| //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a set of BugReporter "visitors" which can be used to |
| // enhance the diagnostics reported for a bug. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/Type.h" |
| #include "clang/ASTMatchers/ASTMatchFinder.h" |
| #include "clang/Analysis/Analyses/Dominators.h" |
| #include "clang/Analysis/AnalysisDeclContext.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Analysis/CFGStmtMap.h" |
| #include "clang/Analysis/PathDiagnostic.h" |
| #include "clang/Analysis/ProgramPoint.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Lex/Lexer.h" |
| #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <deque> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| |
| using namespace clang; |
| using namespace ento; |
| |
| //===----------------------------------------------------------------------===// |
| // Utility functions. |
| //===----------------------------------------------------------------------===// |
| |
| static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) { |
| if (B->isAdditiveOp() && B->getType()->isPointerType()) { |
| if (B->getLHS()->getType()->isPointerType()) { |
| return B->getLHS(); |
| } else if (B->getRHS()->getType()->isPointerType()) { |
| return B->getRHS(); |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Given that expression S represents a pointer that would be dereferenced, |
| /// try to find a sub-expression from which the pointer came from. |
| /// This is used for tracking down origins of a null or undefined value: |
| /// "this is null because that is null because that is null" etc. |
| /// We wipe away field and element offsets because they merely add offsets. |
| /// We also wipe away all casts except lvalue-to-rvalue casts, because the |
| /// latter represent an actual pointer dereference; however, we remove |
| /// the final lvalue-to-rvalue cast before returning from this function |
| /// because it demonstrates more clearly from where the pointer rvalue was |
| /// loaded. Examples: |
| /// x->y.z ==> x (lvalue) |
| /// foo()->y.z ==> foo() (rvalue) |
| const Expr *bugreporter::getDerefExpr(const Stmt *S) { |
| const auto *E = dyn_cast<Expr>(S); |
| if (!E) |
| return nullptr; |
| |
| while (true) { |
| if (const auto *CE = dyn_cast<CastExpr>(E)) { |
| if (CE->getCastKind() == CK_LValueToRValue) { |
| // This cast represents the load we're looking for. |
| break; |
| } |
| E = CE->getSubExpr(); |
| } else if (const auto *B = dyn_cast<BinaryOperator>(E)) { |
| // Pointer arithmetic: '*(x + 2)' -> 'x') etc. |
| if (const Expr *Inner = peelOffPointerArithmetic(B)) { |
| E = Inner; |
| } else { |
| // Probably more arithmetic can be pattern-matched here, |
| // but for now give up. |
| break; |
| } |
| } else if (const auto *U = dyn_cast<UnaryOperator>(E)) { |
| if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf || |
| (U->isIncrementDecrementOp() && U->getType()->isPointerType())) { |
| // Operators '*' and '&' don't actually mean anything. |
| // We look at casts instead. |
| E = U->getSubExpr(); |
| } else { |
| // Probably more arithmetic can be pattern-matched here, |
| // but for now give up. |
| break; |
| } |
| } |
| // Pattern match for a few useful cases: a[0], p->f, *p etc. |
| else if (const auto *ME = dyn_cast<MemberExpr>(E)) { |
| E = ME->getBase(); |
| } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { |
| E = IvarRef->getBase(); |
| } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) { |
| E = AE->getBase(); |
| } else if (const auto *PE = dyn_cast<ParenExpr>(E)) { |
| E = PE->getSubExpr(); |
| } else if (const auto *FE = dyn_cast<FullExpr>(E)) { |
| E = FE->getSubExpr(); |
| } else { |
| // Other arbitrary stuff. |
| break; |
| } |
| } |
| |
| // Special case: remove the final lvalue-to-rvalue cast, but do not recurse |
| // deeper into the sub-expression. This way we return the lvalue from which |
| // our pointer rvalue was loaded. |
| if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) |
| if (CE->getCastKind() == CK_LValueToRValue) |
| E = CE->getSubExpr(); |
| |
| return E; |
| } |
| |
| /// Comparing internal representations of symbolic values (via |
| /// SVal::operator==()) is a valid way to check if the value was updated, |
| /// unless it's a LazyCompoundVal that may have a different internal |
| /// representation every time it is loaded from the state. In this function we |
| /// do an approximate comparison for lazy compound values, checking that they |
| /// are the immediate snapshots of the tracked region's bindings within the |
| /// node's respective states but not really checking that these snapshots |
| /// actually contain the same set of bindings. |
| static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal, |
| const ExplodedNode *RightNode, SVal RightVal) { |
| if (LeftVal == RightVal) |
| return true; |
| |
| const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>(); |
| if (!LLCV) |
| return false; |
| |
| const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>(); |
| if (!RLCV) |
| return false; |
| |
| return LLCV->getRegion() == RLCV->getRegion() && |
| LLCV->getStore() == LeftNode->getState()->getStore() && |
| RLCV->getStore() == RightNode->getState()->getStore(); |
| } |
| |
| static Optional<SVal> getSValForVar(const Expr *CondVarExpr, |
| const ExplodedNode *N) { |
| ProgramStateRef State = N->getState(); |
| const LocationContext *LCtx = N->getLocationContext(); |
| |
| assert(CondVarExpr); |
| CondVarExpr = CondVarExpr->IgnoreImpCasts(); |
| |
| // The declaration of the value may rely on a pointer so take its l-value. |
| // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may |
| // evaluate to a FieldRegion when it refers to a declaration of a lambda |
| // capture variable. We most likely need to duplicate that logic here. |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr)) |
| if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) |
| return State->getSVal(State->getLValue(VD, LCtx)); |
| |
| if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr)) |
| if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) |
| if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>()) |
| return State->getRawSVal(*FieldL, FD->getType()); |
| |
| return None; |
| } |
| |
| static Optional<const llvm::APSInt *> |
| getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) { |
| |
| if (Optional<SVal> V = getSValForVar(CondVarExpr, N)) |
| if (auto CI = V->getAs<nonloc::ConcreteInt>()) |
| return &CI->getValue(); |
| return None; |
| } |
| |
| static bool isVarAnInterestingCondition(const Expr *CondVarExpr, |
| const ExplodedNode *N, |
| const PathSensitiveBugReport *B) { |
| // Even if this condition is marked as interesting, it isn't *that* |
| // interesting if it didn't happen in a nested stackframe, the user could just |
| // follow the arrows. |
| if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame())) |
| return false; |
| |
| if (Optional<SVal> V = getSValForVar(CondVarExpr, N)) |
| if (Optional<bugreporter::TrackingKind> K = B->getInterestingnessKind(*V)) |
| return *K == bugreporter::TrackingKind::Condition; |
| |
| return false; |
| } |
| |
| static bool isInterestingExpr(const Expr *E, const ExplodedNode *N, |
| const PathSensitiveBugReport *B) { |
| if (Optional<SVal> V = getSValForVar(E, N)) |
| return B->getInterestingnessKind(*V).hasValue(); |
| return false; |
| } |
| |
| /// \return name of the macro inside the location \p Loc. |
| static StringRef getMacroName(SourceLocation Loc, |
| BugReporterContext &BRC) { |
| return Lexer::getImmediateMacroName( |
| Loc, |
| BRC.getSourceManager(), |
| BRC.getASTContext().getLangOpts()); |
| } |
| |
| /// \return Whether given spelling location corresponds to an expansion |
| /// of a function-like macro. |
| static bool isFunctionMacroExpansion(SourceLocation Loc, |
| const SourceManager &SM) { |
| if (!Loc.isMacroID()) |
| return false; |
| while (SM.isMacroArgExpansion(Loc)) |
| Loc = SM.getImmediateExpansionRange(Loc).getBegin(); |
| std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc); |
| SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first); |
| const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion(); |
| return EInfo.isFunctionMacroExpansion(); |
| } |
| |
| /// \return Whether \c RegionOfInterest was modified at \p N, |
| /// where \p ValueAfter is \c RegionOfInterest's value at the end of the |
| /// stack frame. |
| static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest, |
| const ExplodedNode *N, |
| SVal ValueAfter) { |
| ProgramStateRef State = N->getState(); |
| ProgramStateManager &Mgr = N->getState()->getStateManager(); |
| |
| if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() && |
| !N->getLocationAs<PostStmt>()) |
| return false; |
| |
| // Writing into region of interest. |
| if (auto PS = N->getLocationAs<PostStmt>()) |
| if (auto *BO = PS->getStmtAs<BinaryOperator>()) |
| if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf( |
| N->getSVal(BO->getLHS()).getAsRegion())) |
| return true; |
| |
| // SVal after the state is possibly different. |
| SVal ValueAtN = N->getState()->getSVal(RegionOfInterest); |
| if (!Mgr.getSValBuilder() |
| .areEqual(State, ValueAtN, ValueAfter) |
| .isConstrainedTrue() && |
| (!ValueAtN.isUndef() || !ValueAfter.isUndef())) |
| return true; |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of BugReporterVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &, |
| const ExplodedNode *, |
| PathSensitiveBugReport &) { |
| return nullptr; |
| } |
| |
| void BugReporterVisitor::finalizeVisitor(BugReporterContext &, |
| const ExplodedNode *, |
| PathSensitiveBugReport &) {} |
| |
| PathDiagnosticPieceRef |
| BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC, |
| const ExplodedNode *EndPathNode, |
| const PathSensitiveBugReport &BR) { |
| PathDiagnosticLocation L = BR.getLocation(); |
| const auto &Ranges = BR.getRanges(); |
| |
| // Only add the statement itself as a range if we didn't specify any |
| // special ranges for this report. |
| auto P = std::make_shared<PathDiagnosticEventPiece>( |
| L, BR.getDescription(), Ranges.begin() == Ranges.end()); |
| for (SourceRange Range : Ranges) |
| P->addRange(Range); |
| |
| return P; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of NoStoreFuncVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Put a diagnostic on return statement of all inlined functions |
| /// for which the region of interest \p RegionOfInterest was passed into, |
| /// but not written inside, and it has caused an undefined read or a null |
| /// pointer dereference outside. |
| class NoStoreFuncVisitor final : public BugReporterVisitor { |
| const SubRegion *RegionOfInterest; |
| MemRegionManager &MmrMgr; |
| const SourceManager &SM; |
| const PrintingPolicy &PP; |
| bugreporter::TrackingKind TKind; |
| |
| /// Recursion limit for dereferencing fields when looking for the |
| /// region of interest. |
| /// The limit of two indicates that we will dereference fields only once. |
| static const unsigned DEREFERENCE_LIMIT = 2; |
| |
| /// Frames writing into \c RegionOfInterest. |
| /// This visitor generates a note only if a function does not write into |
| /// a region of interest. This information is not immediately available |
| /// by looking at the node associated with the exit from the function |
| /// (usually the return statement). To avoid recomputing the same information |
| /// many times (going up the path for each node and checking whether the |
| /// region was written into) we instead lazily compute the |
| /// stack frames along the path which write into the region of interest. |
| llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingRegion; |
| llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingCalculated; |
| |
| using RegionVector = SmallVector<const MemRegion *, 5>; |
| |
| public: |
| NoStoreFuncVisitor(const SubRegion *R, bugreporter::TrackingKind TKind) |
| : RegionOfInterest(R), MmrMgr(*R->getMemRegionManager()), |
| SM(MmrMgr.getContext().getSourceManager()), |
| PP(MmrMgr.getContext().getPrintingPolicy()), TKind(TKind) {} |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const override { |
| static int Tag = 0; |
| ID.AddPointer(&Tag); |
| ID.AddPointer(RegionOfInterest); |
| } |
| |
| void *getTag() const { |
| static int Tag = 0; |
| return static_cast<void *>(&Tag); |
| } |
| |
| PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
| BugReporterContext &BR, |
| PathSensitiveBugReport &R) override; |
| |
| private: |
| /// Attempts to find the region of interest in a given record decl, |
| /// by either following the base classes or fields. |
| /// Dereferences fields up to a given recursion limit. |
| /// Note that \p Vec is passed by value, leading to quadratic copying cost, |
| /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT. |
| /// \return A chain fields leading to the region of interest or None. |
| const Optional<RegionVector> |
| findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State, |
| const MemRegion *R, const RegionVector &Vec = {}, |
| int depth = 0); |
| |
| /// Check and lazily calculate whether the region of interest is |
| /// modified in the stack frame to which \p N belongs. |
| /// The calculation is cached in FramesModifyingRegion. |
| bool isRegionOfInterestModifiedInFrame(const ExplodedNode *N) { |
| const LocationContext *Ctx = N->getLocationContext(); |
| const StackFrameContext *SCtx = Ctx->getStackFrame(); |
| if (!FramesModifyingCalculated.count(SCtx)) |
| findModifyingFrames(N); |
| return FramesModifyingRegion.count(SCtx); |
| } |
| |
| /// Write to \c FramesModifyingRegion all stack frames along |
| /// the path in the current stack frame which modify \c RegionOfInterest. |
| void findModifyingFrames(const ExplodedNode *N); |
| |
| /// Consume the information on the no-store stack frame in order to |
| /// either emit a note or suppress the report enirely. |
| /// \return Diagnostics piece for region not modified in the current function, |
| /// if it decides to emit one. |
| PathDiagnosticPieceRef |
| maybeEmitNote(PathSensitiveBugReport &R, const CallEvent &Call, |
| const ExplodedNode *N, const RegionVector &FieldChain, |
| const MemRegion *MatchedRegion, StringRef FirstElement, |
| bool FirstIsReferenceType, unsigned IndirectionLevel); |
| |
| /// Pretty-print region \p MatchedRegion to \p os. |
| /// \return Whether printing succeeded. |
| bool prettyPrintRegionName(StringRef FirstElement, bool FirstIsReferenceType, |
| const MemRegion *MatchedRegion, |
| const RegionVector &FieldChain, |
| int IndirectionLevel, |
| llvm::raw_svector_ostream &os); |
| |
| /// Print first item in the chain, return new separator. |
| static StringRef prettyPrintFirstElement(StringRef FirstElement, |
| bool MoreItemsExpected, |
| int IndirectionLevel, |
| llvm::raw_svector_ostream &os); |
| }; |
| |
| } // end of anonymous namespace |
| |
| /// \return Whether the method declaration \p Parent |
| /// syntactically has a binary operation writing into the ivar \p Ivar. |
| static bool potentiallyWritesIntoIvar(const Decl *Parent, |
| const ObjCIvarDecl *Ivar) { |
| using namespace ast_matchers; |
| const char *IvarBind = "Ivar"; |
| if (!Parent || !Parent->hasBody()) |
| return false; |
| StatementMatcher WriteIntoIvarM = binaryOperator( |
| hasOperatorName("="), |
| hasLHS(ignoringParenImpCasts( |
| objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind)))); |
| StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM)); |
| auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext()); |
| for (BoundNodes &Match : Matches) { |
| auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind); |
| if (IvarRef->isFreeIvar()) |
| return true; |
| |
| const Expr *Base = IvarRef->getBase(); |
| if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base)) |
| Base = ICE->getSubExpr(); |
| |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) |
| if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl())) |
| if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf) |
| return true; |
| |
| return false; |
| } |
| return false; |
| } |
| |
| /// Get parameters associated with runtime definition in order |
| /// to get the correct parameter name. |
| static ArrayRef<ParmVarDecl *> getCallParameters(CallEventRef<> Call) { |
| // Use runtime definition, if available. |
| RuntimeDefinition RD = Call->getRuntimeDefinition(); |
| if (const auto *FD = dyn_cast_or_null<FunctionDecl>(RD.getDecl())) |
| return FD->parameters(); |
| if (const auto *MD = dyn_cast_or_null<ObjCMethodDecl>(RD.getDecl())) |
| return MD->parameters(); |
| |
| return Call->parameters(); |
| } |
| |
| /// \return whether \p Ty points to a const type, or is a const reference. |
| static bool isPointerToConst(QualType Ty) { |
| return !Ty->getPointeeType().isNull() && |
| Ty->getPointeeType().getCanonicalType().isConstQualified(); |
| } |
| |
| /// Attempts to find the region of interest in a given CXX decl, |
| /// by either following the base classes or fields. |
| /// Dereferences fields up to a given recursion limit. |
| /// Note that \p Vec is passed by value, leading to quadratic copying cost, |
| /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT. |
| /// \return A chain fields leading to the region of interest or None. |
| const Optional<NoStoreFuncVisitor::RegionVector> |
| NoStoreFuncVisitor::findRegionOfInterestInRecord( |
| const RecordDecl *RD, ProgramStateRef State, const MemRegion *R, |
| const NoStoreFuncVisitor::RegionVector &Vec /* = {} */, |
| int depth /* = 0 */) { |
| |
| if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth. |
| return None; |
| |
| if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD)) |
| if (!RDX->hasDefinition()) |
| return None; |
| |
| // Recursively examine the base classes. |
| // Note that following base classes does not increase the recursion depth. |
| if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD)) |
| for (const auto II : RDX->bases()) |
| if (const RecordDecl *RRD = II.getType()->getAsRecordDecl()) |
| if (Optional<RegionVector> Out = |
| findRegionOfInterestInRecord(RRD, State, R, Vec, depth)) |
| return Out; |
| |
| for (const FieldDecl *I : RD->fields()) { |
| QualType FT = I->getType(); |
| const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R)); |
| const SVal V = State->getSVal(FR); |
| const MemRegion *VR = V.getAsRegion(); |
| |
| RegionVector VecF = Vec; |
| VecF.push_back(FR); |
| |
| if (RegionOfInterest == VR) |
| return VecF; |
| |
| if (const RecordDecl *RRD = FT->getAsRecordDecl()) |
| if (auto Out = |
| findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1)) |
| return Out; |
| |
| QualType PT = FT->getPointeeType(); |
| if (PT.isNull() || PT->isVoidType() || !VR) |
| continue; |
| |
| if (const RecordDecl *RRD = PT->getAsRecordDecl()) |
| if (Optional<RegionVector> Out = |
| findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1)) |
| return Out; |
| } |
| |
| return None; |
| } |
| |
| PathDiagnosticPieceRef |
| NoStoreFuncVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BR, |
| PathSensitiveBugReport &R) { |
| |
| const LocationContext *Ctx = N->getLocationContext(); |
| const StackFrameContext *SCtx = Ctx->getStackFrame(); |
| ProgramStateRef State = N->getState(); |
| auto CallExitLoc = N->getLocationAs<CallExitBegin>(); |
| |
| // No diagnostic if region was modified inside the frame. |
| if (!CallExitLoc || isRegionOfInterestModifiedInFrame(N)) |
| return nullptr; |
| |
| CallEventRef<> Call = |
| BR.getStateManager().getCallEventManager().getCaller(SCtx, State); |
| |
| // Region of interest corresponds to an IVar, exiting a method |
| // which could have written into that IVar, but did not. |
| if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) { |
| if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) { |
| const MemRegion *SelfRegion = MC->getReceiverSVal().getAsRegion(); |
| if (RegionOfInterest->isSubRegionOf(SelfRegion) && |
| potentiallyWritesIntoIvar(Call->getRuntimeDefinition().getDecl(), |
| IvarR->getDecl())) |
| return maybeEmitNote(R, *Call, N, {}, SelfRegion, "self", |
| /*FirstIsReferenceType=*/false, 1); |
| } |
| } |
| |
| if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) { |
| const MemRegion *ThisR = CCall->getCXXThisVal().getAsRegion(); |
| if (RegionOfInterest->isSubRegionOf(ThisR) && |
| !CCall->getDecl()->isImplicit()) |
| return maybeEmitNote(R, *Call, N, {}, ThisR, "this", |
| /*FirstIsReferenceType=*/false, 1); |
| |
| // Do not generate diagnostics for not modified parameters in |
| // constructors. |
| return nullptr; |
| } |
| |
| ArrayRef<ParmVarDecl *> parameters = getCallParameters(Call); |
| for (unsigned I = 0; I < Call->getNumArgs() && I < parameters.size(); ++I) { |
| const ParmVarDecl *PVD = parameters[I]; |
| SVal V = Call->getArgSVal(I); |
| bool ParamIsReferenceType = PVD->getType()->isReferenceType(); |
| std::string ParamName = PVD->getNameAsString(); |
| |
| int IndirectionLevel = 1; |
| QualType T = PVD->getType(); |
| while (const MemRegion *MR = V.getAsRegion()) { |
| if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T)) |
| return maybeEmitNote(R, *Call, N, {}, MR, ParamName, |
| ParamIsReferenceType, IndirectionLevel); |
| |
| QualType PT = T->getPointeeType(); |
| if (PT.isNull() || PT->isVoidType()) |
| break; |
| |
| if (const RecordDecl *RD = PT->getAsRecordDecl()) |
| if (Optional<RegionVector> P = |
| findRegionOfInterestInRecord(RD, State, MR)) |
| return maybeEmitNote(R, *Call, N, *P, RegionOfInterest, ParamName, |
| ParamIsReferenceType, IndirectionLevel); |
| |
| V = State->getSVal(MR, PT); |
| T = PT; |
| IndirectionLevel++; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| void NoStoreFuncVisitor::findModifyingFrames(const ExplodedNode *N) { |
| assert(N->getLocationAs<CallExitBegin>()); |
| ProgramStateRef LastReturnState = N->getState(); |
| SVal ValueAtReturn = LastReturnState->getSVal(RegionOfInterest); |
| const LocationContext *Ctx = N->getLocationContext(); |
| const StackFrameContext *OriginalSCtx = Ctx->getStackFrame(); |
| |
| do { |
| ProgramStateRef State = N->getState(); |
| auto CallExitLoc = N->getLocationAs<CallExitBegin>(); |
| if (CallExitLoc) { |
| LastReturnState = State; |
| ValueAtReturn = LastReturnState->getSVal(RegionOfInterest); |
| } |
| |
| FramesModifyingCalculated.insert(N->getLocationContext()->getStackFrame()); |
| |
| if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtReturn)) { |
| const StackFrameContext *SCtx = N->getStackFrame(); |
| while (!SCtx->inTopFrame()) { |
| auto p = FramesModifyingRegion.insert(SCtx); |
| if (!p.second) |
| break; // Frame and all its parents already inserted. |
| SCtx = SCtx->getParent()->getStackFrame(); |
| } |
| } |
| |
| // Stop calculation at the call to the current function. |
| if (auto CE = N->getLocationAs<CallEnter>()) |
| if (CE->getCalleeContext() == OriginalSCtx) |
| break; |
| |
| N = N->getFirstPred(); |
| } while (N); |
| } |
| |
| static llvm::StringLiteral WillBeUsedForACondition = |
| ", which participates in a condition later"; |
| |
| PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote( |
| PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N, |
| const RegionVector &FieldChain, const MemRegion *MatchedRegion, |
| StringRef FirstElement, bool FirstIsReferenceType, |
| unsigned IndirectionLevel) { |
| // Optimistically suppress uninitialized value bugs that result |
| // from system headers having a chance to initialize the value |
| // but failing to do so. It's too unlikely a system header's fault. |
| // It's much more likely a situation in which the function has a failure |
| // mode that the user decided not to check. If we want to hunt such |
| // omitted checks, we should provide an explicit function-specific note |
| // describing the precondition under which the function isn't supposed to |
| // initialize its out-parameter, and additionally check that such |
| // precondition can actually be fulfilled on the current path. |
| if (Call.isInSystemHeader()) { |
| // We make an exception for system header functions that have no branches. |
| // Such functions unconditionally fail to initialize the variable. |
| // If they call other functions that have more paths within them, |
| // this suppression would still apply when we visit these inner functions. |
| // One common example of a standard function that doesn't ever initialize |
| // its out parameter is operator placement new; it's up to the follow-up |
| // constructor (if any) to initialize the memory. |
| if (!N->getStackFrame()->getCFG()->isLinear()) |
| R.markInvalid(getTag(), nullptr); |
| return nullptr; |
| } |
| |
| PathDiagnosticLocation L = |
| PathDiagnosticLocation::create(N->getLocation(), SM); |
| |
| // For now this shouldn't trigger, but once it does (as we add more |
| // functions to the body farm), we'll need to decide if these reports |
| // are worth suppressing as well. |
| if (!L.hasValidLocation()) |
| return nullptr; |
| |
| SmallString<256> sbuf; |
| llvm::raw_svector_ostream os(sbuf); |
| os << "Returning without writing to '"; |
| |
| // Do not generate the note if failed to pretty-print. |
| if (!prettyPrintRegionName(FirstElement, FirstIsReferenceType, MatchedRegion, |
| FieldChain, IndirectionLevel, os)) |
| return nullptr; |
| |
| os << "'"; |
| if (TKind == bugreporter::TrackingKind::Condition) |
| os << WillBeUsedForACondition; |
| return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); |
| } |
| |
| bool NoStoreFuncVisitor::prettyPrintRegionName(StringRef FirstElement, |
| bool FirstIsReferenceType, |
| const MemRegion *MatchedRegion, |
| const RegionVector &FieldChain, |
| int IndirectionLevel, |
| llvm::raw_svector_ostream &os) { |
| |
| if (FirstIsReferenceType) |
| IndirectionLevel--; |
| |
| RegionVector RegionSequence; |
| |
| // Add the regions in the reverse order, then reverse the resulting array. |
| assert(RegionOfInterest->isSubRegionOf(MatchedRegion)); |
| const MemRegion *R = RegionOfInterest; |
| while (R != MatchedRegion) { |
| RegionSequence.push_back(R); |
| R = cast<SubRegion>(R)->getSuperRegion(); |
| } |
| std::reverse(RegionSequence.begin(), RegionSequence.end()); |
| RegionSequence.append(FieldChain.begin(), FieldChain.end()); |
| |
| StringRef Sep; |
| for (const MemRegion *R : RegionSequence) { |
| |
| // Just keep going up to the base region. |
| // Element regions may appear due to casts. |
| if (isa<CXXBaseObjectRegion>(R) || isa<CXXTempObjectRegion>(R)) |
| continue; |
| |
| if (Sep.empty()) |
| Sep = prettyPrintFirstElement(FirstElement, |
| /*MoreItemsExpected=*/true, |
| IndirectionLevel, os); |
| |
| os << Sep; |
| |
| // Can only reasonably pretty-print DeclRegions. |
| if (!isa<DeclRegion>(R)) |
| return false; |
| |
| const auto *DR = cast<DeclRegion>(R); |
| Sep = DR->getValueType()->isAnyPointerType() ? "->" : "."; |
| DR->getDecl()->getDeclName().print(os, PP); |
| } |
| |
| if (Sep.empty()) |
| prettyPrintFirstElement(FirstElement, |
| /*MoreItemsExpected=*/false, IndirectionLevel, os); |
| return true; |
| } |
| |
| StringRef NoStoreFuncVisitor::prettyPrintFirstElement( |
| StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel, |
| llvm::raw_svector_ostream &os) { |
| StringRef Out = "."; |
| |
| if (IndirectionLevel > 0 && MoreItemsExpected) { |
| IndirectionLevel--; |
| Out = "->"; |
| } |
| |
| if (IndirectionLevel > 0 && MoreItemsExpected) |
| os << "("; |
| |
| for (int i = 0; i < IndirectionLevel; i++) |
| os << "*"; |
| os << FirstElement; |
| |
| if (IndirectionLevel > 0 && MoreItemsExpected) |
| os << ")"; |
| |
| return Out; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of MacroNullReturnSuppressionVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Suppress null-pointer-dereference bugs where dereferenced null was returned |
| /// the macro. |
| class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor { |
| const SubRegion *RegionOfInterest; |
| const SVal ValueAtDereference; |
| |
| // Do not invalidate the reports where the value was modified |
| // after it got assigned to from the macro. |
| bool WasModified = false; |
| |
| public: |
| MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V) |
| : RegionOfInterest(R), ValueAtDereference(V) {} |
| |
| PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) override { |
| if (WasModified) |
| return nullptr; |
| |
| auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>(); |
| if (!BugPoint) |
| return nullptr; |
| |
| const SourceManager &SMgr = BRC.getSourceManager(); |
| if (auto Loc = matchAssignment(N)) { |
| if (isFunctionMacroExpansion(*Loc, SMgr)) { |
| std::string MacroName = getMacroName(*Loc, BRC); |
| SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc(); |
| if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName) |
| BR.markInvalid(getTag(), MacroName.c_str()); |
| } |
| } |
| |
| if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference)) |
| WasModified = true; |
| |
| return nullptr; |
| } |
| |
| static void addMacroVisitorIfNecessary( |
| const ExplodedNode *N, const MemRegion *R, |
| bool EnableNullFPSuppression, PathSensitiveBugReport &BR, |
| const SVal V) { |
| AnalyzerOptions &Options = N->getState()->getAnalysisManager().options; |
| if (EnableNullFPSuppression && |
| Options.ShouldSuppressNullReturnPaths && V.getAs<Loc>()) |
| BR.addVisitor(std::make_unique<MacroNullReturnSuppressionVisitor>( |
| R->getAs<SubRegion>(), V)); |
| } |
| |
| void* getTag() const { |
| static int Tag = 0; |
| return static_cast<void *>(&Tag); |
| } |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const override { |
| ID.AddPointer(getTag()); |
| } |
| |
| private: |
| /// \return Source location of right hand side of an assignment |
| /// into \c RegionOfInterest, empty optional if none found. |
| Optional<SourceLocation> matchAssignment(const ExplodedNode *N) { |
| const Stmt *S = N->getStmtForDiagnostics(); |
| ProgramStateRef State = N->getState(); |
| auto *LCtx = N->getLocationContext(); |
| if (!S) |
| return None; |
| |
| if (const auto *DS = dyn_cast<DeclStmt>(S)) { |
| if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl())) |
| if (const Expr *RHS = VD->getInit()) |
| if (RegionOfInterest->isSubRegionOf( |
| State->getLValue(VD, LCtx).getAsRegion())) |
| return RHS->getBeginLoc(); |
| } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) { |
| const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion(); |
| const Expr *RHS = BO->getRHS(); |
| if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) { |
| return RHS->getBeginLoc(); |
| } |
| } |
| return None; |
| } |
| }; |
| |
| } // end of anonymous namespace |
| |
| namespace { |
| |
| /// Emits an extra note at the return statement of an interesting stack frame. |
| /// |
| /// The returned value is marked as an interesting value, and if it's null, |
| /// adds a visitor to track where it became null. |
| /// |
| /// This visitor is intended to be used when another visitor discovers that an |
| /// interesting value comes from an inlined function call. |
| class ReturnVisitor : public BugReporterVisitor { |
| const StackFrameContext *CalleeSFC; |
| enum { |
| Initial, |
| MaybeUnsuppress, |
| Satisfied |
| } Mode = Initial; |
| |
| bool EnableNullFPSuppression; |
| bool ShouldInvalidate = true; |
| AnalyzerOptions& Options; |
| bugreporter::TrackingKind TKind; |
| |
| public: |
| ReturnVisitor(const StackFrameContext *Frame, bool Suppressed, |
| AnalyzerOptions &Options, bugreporter::TrackingKind TKind) |
| : CalleeSFC(Frame), EnableNullFPSuppression(Suppressed), |
| Options(Options), TKind(TKind) {} |
| |
| static void *getTag() { |
| static int Tag = 0; |
| return static_cast<void *>(&Tag); |
| } |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const override { |
| ID.AddPointer(ReturnVisitor::getTag()); |
| ID.AddPointer(CalleeSFC); |
| ID.AddBoolean(EnableNullFPSuppression); |
| } |
| |
| /// Adds a ReturnVisitor if the given statement represents a call that was |
| /// inlined. |
| /// |
| /// This will search back through the ExplodedGraph, starting from the given |
| /// node, looking for when the given statement was processed. If it turns out |
| /// the statement is a call that was inlined, we add the visitor to the |
| /// bug report, so it can print a note later. |
| static void addVisitorIfNecessary(const ExplodedNode *Node, const Stmt *S, |
| PathSensitiveBugReport &BR, |
| bool InEnableNullFPSuppression, |
| bugreporter::TrackingKind TKind) { |
| if (!CallEvent::isCallStmt(S)) |
| return; |
| |
| // First, find when we processed the statement. |
| // If we work with a 'CXXNewExpr' that is going to be purged away before |
| // its call take place. We would catch that purge in the last condition |
| // as a 'StmtPoint' so we have to bypass it. |
| const bool BypassCXXNewExprEval = isa<CXXNewExpr>(S); |
| |
| // This is moving forward when we enter into another context. |
| const StackFrameContext *CurrentSFC = Node->getStackFrame(); |
| |
| do { |
| // If that is satisfied we found our statement as an inlined call. |
| if (Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>()) |
| if (CEE->getCalleeContext()->getCallSite() == S) |
| break; |
| |
| // Try to move forward to the end of the call-chain. |
| Node = Node->getFirstPred(); |
| if (!Node) |
| break; |
| |
| const StackFrameContext *PredSFC = Node->getStackFrame(); |
| |
| // If that is satisfied we found our statement. |
| // FIXME: This code currently bypasses the call site for the |
| // conservatively evaluated allocator. |
| if (!BypassCXXNewExprEval) |
| if (Optional<StmtPoint> SP = Node->getLocationAs<StmtPoint>()) |
| // See if we do not enter into another context. |
| if (SP->getStmt() == S && CurrentSFC == PredSFC) |
| break; |
| |
| CurrentSFC = PredSFC; |
| } while (Node->getStackFrame() == CurrentSFC); |
| |
| // Next, step over any post-statement checks. |
| while (Node && Node->getLocation().getAs<PostStmt>()) |
| Node = Node->getFirstPred(); |
| if (!Node) |
| return; |
| |
| // Finally, see if we inlined the call. |
| Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>(); |
| if (!CEE) |
| return; |
| |
| const StackFrameContext *CalleeContext = CEE->getCalleeContext(); |
| if (CalleeContext->getCallSite() != S) |
| return; |
| |
| // Check the return value. |
| ProgramStateRef State = Node->getState(); |
| SVal RetVal = Node->getSVal(S); |
| |
| // Handle cases where a reference is returned and then immediately used. |
| if (cast<Expr>(S)->isGLValue()) |
| if (Optional<Loc> LValue = RetVal.getAs<Loc>()) |
| RetVal = State->getSVal(*LValue); |
| |
| // See if the return value is NULL. If so, suppress the report. |
| AnalyzerOptions &Options = State->getAnalysisManager().options; |
| |
| bool EnableNullFPSuppression = false; |
| if (InEnableNullFPSuppression && |
| Options.ShouldSuppressNullReturnPaths) |
| if (Optional<Loc> RetLoc = RetVal.getAs<Loc>()) |
| EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue(); |
| |
| BR.addVisitor(std::make_unique<ReturnVisitor>(CalleeContext, |
| EnableNullFPSuppression, |
| Options, TKind)); |
| } |
| |
| PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) { |
| // Only print a message at the interesting return statement. |
| if (N->getLocationContext() != CalleeSFC) |
| return nullptr; |
| |
| Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>(); |
| if (!SP) |
| return nullptr; |
| |
| const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt()); |
| if (!Ret) |
| return nullptr; |
| |
| // Okay, we're at the right return statement, but do we have the return |
| // value available? |
| ProgramStateRef State = N->getState(); |
| SVal V = State->getSVal(Ret, CalleeSFC); |
| if (V.isUnknownOrUndef()) |
| return nullptr; |
| |
| // Don't print any more notes after this one. |
| Mode = Satisfied; |
| |
| const Expr *RetE = Ret->getRetValue(); |
| assert(RetE && "Tracking a return value for a void function"); |
| |
| // Handle cases where a reference is returned and then immediately used. |
| Optional<Loc> LValue; |
| if (RetE->isGLValue()) { |
| if ((LValue = V.getAs<Loc>())) { |
| SVal RValue = State->getRawSVal(*LValue, RetE->getType()); |
| if (RValue.getAs<DefinedSVal>()) |
| V = RValue; |
| } |
| } |
| |
| // Ignore aggregate rvalues. |
| if (V.getAs<nonloc::LazyCompoundVal>() || |
| V.getAs<nonloc::CompoundVal>()) |
| return nullptr; |
| |
| RetE = RetE->IgnoreParenCasts(); |
| |
| // Let's track the return value. |
| bugreporter::trackExpressionValue( |
| N, RetE, BR, TKind, EnableNullFPSuppression); |
| |
| // Build an appropriate message based on the return value. |
| SmallString<64> Msg; |
| llvm::raw_svector_ostream Out(Msg); |
| |
| bool WouldEventBeMeaningless = false; |
| |
| if (State->isNull(V).isConstrainedTrue()) { |
| if (V.getAs<Loc>()) { |
| |
| // If we have counter-suppression enabled, make sure we keep visiting |
| // future nodes. We want to emit a path note as well, in case |
| // the report is resurrected as valid later on. |
| if (EnableNullFPSuppression && |
| Options.ShouldAvoidSuppressingNullArgumentPaths) |
| Mode = MaybeUnsuppress; |
| |
| if (RetE->getType()->isObjCObjectPointerType()) { |
| Out << "Returning nil"; |
| } else { |
| Out << "Returning null pointer"; |
| } |
| } else { |
| Out << "Returning zero"; |
| } |
| |
| } else { |
| if (auto CI = V.getAs<nonloc::ConcreteInt>()) { |
| Out << "Returning the value " << CI->getValue(); |
| } else { |
| // There is nothing interesting about returning a value, when it is |
| // plain value without any constraints, and the function is guaranteed |
| // to return that every time. We could use CFG::isLinear() here, but |
| // constexpr branches are obvious to the compiler, not necesserily to |
| // the programmer. |
| if (N->getCFG().size() == 3) |
| WouldEventBeMeaningless = true; |
| |
| if (V.getAs<Loc>()) |
| Out << "Returning pointer"; |
| else |
| Out << "Returning value"; |
| } |
| } |
| |
| if (LValue) { |
| if (const MemRegion *MR = LValue->getAsRegion()) { |
| if (MR->canPrintPretty()) { |
| Out << " (reference to "; |
| MR->printPretty(Out); |
| Out << ")"; |
| } |
| } |
| } else { |
| // FIXME: We should have a more generalized location printing mechanism. |
| if (const auto *DR = dyn_cast<DeclRefExpr>(RetE)) |
| if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl())) |
| Out << " (loaded from '" << *DD << "')"; |
| } |
| |
| PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC); |
| if (!L.isValid() || !L.asLocation().isValid()) |
| return nullptr; |
| |
| if (TKind == bugreporter::TrackingKind::Condition) |
| Out << WillBeUsedForACondition; |
| |
| auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str()); |
| |
| // If we determined that the note is meaningless, make it prunable, and |
| // don't mark the stackframe interesting. |
| if (WouldEventBeMeaningless) |
| EventPiece->setPrunable(true); |
| else |
| BR.markInteresting(CalleeSFC); |
| |
| return EventPiece; |
| } |
| |
| PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) { |
| assert(Options.ShouldAvoidSuppressingNullArgumentPaths); |
| |
| // Are we at the entry node for this call? |
| Optional<CallEnter> CE = N->getLocationAs<CallEnter>(); |
| if (!CE) |
| return nullptr; |
| |
| if (CE->getCalleeContext() != CalleeSFC) |
| return nullptr; |
| |
| Mode = Satisfied; |
| |
| // Don't automatically suppress a report if one of the arguments is |
| // known to be a null pointer. Instead, start tracking /that/ null |
| // value back to its origin. |
| ProgramStateManager &StateMgr = BRC.getStateManager(); |
| CallEventManager &CallMgr = StateMgr.getCallEventManager(); |
| |
| ProgramStateRef State = N->getState(); |
| CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State); |
| for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) { |
| Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>(); |
| if (!ArgV) |
| continue; |
| |
| const Expr *ArgE = Call->getArgExpr(I); |
| if (!ArgE) |
| continue; |
| |
| // Is it possible for this argument to be non-null? |
| if (!State->isNull(*ArgV).isConstrainedTrue()) |
| continue; |
| |
| if (trackExpressionValue(N, ArgE, BR, TKind, EnableNullFPSuppression)) |
| ShouldInvalidate = false; |
| |
| // If we /can't/ track the null pointer, we should err on the side of |
| // false negatives, and continue towards marking this report invalid. |
| // (We will still look at the other arguments, though.) |
| } |
| |
| return nullptr; |
| } |
| |
| PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) override { |
| switch (Mode) { |
| case Initial: |
| return visitNodeInitial(N, BRC, BR); |
| case MaybeUnsuppress: |
| return visitNodeMaybeUnsuppress(N, BRC, BR); |
| case Satisfied: |
| return nullptr; |
| } |
| |
| llvm_unreachable("Invalid visit mode!"); |
| } |
| |
| void finalizeVisitor(BugReporterContext &, const ExplodedNode *, |
| PathSensitiveBugReport &BR) override { |
| if (EnableNullFPSuppression && ShouldInvalidate) |
| BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC); |
| } |
| }; |
| |
| } // end of anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of FindLastStoreBRVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| void FindLastStoreBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { |
| static int tag = 0; |
| ID.AddPointer(&tag); |
| ID.AddPointer(R); |
| ID.Add(V); |
| ID.AddInteger(static_cast<int>(TKind)); |
| ID.AddBoolean(EnableNullFPSuppression); |
| } |
| |
| /// Returns true if \p N represents the DeclStmt declaring and initializing |
| /// \p VR. |
| static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) { |
| Optional<PostStmt> P = N->getLocationAs<PostStmt>(); |
| if (!P) |
| return false; |
| |
| const DeclStmt *DS = P->getStmtAs<DeclStmt>(); |
| if (!DS) |
| return false; |
| |
| if (DS->getSingleDecl() != VR->getDecl()) |
| return false; |
| |
| const MemSpaceRegion *VarSpace = VR->getMemorySpace(); |
| const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace); |
| if (!FrameSpace) { |
| // If we ever directly evaluate global DeclStmts, this assertion will be |
| // invalid, but this still seems preferable to silently accepting an |
| // initialization that may be for a path-sensitive variable. |
| assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion"); |
| return true; |
| } |
| |
| assert(VR->getDecl()->hasLocalStorage()); |
| const LocationContext *LCtx = N->getLocationContext(); |
| return FrameSpace->getStackFrame() == LCtx->getStackFrame(); |
| } |
| |
| /// Show diagnostics for initializing or declaring a region \p R with a bad value. |
| static void showBRDiagnostics(const char *action, llvm::raw_svector_ostream &os, |
| const MemRegion *R, SVal V, const DeclStmt *DS) { |
| if (R->canPrintPretty()) { |
| R->printPretty(os); |
| os << " "; |
| } |
| |
| if (V.getAs<loc::ConcreteInt>()) { |
| bool b = false; |
| if (R->isBoundable()) { |
| if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { |
| if (TR->getValueType()->isObjCObjectPointerType()) { |
| os << action << "nil"; |
| b = true; |
| } |
| } |
| } |
| if (!b) |
| os << action << "a null pointer value"; |
| |
| } else if (auto CVal = V.getAs<nonloc::ConcreteInt>()) { |
| os << action << CVal->getValue(); |
| } else if (DS) { |
| if (V.isUndef()) { |
| if (isa<VarRegion>(R)) { |
| const auto *VD = cast<VarDecl>(DS->getSingleDecl()); |
| if (VD->getInit()) { |
| os << (R->canPrintPretty() ? "initialized" : "Initializing") |
| << " to a garbage value"; |
| } else { |
| os << (R->canPrintPretty() ? "declared" : "Declaring") |
| << " without an initial value"; |
| } |
| } |
| } else { |
| os << (R->canPrintPretty() ? "initialized" : "Initialized") |
| << " here"; |
| } |
| } |
| } |
| |
| /// Display diagnostics for passing bad region as a parameter. |
| static void showBRParamDiagnostics(llvm::raw_svector_ostream& os, |
| const VarRegion *VR, |
| SVal V) { |
| const auto *Param = cast<ParmVarDecl>(VR->getDecl()); |
| |
| os << "Passing "; |
| |
| if (V.getAs<loc::ConcreteInt>()) { |
| if (Param->getType()->isObjCObjectPointerType()) |
| os << "nil object reference"; |
| else |
| os << "null pointer value"; |
| } else if (V.isUndef()) { |
| os << "uninitialized value"; |
| } else if (auto CI = V.getAs<nonloc::ConcreteInt>()) { |
| os << "the value " << CI->getValue(); |
| } else { |
| os << "value"; |
| } |
| |
| // Printed parameter indexes are 1-based, not 0-based. |
| unsigned Idx = Param->getFunctionScopeIndex() + 1; |
| os << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter"; |
| if (VR->canPrintPretty()) { |
| os << " "; |
| VR->printPretty(os); |
| } |
| } |
| |
| /// Show default diagnostics for storing bad region. |
| static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &os, |
| const MemRegion *R, SVal V) { |
| if (V.getAs<loc::ConcreteInt>()) { |
| bool b = false; |
| if (R->isBoundable()) { |
| if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { |
| if (TR->getValueType()->isObjCObjectPointerType()) { |
| os << "nil object reference stored"; |
| b = true; |
| } |
| } |
| } |
| if (!b) { |
| if (R->canPrintPretty()) |
| os << "Null pointer value stored"; |
| else |
| os << "Storing null pointer value"; |
| } |
| |
| } else if (V.isUndef()) { |
| if (R->canPrintPretty()) |
| os << "Uninitialized value stored"; |
| else |
| os << "Storing uninitialized value"; |
| |
| } else if (auto CV = V.getAs<nonloc::ConcreteInt>()) { |
| if (R->canPrintPretty()) |
| os << "The value " << CV->getValue() << " is assigned"; |
| else |
| os << "Assigning " << CV->getValue(); |
| |
| } else { |
| if (R->canPrintPretty()) |
| os << "Value assigned"; |
| else |
| os << "Assigning value"; |
| } |
| |
| if (R->canPrintPretty()) { |
| os << " to "; |
| R->printPretty(os); |
| } |
| } |
| |
| PathDiagnosticPieceRef |
| FindLastStoreBRVisitor::VisitNode(const ExplodedNode *Succ, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) { |
| if (Satisfied) |
| return nullptr; |
| |
| const ExplodedNode *StoreSite = nullptr; |
| const ExplodedNode *Pred = Succ->getFirstPred(); |
| const Expr *InitE = nullptr; |
| bool IsParam = false; |
| |
| // First see if we reached the declaration of the region. |
| if (const auto *VR = dyn_cast<VarRegion>(R)) { |
| if (isInitializationOfVar(Pred, VR)) { |
| StoreSite = Pred; |
| InitE = VR->getDecl()->getInit(); |
| } |
| } |
| |
| // If this is a post initializer expression, initializing the region, we |
| // should track the initializer expression. |
| if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) { |
| const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue(); |
| if (FieldReg == R) { |
| StoreSite = Pred; |
| InitE = PIP->getInitializer()->getInit(); |
| } |
| } |
| |
| // Otherwise, see if this is the store site: |
| // (1) Succ has this binding and Pred does not, i.e. this is |
| // where the binding first occurred. |
| // (2) Succ has this binding and is a PostStore node for this region, i.e. |
| // the same binding was re-assigned here. |
| if (!StoreSite) { |
| if (Succ->getState()->getSVal(R) != V) |
| return nullptr; |
| |
| if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) { |
| Optional<PostStore> PS = Succ->getLocationAs<PostStore>(); |
| if (!PS || PS->getLocationValue() != R) |
| return nullptr; |
| } |
| |
| StoreSite = Succ; |
| |
| // If this is an assignment expression, we can track the value |
| // being assigned. |
| if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) |
| if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) |
| if (BO->isAssignmentOp()) |
| InitE = BO->getRHS(); |
| |
| // If this is a call entry, the variable should be a parameter. |
| // FIXME: Handle CXXThisRegion as well. (This is not a priority because |
| // 'this' should never be NULL, but this visitor isn't just for NULL and |
| // UndefinedVal.) |
| if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) { |
| if (const auto *VR = dyn_cast<VarRegion>(R)) { |
| |
| if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) { |
| ProgramStateManager &StateMgr = BRC.getStateManager(); |
| CallEventManager &CallMgr = StateMgr.getCallEventManager(); |
| |
| CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(), |
| Succ->getState()); |
| InitE = Call->getArgExpr(Param->getFunctionScopeIndex()); |
| } else { |
| // Handle Objective-C 'self'. |
| assert(isa<ImplicitParamDecl>(VR->getDecl())); |
| InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite()) |
| ->getInstanceReceiver()->IgnoreParenCasts(); |
| } |
| IsParam = true; |
| } |
| } |
| |
| // If this is a CXXTempObjectRegion, the Expr responsible for its creation |
| // is wrapped inside of it. |
| if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R)) |
| InitE = TmpR->getExpr(); |
| } |
| |
| if (!StoreSite) |
| return nullptr; |
| |
| Satisfied = true; |
| |
| // If we have an expression that provided the value, try to track where it |
| // came from. |
| if (InitE) { |
| if (!IsParam) |
| InitE = InitE->IgnoreParenCasts(); |
| |
| bugreporter::trackExpressionValue( |
| StoreSite, InitE, BR, TKind, EnableNullFPSuppression); |
| } |
| |
| if (TKind == TrackingKind::Condition && |
| !OriginSFC->isParentOf(StoreSite->getStackFrame())) |
| return nullptr; |
| |
| // Okay, we've found the binding. Emit an appropriate message. |
| SmallString<256> sbuf; |
| llvm::raw_svector_ostream os(sbuf); |
| |
| if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) { |
| const Stmt *S = PS->getStmt(); |
| const char *action = nullptr; |
| const auto *DS = dyn_cast<DeclStmt>(S); |
| const auto *VR = dyn_cast<VarRegion>(R); |
| |
| if (DS) { |
| action = R->canPrintPretty() ? "initialized to " : |
| "Initializing to "; |
| } else if (isa<BlockExpr>(S)) { |
| action = R->canPrintPretty() ? "captured by block as " : |
| "Captured by block as "; |
| if (VR) { |
| // See if we can get the BlockVarRegion. |
| ProgramStateRef State = StoreSite->getState(); |
| SVal V = StoreSite->getSVal(S); |
| if (const auto *BDR = |
| dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { |
| if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) { |
| if (auto KV = State->getSVal(OriginalR).getAs<KnownSVal>()) |
| BR.addVisitor(std::make_unique<FindLastStoreBRVisitor>( |
| *KV, OriginalR, EnableNullFPSuppression, TKind, OriginSFC)); |
| } |
| } |
| } |
| } |
| if (action) |
| showBRDiagnostics(action, os, R, V, DS); |
| |
| } else if (StoreSite->getLocation().getAs<CallEnter>()) { |
| if (const auto *VR = dyn_cast<VarRegion>(R)) |
| showBRParamDiagnostics(os, VR, V); |
| } |
| |
| if (os.str().empty()) |
| showBRDefaultDiagnostics(os, R, V); |
| |
| if (TKind == bugreporter::TrackingKind::Condition) |
| os << WillBeUsedForACondition; |
| |
| // Construct a new PathDiagnosticPiece. |
| ProgramPoint P = StoreSite->getLocation(); |
| PathDiagnosticLocation L; |
| if (P.getAs<CallEnter>() && InitE) |
| L = PathDiagnosticLocation(InitE, BRC.getSourceManager(), |
| P.getLocationContext()); |
| |
| if (!L.isValid() || !L.asLocation().isValid()) |
| L = PathDiagnosticLocation::create(P, BRC.getSourceManager()); |
| |
| if (!L.isValid() || !L.asLocation().isValid()) |
| return nullptr; |
| |
| return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of TrackConstraintBRVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { |
| static int tag = 0; |
| ID.AddPointer(&tag); |
| ID.AddBoolean(Assumption); |
| ID.Add(Constraint); |
| } |
| |
| /// Return the tag associated with this visitor. This tag will be used |
| /// to make all PathDiagnosticPieces created by this visitor. |
| const char *TrackConstraintBRVisitor::getTag() { |
| return "TrackConstraintBRVisitor"; |
| } |
| |
| bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const { |
| if (IsZeroCheck) |
| return N->getState()->isNull(Constraint).isUnderconstrained(); |
| return (bool)N->getState()->assume(Constraint, !Assumption); |
| } |
| |
| PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode( |
| const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) { |
| const ExplodedNode *PrevN = N->getFirstPred(); |
| if (IsSatisfied) |
| return nullptr; |
| |
| // Start tracking after we see the first state in which the value is |
| // constrained. |
| if (!IsTrackingTurnedOn) |
| if (!isUnderconstrained(N)) |
| IsTrackingTurnedOn = true; |
| if (!IsTrackingTurnedOn) |
| return nullptr; |
| |
| // Check if in the previous state it was feasible for this constraint |
| // to *not* be true. |
| if (isUnderconstrained(PrevN)) { |
| IsSatisfied = true; |
| |
| // As a sanity check, make sure that the negation of the constraint |
| // was infeasible in the current state. If it is feasible, we somehow |
| // missed the transition point. |
| assert(!isUnderconstrained(N)); |
| |
| // We found the transition point for the constraint. We now need to |
| // pretty-print the constraint. (work-in-progress) |
| SmallString<64> sbuf; |
| llvm::raw_svector_ostream os(sbuf); |
| |
| if (Constraint.getAs<Loc>()) { |
| os << "Assuming pointer value is "; |
| os << (Assumption ? "non-null" : "null"); |
| } |
| |
| if (os.str().empty()) |
| return nullptr; |
| |
| // Construct a new PathDiagnosticPiece. |
| ProgramPoint P = N->getLocation(); |
| PathDiagnosticLocation L = |
| PathDiagnosticLocation::create(P, BRC.getSourceManager()); |
| if (!L.isValid()) |
| return nullptr; |
| |
| auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str()); |
| X->setTag(getTag()); |
| return std::move(X); |
| } |
| |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of SuppressInlineDefensiveChecksVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| SuppressInlineDefensiveChecksVisitor:: |
| SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N) |
| : V(Value) { |
| // Check if the visitor is disabled. |
| AnalyzerOptions &Options = N->getState()->getAnalysisManager().options; |
| if (!Options.ShouldSuppressInlinedDefensiveChecks) |
| IsSatisfied = true; |
| |
| assert(N->getState()->isNull(V).isConstrainedTrue() && |
| "The visitor only tracks the cases where V is constrained to 0"); |
| } |
| |
| void SuppressInlineDefensiveChecksVisitor::Profile( |
| llvm::FoldingSetNodeID &ID) const { |
| static int id = 0; |
| ID.AddPointer(&id); |
| ID.Add(V); |
| } |
| |
| const char *SuppressInlineDefensiveChecksVisitor::getTag() { |
| return "IDCVisitor"; |
| } |
| |
| PathDiagnosticPieceRef |
| SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) { |
| const ExplodedNode *Pred = Succ->getFirstPred(); |
| if (IsSatisfied) |
| return nullptr; |
| |
| // Start tracking after we see the first state in which the value is null. |
| if (!IsTrackingTurnedOn) |
| if (Succ->getState()->isNull(V).isConstrainedTrue()) |
| IsTrackingTurnedOn = true; |
| if (!IsTrackingTurnedOn) |
| return nullptr; |
| |
| // Check if in the previous state it was feasible for this value |
| // to *not* be null. |
| if (!Pred->getState()->isNull(V).isConstrainedTrue()) { |
| IsSatisfied = true; |
| |
| assert(Succ->getState()->isNull(V).isConstrainedTrue()); |
| |
| // Check if this is inlined defensive checks. |
| const LocationContext *CurLC =Succ->getLocationContext(); |
| const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext(); |
| if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) { |
| BR.markInvalid("Suppress IDC", CurLC); |
| return nullptr; |
| } |
| |
| // Treat defensive checks in function-like macros as if they were an inlined |
| // defensive check. If the bug location is not in a macro and the |
| // terminator for the current location is in a macro then suppress the |
| // warning. |
| auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>(); |
| |
| if (!BugPoint) |
| return nullptr; |
| |
| ProgramPoint CurPoint = Succ->getLocation(); |
| const Stmt *CurTerminatorStmt = nullptr; |
| if (auto BE = CurPoint.getAs<BlockEdge>()) { |
| CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt(); |
| } else if (auto SP = CurPoint.getAs<StmtPoint>()) { |
| const Stmt *CurStmt = SP->getStmt(); |
| if (!CurStmt->getBeginLoc().isMacroID()) |
| return nullptr; |
| |
| CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap(); |
| CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt(); |
| } else { |
| return nullptr; |
| } |
| |
| if (!CurTerminatorStmt) |
| return nullptr; |
| |
| SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc(); |
| if (TerminatorLoc.isMacroID()) { |
| SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc(); |
| |
| // Suppress reports unless we are in that same macro. |
| if (!BugLoc.isMacroID() || |
| getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) { |
| BR.markInvalid("Suppress Macro IDC", CurLC); |
| } |
| return nullptr; |
| } |
| } |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TrackControlDependencyCondBRVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// Tracks the expressions that are a control dependency of the node that was |
| /// supplied to the constructor. |
| /// For example: |
| /// |
| /// cond = 1; |
| /// if (cond) |
| /// 10 / 0; |
| /// |
| /// An error is emitted at line 3. This visitor realizes that the branch |
| /// on line 2 is a control dependency of line 3, and tracks it's condition via |
| /// trackExpressionValue(). |
| class TrackControlDependencyCondBRVisitor final : public BugReporterVisitor { |
| const ExplodedNode *Origin; |
| ControlDependencyCalculator ControlDeps; |
| llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks; |
| |
| public: |
| TrackControlDependencyCondBRVisitor(const ExplodedNode *O) |
| : Origin(O), ControlDeps(&O->getCFG()) {} |
| |
| void Profile(llvm::FoldingSetNodeID &ID) const override { |
| static int x = 0; |
| ID.AddPointer(&x); |
| } |
| |
| PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) override; |
| }; |
| } // end of anonymous namespace |
| |
| static std::shared_ptr<PathDiagnosticEventPiece> |
| constructDebugPieceForTrackedCondition(const Expr *Cond, |
| const ExplodedNode *N, |
| BugReporterContext &BRC) { |
| |
| if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE || |
| !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug) |
| return nullptr; |
| |
| std::string ConditionText = Lexer::getSourceText( |
| CharSourceRange::getTokenRange(Cond->getSourceRange()), |
| BRC.getSourceManager(), |
| BRC.getASTContext().getLangOpts()); |
| |
| return std::make_shared<PathDiagnosticEventPiece>( |
| PathDiagnosticLocation::createBegin( |
| Cond, BRC.getSourceManager(), N->getLocationContext()), |
| (Twine() + "Tracking condition '" + ConditionText + "'").str()); |
| } |
| |
| static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) { |
| if (B->succ_size() != 2) |
| return false; |
| |
| const CFGBlock *Then = B->succ_begin()->getReachableBlock(); |
| const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock(); |
| |
| if (!Then || !Else) |
| return false; |
| |
| if (Then->isInevitablySinking() != Else->isInevitablySinking()) |
| return true; |
| |
| // For the following condition the following CFG would be built: |
| // |
| // -------------> |
| // / \ |
| // [B1] -> [B2] -> [B3] -> [sink] |
| // assert(A && B || C); \ \ |
| // -----------> [go on with the execution] |
| // |
| // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block |
| // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we |
| // reached the end of the condition! |
| if (const Stmt *ElseCond = Else->getTerminatorCondition()) |
| if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond)) |
| if (BinOp->isLogicalOp()) |
| return isAssertlikeBlock(Else, Context); |
| |
| return false; |
| } |
| |
| PathDiagnosticPieceRef |
| TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) { |
| // We can only reason about control dependencies within the same stack frame. |
| if (Origin->getStackFrame() != N->getStackFrame()) |
| return nullptr; |
| |
| CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock()); |
| |
| // Skip if we already inspected this block. |
| if (!VisitedBlocks.insert(NB).second) |
| return nullptr; |
| |
| CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock()); |
| |
| // TODO: Cache CFGBlocks for each ExplodedNode. |
| if (!OriginB || !NB) |
| return nullptr; |
| |
| if (isAssertlikeBlock(NB, BRC.getASTContext())) |
| return nullptr; |
| |
| if (ControlDeps.isControlDependent(OriginB, NB)) { |
| // We don't really want to explain for range loops. Evidence suggests that |
| // the only thing that leads to is the addition of calls to operator!=. |
| if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt())) |
| return nullptr; |
| |
| if (const Expr *Condition = NB->getLastCondition()) { |
| // Keeping track of the already tracked conditions on a visitor level |
| // isn't sufficient, because a new visitor is created for each tracked |
| // expression, hence the BugReport level set. |
| if (BR.addTrackedCondition(N)) { |
| bugreporter::trackExpressionValue( |
| N, Condition, BR, bugreporter::TrackingKind::Condition, |
| /*EnableNullFPSuppression=*/false); |
| return constructDebugPieceForTrackedCondition(Condition, N, BRC); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of trackExpressionValue. |
| //===----------------------------------------------------------------------===// |
| |
| static const MemRegion *getLocationRegionIfReference(const Expr *E, |
| const ExplodedNode *N) { |
| if (const auto *DR = dyn_cast<DeclRefExpr>(E)) { |
| if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { |
| if (!VD->getType()->isReferenceType()) |
| return nullptr; |
| ProgramStateManager &StateMgr = N->getState()->getStateManager(); |
| MemRegionManager &MRMgr = StateMgr.getRegionManager(); |
| return MRMgr.getVarRegion(VD, N->getLocationContext()); |
| } |
| } |
| |
| // FIXME: This does not handle other kinds of null references, |
| // for example, references from FieldRegions: |
| // struct Wrapper { int &ref; }; |
| // Wrapper w = { *(int *)0 }; |
| // w.ref = 1; |
| |
| return nullptr; |
| } |
| |
| /// \return A subexpression of {@code Ex} which represents the |
| /// expression-of-interest. |
| static const Expr *peelOffOuterExpr(const Expr *Ex, |
| const ExplodedNode *N) { |
| Ex = Ex->IgnoreParenCasts(); |
| if (const auto *FE = dyn_cast<FullExpr>(Ex)) |
| return peelOffOuterExpr(FE->getSubExpr(), N); |
| if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex)) |
| return peelOffOuterExpr(OVE->getSourceExpr(), N); |
| if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) { |
| const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm()); |
| if (PropRef && PropRef->isMessagingGetter()) { |
| const Expr *GetterMessageSend = |
| POE->getSemanticExpr(POE->getNumSemanticExprs() - 1); |
| assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts())); |
| return peelOffOuterExpr(GetterMessageSend, N); |
| } |
| } |
| |
| // Peel off the ternary operator. |
| if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) { |
| // Find a node where the branching occurred and find out which branch |
| // we took (true/false) by looking at the ExplodedGraph. |
| const ExplodedNode *NI = N; |
| do { |
| ProgramPoint ProgPoint = NI->getLocation(); |
| if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) { |
| const CFGBlock *srcBlk = BE->getSrc(); |
| if (const Stmt *term = srcBlk->getTerminatorStmt()) { |
| if (term == CO) { |
| bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst()); |
| if (TookTrueBranch) |
| return peelOffOuterExpr(CO->getTrueExpr(), N); |
| else |
| return peelOffOuterExpr(CO->getFalseExpr(), N); |
| } |
| } |
| } |
| NI = NI->getFirstPred(); |
| } while (NI); |
| } |
| |
| if (auto *BO = dyn_cast<BinaryOperator>(Ex)) |
| if (const Expr *SubEx = peelOffPointerArithmetic(BO)) |
| return peelOffOuterExpr(SubEx, N); |
| |
| if (auto *UO = dyn_cast<UnaryOperator>(Ex)) { |
| if (UO->getOpcode() == UO_LNot) |
| return peelOffOuterExpr(UO->getSubExpr(), N); |
| |
| // FIXME: There's a hack in our Store implementation that always computes |
| // field offsets around null pointers as if they are always equal to 0. |
| // The idea here is to report accesses to fields as null dereferences |
| // even though the pointer value that's being dereferenced is actually |
| // the offset of the field rather than exactly 0. |
| // See the FIXME in StoreManager's getLValueFieldOrIvar() method. |
| // This code interacts heavily with this hack; otherwise the value |
| // would not be null at all for most fields, so we'd be unable to track it. |
| if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue()) |
| if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr())) |
| return peelOffOuterExpr(DerefEx, N); |
| } |
| |
| return Ex; |
| } |
| |
| /// Find the ExplodedNode where the lvalue (the value of 'Ex') |
| /// was computed. |
| static const ExplodedNode* findNodeForExpression(const ExplodedNode *N, |
| const Expr *Inner) { |
| while (N) { |
| if (N->getStmtForDiagnostics() == Inner) |
| return N; |
| N = N->getFirstPred(); |
| } |
| return N; |
| } |
| |
| bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode, |
| const Expr *E, |
| PathSensitiveBugReport &report, |
| bugreporter::TrackingKind TKind, |
| bool EnableNullFPSuppression) { |
| |
| if (!E || !InputNode) |
| return false; |
| |
| const Expr *Inner = peelOffOuterExpr(E, InputNode); |
| const ExplodedNode *LVNode = findNodeForExpression(InputNode, Inner); |
| if (!LVNode) |
| return false; |
| |
| ProgramStateRef LVState = LVNode->getState(); |
| const StackFrameContext *SFC = LVNode->getStackFrame(); |
| |
| // We only track expressions if we believe that they are important. Chances |
| // are good that control dependencies to the tracking point are also improtant |
| // because of this, let's explain why we believe control reached this point. |
| // TODO: Shouldn't we track control dependencies of every bug location, rather |
| // than only tracked expressions? |
| if (LVState->getAnalysisManager().getAnalyzerOptions().ShouldTrackConditions) |
| report.addVisitor(std::make_unique<TrackControlDependencyCondBRVisitor>( |
| InputNode)); |
| |
| // The message send could be nil due to the receiver being nil. |
| // At this point in the path, the receiver should be live since we are at the |
| // message send expr. If it is nil, start tracking it. |
| if (const Expr *Receiver = NilReceiverBRVisitor::getNilReceiver(Inner, LVNode)) |
| trackExpressionValue( |
| LVNode, Receiver, report, TKind, EnableNullFPSuppression); |
| |
| // Track the index if this is an array subscript. |
| if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner)) |
| trackExpressionValue( |
| LVNode, Arr->getIdx(), report, TKind, /*EnableNullFPSuppression*/false); |
| |
| // See if the expression we're interested refers to a variable. |
| // If so, we can track both its contents and constraints on its value. |
| if (ExplodedGraph::isInterestingLValueExpr(Inner)) { |
| SVal LVal = LVNode->getSVal(Inner); |
| |
| const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode); |
| bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue(); |
| |
| // If this is a C++ reference to a null pointer, we are tracking the |
| // pointer. In addition, we should find the store at which the reference |
| // got initialized. |
| if (RR && !LVIsNull) |
| if (auto KV = LVal.getAs<KnownSVal>()) |
| report.addVisitor(std::make_unique<FindLastStoreBRVisitor>( |
| *KV, RR, EnableNullFPSuppression, TKind, SFC)); |
| |
| // In case of C++ references, we want to differentiate between a null |
| // reference and reference to null pointer. |
| // If the LVal is null, check if we are dealing with null reference. |
| // For those, we want to track the location of the reference. |
| const MemRegion *R = (RR && LVIsNull) ? RR : |
| LVNode->getSVal(Inner).getAsRegion(); |
| |
| if (R) { |
| |
| // Mark both the variable region and its contents as interesting. |
| SVal V = LVState->getRawSVal(loc::MemRegionVal(R)); |
| report.addVisitor( |
| std::make_unique<NoStoreFuncVisitor>(cast<SubRegion>(R), TKind)); |
| |
| MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary( |
| LVNode, R, EnableNullFPSuppression, report, V); |
| |
| report.markInteresting(V, TKind); |
| report.addVisitor(std::make_unique<UndefOrNullArgVisitor>(R)); |
| |
| // If the contents are symbolic and null, find out when they became null. |
| if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true)) |
| if (LVState->isNull(V).isConstrainedTrue()) |
| report.addVisitor(std::make_unique<TrackConstraintBRVisitor>( |
| V.castAs<DefinedSVal>(), false)); |
| |
| // Add visitor, which will suppress inline defensive checks. |
| if (auto DV = V.getAs<DefinedSVal>()) |
| if (!DV->isZeroConstant() && LVState->isNull(*DV).isConstrainedTrue() && |
| EnableNullFPSuppression) |
| report.addVisitor( |
| std::make_unique<SuppressInlineDefensiveChecksVisitor>(*DV, |
| LVNode)); |
| |
| if (auto KV = V.getAs<KnownSVal>()) |
| report.addVisitor(std::make_unique<FindLastStoreBRVisitor>( |
| *KV, R, EnableNullFPSuppression, TKind, SFC)); |
| return true; |
| } |
| } |
| |
| // If the expression is not an "lvalue expression", we can still |
| // track the constraints on its contents. |
| SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext()); |
| |
| ReturnVisitor::addVisitorIfNecessary( |
| LVNode, Inner, report, EnableNullFPSuppression, TKind); |
| |
| // Is it a symbolic value? |
| if (auto L = V.getAs<loc::MemRegionVal>()) { |
| // FIXME: this is a hack for fixing a later crash when attempting to |
| // dereference a void* pointer. |
| // We should not try to dereference pointers at all when we don't care |
| // what is written inside the pointer. |
| bool CanDereference = true; |
| if (const auto *SR = L->getRegionAs<SymbolicRegion>()) { |
| if (SR->getSymbol()->getType()->getPointeeType()->isVoidType()) |
| CanDereference = false; |
| } else if (L->getRegionAs<AllocaRegion>()) |
| CanDereference = false; |
| |
| // At this point we are dealing with the region's LValue. |
| // However, if the rvalue is a symbolic region, we should track it as well. |
| // Try to use the correct type when looking up the value. |
| SVal RVal; |
| if (ExplodedGraph::isInterestingLValueExpr(Inner)) |
| RVal = LVState->getRawSVal(L.getValue(), Inner->getType()); |
| else if (CanDereference) |
| RVal = LVState->getSVal(L->getRegion()); |
| |
| if (CanDereference) { |
| report.addVisitor( |
| std::make_unique<UndefOrNullArgVisitor>(L->getRegion())); |
| |
| if (auto KV = RVal.getAs<KnownSVal>()) |
| report.addVisitor(std::make_unique<FindLastStoreBRVisitor>( |
| *KV, L->getRegion(), EnableNullFPSuppression, TKind, SFC)); |
| } |
| |
| const MemRegion *RegionRVal = RVal.getAsRegion(); |
| if (RegionRVal && isa<SymbolicRegion>(RegionRVal)) { |
| report.markInteresting(RegionRVal, TKind); |
| report.addVisitor(std::make_unique<TrackConstraintBRVisitor>( |
| loc::MemRegionVal(RegionRVal), /*assumption=*/false)); |
| } |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of NulReceiverBRVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S, |
| const ExplodedNode *N) { |
| const auto *ME = dyn_cast<ObjCMessageExpr>(S); |
| if (!ME) |
| return nullptr; |
| if (const Expr *Receiver = ME->getInstanceReceiver()) { |
| ProgramStateRef state = N->getState(); |
| SVal V = N->getSVal(Receiver); |
| if (state->isNull(V).isConstrainedTrue()) |
| return Receiver; |
| } |
| return nullptr; |
| } |
| |
| PathDiagnosticPieceRef |
| NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) { |
| Optional<PreStmt> P = N->getLocationAs<PreStmt>(); |
| if (!P) |
| return nullptr; |
| |
| const Stmt *S = P->getStmt(); |
| const Expr *Receiver = getNilReceiver(S, N); |
| if (!Receiver) |
| return nullptr; |
| |
| llvm::SmallString<256> Buf; |
| llvm::raw_svector_ostream OS(Buf); |
| |
| if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) { |
| OS << "'"; |
| ME->getSelector().print(OS); |
| OS << "' not called"; |
| } |
| else { |
| OS << "No method is called"; |
| } |
| OS << " because the receiver is nil"; |
| |
| // The receiver was nil, and hence the method was skipped. |
| // Register a BugReporterVisitor to issue a message telling us how |
| // the receiver was null. |
| bugreporter::trackExpressionValue( |
| N, Receiver, BR, bugreporter::TrackingKind::Thorough, |
| /*EnableNullFPSuppression*/ false); |
| // Issue a message saying that the method was skipped. |
| PathDiagnosticLocation L(Receiver, BRC.getSourceManager(), |
| N->getLocationContext()); |
| return std::make_shared<PathDiagnosticEventPiece>(L, OS.str()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Visitor that tries to report interesting diagnostics from conditions. |
| //===----------------------------------------------------------------------===// |
| |
| /// Return the tag associated with this visitor. This tag will be used |
| /// to make all PathDiagnosticPieces created by this visitor. |
| const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; } |
| |
| PathDiagnosticPieceRef |
| ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) { |
| auto piece = VisitNodeImpl(N, BRC, BR); |
| if (piece) { |
| piece->setTag(getTag()); |
| if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get())) |
| ev->setPrunable(true, /* override */ false); |
| } |
| return piece; |
| } |
| |
| PathDiagnosticPieceRef |
| ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &BR) { |
| ProgramPoint ProgPoint = N->getLocation(); |
| const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags = |
| ExprEngine::geteagerlyAssumeBinOpBifurcationTags(); |
| |
| // If an assumption was made on a branch, it should be caught |
| // here by looking at the state transition. |
| if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) { |
| const CFGBlock *SrcBlock = BE->getSrc(); |
| if (const Stmt *Term = SrcBlock->getTerminatorStmt()) { |
| // If the tag of the previous node is 'Eagerly Assume...' the current |
| // 'BlockEdge' has the same constraint information. We do not want to |
| // report the value as it is just an assumption on the predecessor node |
| // which will be caught in the next VisitNode() iteration as a 'PostStmt'. |
| const ProgramPointTag *PreviousNodeTag = |
| N->getFirstPred()->getLocation().getTag(); |
| if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second) |
| return nullptr; |
| |
| return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC); |
| } |
| return nullptr; |
| } |
| |
| if (Optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) { |
| const ProgramPointTag *CurrentNodeTag = PS->getTag(); |
| if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second) |
| return nullptr; |
| |
| bool TookTrue = CurrentNodeTag == Tags.first; |
| return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue); |
| } |
| |
| return nullptr; |
| } |
| |
| PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator( |
| const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk, |
| const CFGBlock *dstBlk, PathSensitiveBugReport &R, |
| BugReporterContext &BRC) { |
| const Expr *Cond = nullptr; |
| |
| // In the code below, Term is a CFG terminator and Cond is a branch condition |
| // expression upon which the decision is made on this terminator. |
| // |
| // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator, |
| // and "x == 0" is the respective condition. |
| // |
| // Another example: in "if (x && y)", we've got two terminators and two |
| // conditions due to short-circuit nature of operator "&&": |
| // 1. The "if (x && y)" statement is a terminator, |
| // and "y" is the respective condition. |
| // 2. Also "x && ..." is another terminator, |
| // and "x" is its condition. |
| |
| switch (Term->getStmtClass()) { |
| // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit |
| // more tricky because there are more than two branches to account for. |
| default: |
| return nullptr; |
| case Stmt::IfStmtClass: |
| Cond = cast<IfStmt>(Term)->getCond(); |
| break; |
| case Stmt::ConditionalOperatorClass: |
| Cond = cast<ConditionalOperator>(Term)->getCond(); |
| break; |
| case Stmt::BinaryOperatorClass: |
| // When we encounter a logical operator (&& or ||) as a CFG terminator, |
| // then the condition is actually its LHS; otherwise, we'd encounter |
| // the parent, such as if-statement, as a terminator. |
| const auto *BO = cast<BinaryOperator>(Term); |
| assert(BO->isLogicalOp() && |
| "CFG terminator is not a short-circuit operator!"); |
| Cond = BO->getLHS(); |
| break; |
| } |
| |
| Cond = Cond->IgnoreParens(); |
| |
| // However, when we encounter a logical operator as a branch condition, |
| // then the condition is actually its RHS, because LHS would be |
| // the condition for the logical operator terminator. |
| while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) { |
| if (!InnerBO->isLogicalOp()) |
| break; |
| Cond = InnerBO->getRHS()->IgnoreParens(); |
| } |
| |
| assert(Cond); |
| assert(srcBlk->succ_size() == 2); |
| const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk; |
| return VisitTrueTest(Cond, BRC, R, N, TookTrue); |
| } |
| |
| PathDiagnosticPieceRef |
| ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC, |
| PathSensitiveBugReport &R, |
| const ExplodedNode *N, bool TookTrue) { |
| ProgramStateRef CurrentState = N->getState(); |
| ProgramStateRef PrevState = N->getFirstPred()->getState(); |
| const LocationContext *LCtx = N->getLocationContext(); |
| |
| // If the constraint information is changed between the current and the |
| // previous program state we assuming the newly seen constraint information. |
| // If we cannot evaluate the condition (and the constraints are the same) |
| // the analyzer has no information about the value and just assuming it. |
| bool IsAssuming = |
| !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) || |
| CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef(); |
| |
| // These will be modified in code below, but we need to preserve the original |
| // values in case we want to throw the generic message. |
| const Expr *CondTmp = Cond; |
| bool TookTrueTmp = TookTrue; |
| |
| while (true) { |
| CondTmp = CondTmp->IgnoreParenCasts(); |
| switch (CondTmp->getStmtClass()) { |
| default: |
| break; |
| case Stmt::BinaryOperatorClass: |
| if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp), |
| BRC, R, N, TookTrueTmp, IsAssuming)) |
| return P; |
| break; |
| case Stmt::DeclRefExprClass: |
| if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp), |
| BRC, R, N, TookTrueTmp, IsAssuming)) |
| return P; |
| break; |
| case Stmt::MemberExprClass: |
| if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp), |
| BRC, R, N, TookTrueTmp, IsAssuming)) |
| return P; |
| break; |
| case Stmt::UnaryOperatorClass: { |
| const auto *UO = cast<UnaryOperator>(CondTmp); |
| if (UO->getOpcode() == UO_LNot) { |
| TookTrueTmp = !TookTrueTmp; |
| CondTmp = UO->getSubExpr(); |
| continue; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| |
| // Condition too complex to explain? Just say something so that the user |
| // knew we've made some path decision at this point. |
| // If it is too complex and we know the evaluation of the condition do not |
| // repeat the note from 'BugReporter.cpp' |
| if (!IsAssuming) |
| return nullptr; |
| |
| PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); |
| if (!Loc.isValid() || !Loc.asLocation().isValid()) |
| return nullptr; |
| |
| return std::make_shared<PathDiagnosticEventPiece>( |
| Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage); |
| } |
| |
| bool ConditionBRVisitor::patternMatch(const Expr *Ex, |
| const Expr *ParentEx, |
| raw_ostream &Out, |
| BugReporterContext &BRC, |
| PathSensitiveBugReport &report, |
| const ExplodedNode *N, |
| Optional<bool> &prunable, |
| bool IsSameFieldName) { |
| const Expr *OriginalExpr = Ex; |
| Ex = Ex->IgnoreParenCasts(); |
| |
| if (isa<GNUNullExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || |
| isa<CXXBoolLiteralExpr>(Ex) || isa<IntegerLiteral>(Ex) || |
| isa<FloatingLiteral>(Ex)) { |
| // Use heuristics to determine if the expression is a macro |
| // expanding to a literal and if so, use the macro's name. |
| SourceLocation BeginLoc = OriginalExpr->getBeginLoc(); |
| SourceLocation EndLoc = OriginalExpr->getEndLoc(); |
| if (BeginLoc.isMacroID() && EndLoc.isMacroID()) { |
| const SourceManager &SM = BRC.getSourceManager(); |
| const LangOptions &LO = BRC.getASTContext().getLangOpts(); |
| if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) && |
| Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) { |
| CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO); |
| Out << Lexer::getSourceText(R, SM, LO); |
| return false; |
| } |
| } |
| } |
| |
| if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) { |
| const bool quotes = isa<VarDecl>(DR->getDecl()); |
| if (quotes) { |
| Out << '\''; |
| const LocationContext *LCtx = N->getLocationContext(); |
| const ProgramState *state = N->getState().get(); |
| if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()), |
| LCtx).getAsRegion()) { |
| if (report.isInteresting(R)) |
| prunable = false; |
| else { |
| const ProgramState *state = N->getState().get(); |
| SVal V = state->getSVal(R); |
| if (report.isInteresting(V)) |
| prunable = false; |
| } |
| } |
| } |
| Out << DR->getDecl()->getDeclName().getAsString(); |
| if (quotes) |
| Out << '\''; |
| return quotes; |
| } |
| |
| if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) { |
| QualType OriginalTy = OriginalExpr->getType(); |
| if (OriginalTy->isPointerType()) { |
| if (IL->getValue() == 0) { |
| Out << "null"; |
| return false; |
| } |
| } |
| else if (OriginalTy->isObjCObjectPointerType()) { |
| if (IL->getValue() == 0) { |
| Out << "nil"; |
| return false; |
| } |
| } |
| |
| Out << IL->getValue(); |
| return false; |
| } |
| |
| if (const auto *ME = dyn_cast<MemberExpr>(Ex)) { |
| if (!IsSameFieldName) |
| Out << "field '" << ME->getMemberDecl()->getName() << '\''; |
| else |
| Out << '\'' |
| << Lexer::getSourceText( |
| CharSourceRange::getTokenRange(Ex->getSourceRange()), |
| BRC.getSourceManager(), BRC.getASTContext().getLangOpts(), 0) |
| << '\''; |
| } |
| |
| return false; |
| } |
| |
| PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest( |
| const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC, |
| PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue, |
| bool IsAssuming) { |
| bool shouldInvert = false; |
| Optional<bool> shouldPrune; |
| |
| // Check if the field name of the MemberExprs is ambiguous. Example: |
| // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'. |
| bool IsSameFieldName = false; |
| const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts()); |
| const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts()); |
| |
| if (LhsME && RhsME) |
| IsSameFieldName = |
| LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName(); |
| |
| SmallString<128> LhsString, RhsString; |
| { |
| llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString); |
| const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R, |
| N, shouldPrune, IsSameFieldName); |
| const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R, |
| N, shouldPrune, IsSameFieldName); |
| |
| shouldInvert = !isVarLHS && isVarRHS; |
| } |
| |
| BinaryOperator::Opcode Op = BExpr->getOpcode(); |
| |
| if (BinaryOperator::isAssignmentOp(Op)) { |
| // For assignment operators, all that we care about is that the LHS |
| // evaluates to "true" or "false". |
| return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N, |
| TookTrue); |
| } |
| |
| // For non-assignment operations, we require that we can understand |
| // both the LHS and RHS. |
| if (LhsString.empty() || RhsString.empty() || |
| !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp) |
| return nullptr; |
| |
| // Should we invert the strings if the LHS is not a variable name? |
| SmallString<256> buf; |
| llvm::raw_svector_ostream Out(buf); |
| Out << (IsAssuming ? "Assuming " : "") |
| << (shouldInvert ? RhsString : LhsString) << " is "; |
| |
| // Do we need to invert the opcode? |
| if (shouldInvert) |
| switch (Op) { |
| default: break; |
| case BO_LT: Op = BO_GT; break; |
| case BO_GT: Op = BO_LT; break; |
| case BO_LE: Op = BO_GE; break; |
| case BO_GE: Op = BO_LE; break; |
| } |
| |
| if (!TookTrue) |
| switch (Op) { |
| case BO_EQ: Op = BO_NE; break; |
| case BO_NE: Op = BO_EQ; break; |
| case BO_LT: Op = BO_GE; break; |
| case BO_GT: Op = BO_LE; break; |
| case BO_LE: Op = BO_GT; break; |
| case BO_GE: Op = BO_LT; break; |
| default: |
| return nullptr; |
| } |
| |
| switch (Op) { |
| case BO_EQ: |
| Out << "equal to "; |
| break; |
| case BO_NE: |
| Out << "not equal to "; |
| break; |
| default: |
| Out << BinaryOperator::getOpcodeStr(Op) << ' '; |
| break; |
| } |
| |
| Out << (shouldInvert ? LhsString : RhsString); |
| const LocationContext *LCtx = N->getLocationContext(); |
| const SourceManager &SM = BRC.getSourceManager(); |
| |
| if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) || |
| isVarAnInterestingCondition(BExpr->getRHS(), N, &R)) |
| Out << WillBeUsedForACondition; |
| |
| // Convert 'field ...' to 'Field ...' if it is a MemberExpr. |
| std::string Message = Out.str(); |
| Message[0] = toupper(Message[0]); |
| |
| // If we know the value create a pop-up note to the value part of 'BExpr'. |
| if (!IsAssuming) { |
| PathDiagnosticLocation Loc; |
| if (!shouldInvert) { |
| if (LhsME && LhsME->getMemberLoc().isValid()) |
| Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM); |
| else |
| Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx); |
| } else { |
| if (RhsME && RhsME->getMemberLoc().isValid()) |
| Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM); |
| else |
| Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx); |
| } |
| |
| return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message); |
| } |
| |
| PathDiagnosticLocation Loc(Cond, SM, LCtx); |
| auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message); |
| if (shouldPrune.hasValue()) |
| event->setPrunable(shouldPrune.getValue()); |
| return event; |
| } |
| |
| PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable( |
| StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC, |
| PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) { |
| // FIXME: If there's already a constraint tracker for this variable, |
| // we shouldn't emit anything here (c.f. the double note in |
| // test/Analysis/inlining/path-notes.c) |
| SmallString<256> buf; |
| llvm::raw_svector_ostream Out(buf); |
| Out << "Assuming " << LhsString << " is "; |
| |
| if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true)) |
| return nullptr; |
| |
| const LocationContext *LCtx = N->getLocationContext(); |
| PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx); |
| |
| if (isVarAnInterestingCondition(CondVarExpr, N, &report)) |
| Out << WillBeUsedForACondition; |
| |
| auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); |
| |
| if (isInterestingExpr(CondVarExpr, N, &report)) |
| event->setPrunable(false); |
| |
| return event; |
| } |
| |
| PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest( |
| const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC, |
| PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue, |
| bool IsAssuming) { |
| const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (!VD) |
| return nullptr; |
| |
| SmallString<256> Buf; |
| llvm::raw_svector_ostream Out(Buf); |
| |
| Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is "; |
| |
| if (!printValue(DRE, Out, N, TookTrue, IsAssuming)) |
| return nullptr; |
| |
| const LocationContext *LCtx = N->getLocationContext(); |
| |
| if (isVarAnInterestingCondition(DRE, N, &report)) |
| Out << WillBeUsedForACondition; |
| |
| // If we know the value create a pop-up note to the 'DRE'. |
| if (!IsAssuming) { |
| PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx); |
| return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str()); |
| } |
| |
| PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); |
| auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); |
| |
| if (isInterestingExpr(DRE, N, &report)) |
| event->setPrunable(false); |
| |
| return std::move(event); |
| } |
| |
| PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest( |
| const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC, |
| PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue, |
| bool IsAssuming) { |
| SmallString<256> Buf; |
| llvm::raw_svector_ostream Out(Buf); |
| |
| Out << (IsAssuming ? "Assuming field '" : "Field '") |
| << ME->getMemberDecl()->getName() << "' is "; |
| |
| if (!printValue(ME, Out, N, TookTrue, IsAssuming)) |
| return nullptr; |
| |
| const LocationContext *LCtx = N->getLocationContext(); |
| PathDiagnosticLocation Loc; |
| |
| // If we know the value create a pop-up note to the member of the MemberExpr. |
| if (!IsAssuming && ME->getMemberLoc().isValid()) |
| Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager()); |
| else |
| Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx); |
| |
| if (!Loc.isValid() || !Loc.asLocation().isValid()) |
| return nullptr; |
| |
| if (isVarAnInterestingCondition(ME, N, &report)) |
| Out << WillBeUsedForACondition; |
| |
| // If we know the value create a pop-up note. |
| if (!IsAssuming) |
| return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str()); |
| |
| auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); |
| if (isInterestingExpr(ME, N, &report)) |
| event->setPrunable(false); |
| return event; |
| } |
| |
| bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out, |
| const ExplodedNode *N, bool TookTrue, |
| bool IsAssuming) { |
| QualType Ty = CondVarExpr->getType(); |
| |
| if (Ty->isPointerType()) { |
| Out << (TookTrue ? "non-null" : "null"); |
| return true; |
| } |
| |
| if (Ty->isObjCObjectPointerType()) { |
| Out << (TookTrue ? "non-nil" : "nil"); |
| return true; |
| } |
| |
| if (!Ty->isIntegralOrEnumerationType()) |
| return false; |
| |
| Optional<const llvm::APSInt *> IntValue; |
| if (!IsAssuming) |
| IntValue = getConcreteIntegerValue(CondVarExpr, N); |
| |
| if (IsAssuming || !IntValue.hasValue()) { |
| if (Ty->isBooleanType()) |
| Out << (TookTrue ? "true" : "false"); |
| else |
| Out << (TookTrue ? "not equal to 0" : "0"); |
| } else { |
| if (Ty->isBooleanType()) |
| Out << (IntValue.getValue()->getBoolValue() ? "true" : "false"); |
| else |
| Out << *IntValue.getValue(); |
| } |
| |
| return true; |
| } |
| |
| constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage; |
| constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage; |
| |
| bool ConditionBRVisitor::isPieceMessageGeneric( |
| const PathDiagnosticPiece *Piece) { |
| return Piece->getString() == GenericTrueMessage || |
| Piece->getString() == GenericFalseMessage; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of LikelyFalsePositiveSuppressionBRVisitor. |
| //===----------------------------------------------------------------------===// |
| |
| void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor( |
| BugReporterContext &BRC, const ExplodedNode *N, |
| PathSensitiveBugReport &BR) { |
| // Here we suppress false positives coming from system headers. This list is |
| // based on known issues. |
| const AnalyzerOptions &Options = BRC.getAnalyzerOptions(); |
| const Decl *D = N->getLocationContext()->getDecl(); |
| |
| if (AnalysisDeclContext::isInStdNamespace(D)) { |
| // Skip reports within the 'std' namespace. Although these can sometimes be |
| // the user's fault, we currently don't report them very well, and |
| // Note that this will not help for any other data structure libraries, like |
| // TR1, Boost, or llvm/ADT. |
| if (Options.ShouldSuppressFromCXXStandardLibrary) { |
| BR.markInvalid(getTag(), nullptr); |
| return; |
| } else { |
| // If the complete 'std' suppression is not enabled, suppress reports |
| // from the 'std' namespace that are known to produce false positives. |
| |
| // The analyzer issues a false use-after-free when std::list::pop_front |
| // or std::list::pop_back are called multiple times because we cannot |
| // reason about the internal invariants of the data structure. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| const CXXRecordDecl *CD = MD->getParent(); |
| if (CD->getName() == "list") { |
| BR.markInvalid(getTag(), nullptr); |
| return; |
| } |
| } |
| |
| |