ExprEngine::VisitAtomicExpr(const AtomicExpr *AE, ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| ExplodedNodeSet AfterPreSet; |
| getCheckerManager().runCheckersForPreStmt(AfterPreSet, Pred, AE, *this); |
| |
| // For now, treat all the arguments to C11 atomics as escaping. |
| // FIXME: Ideally we should model the behavior of the atomics precisely here. |
| |
| ExplodedNodeSet AfterInvalidateSet; |
| StmtNodeBuilder Bldr(AfterPreSet, AfterInvalidateSet, *currBldrCtx); |
| |
| for (const auto I : AfterPreSet) { |
| ProgramStateRef State = I->getState(); |
| const LocationContext *LCtx = I->getLocationContext(); |
| |
| SmallVector<SVal, 8> ValuesToInvalidate; |
| for (unsigned SI = 0, Count = AE->getNumSubExprs(); SI != Count; SI++) { |
| const Expr *SubExpr = AE->getSubExprs()[SI]; |
| SVal SubExprVal = State->getSVal(SubExpr, LCtx); |
| ValuesToInvalidate.push_back(SubExprVal); |
| } |
| |
| State = State->invalidateRegions(ValuesToInvalidate, AE, |
| currBldrCtx->blockCount(), |
| LCtx, |
| /*CausedByPointerEscape*/true, |
| /*Symbols=*/nullptr); |
| |
| SVal ResultVal = UnknownVal(); |
| State = State->BindExpr(AE, LCtx, ResultVal); |
| Bldr.generateNode(AE, I, State, nullptr, |
| ProgramPoint::PostStmtKind); |
| } |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, AfterInvalidateSet, AE, *this); |
| } |
| |
| // A value escapes in four possible cases: |
| // (1) We are binding to something that is not a memory region. |
| // (2) We are binding to a MemRegion that does not have stack storage. |
| // (3) We are binding to a top-level parameter region with a non-trivial |
| // destructor. We won't see the destructor during analysis, but it's there. |
| // (4) We are binding to a MemRegion with stack storage that the store |
| // does not understand. |
| ProgramStateRef |
| ExprEngine::processPointerEscapedOnBind(ProgramStateRef State, SVal Loc, |
| SVal Val, const LocationContext *LCtx) { |
| |
| // Cases (1) and (2). |
| const MemRegion *MR = Loc.getAsRegion(); |
| if (!MR || !MR->hasStackStorage()) |
| return escapeValue(State, Val, PSK_EscapeOnBind); |
| |
| // Case (3). |
| if (const auto *VR = dyn_cast<VarRegion>(MR->getBaseRegion())) |
| if (VR->hasStackParametersStorage() && VR->getStackFrame()->inTopFrame()) |
| if (const auto *RD = VR->getValueType()->getAsCXXRecordDecl()) |
| if (!RD->hasTrivialDestructor()) |
| return escapeValue(State, Val, PSK_EscapeOnBind); |
| |
| // Case (4): in order to test that, generate a new state with the binding |
| // added. If it is the same state, then it escapes (since the store cannot |
| // represent the binding). |
| |