| //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Driver/Driver.h" |
| #include "InputInfo.h" |
| #include "ToolChains/AMDGPU.h" |
| #include "ToolChains/AVR.h" |
| #include "ToolChains/Ananas.h" |
| #include "ToolChains/BareMetal.h" |
| #include "ToolChains/Clang.h" |
| #include "ToolChains/CloudABI.h" |
| #include "ToolChains/Contiki.h" |
| #include "ToolChains/CrossWindows.h" |
| #include "ToolChains/Cuda.h" |
| #include "ToolChains/Darwin.h" |
| #include "ToolChains/DragonFly.h" |
| #include "ToolChains/FreeBSD.h" |
| #include "ToolChains/Fuchsia.h" |
| #include "ToolChains/Gnu.h" |
| #include "ToolChains/HIP.h" |
| #include "ToolChains/Haiku.h" |
| #include "ToolChains/Hexagon.h" |
| #include "ToolChains/Hurd.h" |
| #include "ToolChains/Lanai.h" |
| #include "ToolChains/Linux.h" |
| #include "ToolChains/MSP430.h" |
| #include "ToolChains/MSVC.h" |
| #include "ToolChains/MinGW.h" |
| #include "ToolChains/Minix.h" |
| #include "ToolChains/MipsLinux.h" |
| #include "ToolChains/Myriad.h" |
| #include "ToolChains/NaCl.h" |
| #include "ToolChains/NetBSD.h" |
| #include "ToolChains/OpenBSD.h" |
| #include "ToolChains/PS4CPU.h" |
| #include "ToolChains/PPCLinux.h" |
| #include "ToolChains/RISCVToolchain.h" |
| #include "ToolChains/Solaris.h" |
| #include "ToolChains/TCE.h" |
| #include "ToolChains/WebAssembly.h" |
| #include "ToolChains/XCore.h" |
| #include "clang/Basic/Version.h" |
| #include "clang/Config/config.h" |
| #include "clang/Driver/Action.h" |
| #include "clang/Driver/Compilation.h" |
| #include "clang/Driver/DriverDiagnostic.h" |
| #include "clang/Driver/Job.h" |
| #include "clang/Driver/Options.h" |
| #include "clang/Driver/SanitizerArgs.h" |
| #include "clang/Driver/Tool.h" |
| #include "clang/Driver/ToolChain.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSet.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/Option/Arg.h" |
| #include "llvm/Option/ArgList.h" |
| #include "llvm/Option/OptSpecifier.h" |
| #include "llvm/Option/OptTable.h" |
| #include "llvm/Option/Option.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/FormatVariadic.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/PrettyStackTrace.h" |
| #include "llvm/Support/Process.h" |
| #include "llvm/Support/Program.h" |
| #include "llvm/Support/StringSaver.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/VirtualFileSystem.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <map> |
| #include <memory> |
| #include <utility> |
| #if LLVM_ON_UNIX |
| #include <unistd.h> // getpid |
| #include <sysexits.h> // EX_IOERR |
| #endif |
| |
| using namespace clang::driver; |
| using namespace clang; |
| using namespace llvm::opt; |
| |
| // static |
| std::string Driver::GetResourcesPath(StringRef BinaryPath, |
| StringRef CustomResourceDir) { |
| // Since the resource directory is embedded in the module hash, it's important |
| // that all places that need it call this function, so that they get the |
| // exact same string ("a/../b/" and "b/" get different hashes, for example). |
| |
| // Dir is bin/ or lib/, depending on where BinaryPath is. |
| std::string Dir = llvm::sys::path::parent_path(BinaryPath); |
| |
| SmallString<128> P(Dir); |
| if (CustomResourceDir != "") { |
| llvm::sys::path::append(P, CustomResourceDir); |
| } else { |
| // On Windows, libclang.dll is in bin/. |
| // On non-Windows, libclang.so/.dylib is in lib/. |
| // With a static-library build of libclang, LibClangPath will contain the |
| // path of the embedding binary, which for LLVM binaries will be in bin/. |
| // ../lib gets us to lib/ in both cases. |
| P = llvm::sys::path::parent_path(Dir); |
| llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", |
| CLANG_VERSION_STRING); |
| } |
| |
| return P.str(); |
| } |
| |
| Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, |
| DiagnosticsEngine &Diags, |
| IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) |
| : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), |
| SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None), |
| ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), |
| DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr), |
| CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr), |
| CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false), |
| CCLogDiagnostics(false), CCGenDiagnostics(false), |
| TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc), |
| CheckInputsExist(true), GenReproducer(false), |
| SuppressMissingInputWarning(false) { |
| |
| // Provide a sane fallback if no VFS is specified. |
| if (!this->VFS) |
| this->VFS = llvm::vfs::getRealFileSystem(); |
| |
| Name = llvm::sys::path::filename(ClangExecutable); |
| Dir = llvm::sys::path::parent_path(ClangExecutable); |
| InstalledDir = Dir; // Provide a sensible default installed dir. |
| |
| #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) |
| SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; |
| #endif |
| #if defined(CLANG_CONFIG_FILE_USER_DIR) |
| UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; |
| #endif |
| |
| // Compute the path to the resource directory. |
| ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); |
| } |
| |
| void Driver::ParseDriverMode(StringRef ProgramName, |
| ArrayRef<const char *> Args) { |
| if (ClangNameParts.isEmpty()) |
| ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); |
| setDriverModeFromOption(ClangNameParts.DriverMode); |
| |
| for (const char *ArgPtr : Args) { |
| // Ignore nullptrs, they are the response file's EOL markers. |
| if (ArgPtr == nullptr) |
| continue; |
| const StringRef Arg = ArgPtr; |
| setDriverModeFromOption(Arg); |
| } |
| } |
| |
| void Driver::setDriverModeFromOption(StringRef Opt) { |
| const std::string OptName = |
| getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); |
| if (!Opt.startswith(OptName)) |
| return; |
| StringRef Value = Opt.drop_front(OptName.size()); |
| |
| if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) |
| .Case("gcc", GCCMode) |
| .Case("g++", GXXMode) |
| .Case("cpp", CPPMode) |
| .Case("cl", CLMode) |
| .Default(None)) |
| Mode = *M; |
| else |
| Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; |
| } |
| |
| InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, |
| bool IsClCompatMode, |
| bool &ContainsError) { |
| llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); |
| ContainsError = false; |
| |
| unsigned IncludedFlagsBitmask; |
| unsigned ExcludedFlagsBitmask; |
| std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = |
| getIncludeExcludeOptionFlagMasks(IsClCompatMode); |
| |
| unsigned MissingArgIndex, MissingArgCount; |
| InputArgList Args = |
| getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, |
| IncludedFlagsBitmask, ExcludedFlagsBitmask); |
| |
| // Check for missing argument error. |
| if (MissingArgCount) { |
| Diag(diag::err_drv_missing_argument) |
| << Args.getArgString(MissingArgIndex) << MissingArgCount; |
| ContainsError |= |
| Diags.getDiagnosticLevel(diag::err_drv_missing_argument, |
| SourceLocation()) > DiagnosticsEngine::Warning; |
| } |
| |
| // Check for unsupported options. |
| for (const Arg *A : Args) { |
| if (A->getOption().hasFlag(options::Unsupported)) { |
| unsigned DiagID; |
| auto ArgString = A->getAsString(Args); |
| std::string Nearest; |
| if (getOpts().findNearest( |
| ArgString, Nearest, IncludedFlagsBitmask, |
| ExcludedFlagsBitmask | options::Unsupported) > 1) { |
| DiagID = diag::err_drv_unsupported_opt; |
| Diag(DiagID) << ArgString; |
| } else { |
| DiagID = diag::err_drv_unsupported_opt_with_suggestion; |
| Diag(DiagID) << ArgString << Nearest; |
| } |
| ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > |
| DiagnosticsEngine::Warning; |
| continue; |
| } |
| |
| // Warn about -mcpu= without an argument. |
| if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { |
| Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); |
| ContainsError |= Diags.getDiagnosticLevel( |
| diag::warn_drv_empty_joined_argument, |
| SourceLocation()) > DiagnosticsEngine::Warning; |
| } |
| } |
| |
| for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { |
| unsigned DiagID; |
| auto ArgString = A->getAsString(Args); |
| std::string Nearest; |
| if (getOpts().findNearest( |
| ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { |
| DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl |
| : diag::err_drv_unknown_argument; |
| Diags.Report(DiagID) << ArgString; |
| } else { |
| DiagID = IsCLMode() |
| ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion |
| : diag::err_drv_unknown_argument_with_suggestion; |
| Diags.Report(DiagID) << ArgString << Nearest; |
| } |
| ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > |
| DiagnosticsEngine::Warning; |
| } |
| |
| return Args; |
| } |
| |
| // Determine which compilation mode we are in. We look for options which |
| // affect the phase, starting with the earliest phases, and record which |
| // option we used to determine the final phase. |
| phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, |
| Arg **FinalPhaseArg) const { |
| Arg *PhaseArg = nullptr; |
| phases::ID FinalPhase; |
| |
| // -{E,EP,P,M,MM} only run the preprocessor. |
| if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || |
| (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || |
| (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { |
| FinalPhase = phases::Preprocess; |
| |
| // --precompile only runs up to precompilation. |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { |
| FinalPhase = phases::Precompile; |
| |
| // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || |
| (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || |
| (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { |
| FinalPhase = phases::Compile; |
| |
| // clang interface stubs |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) { |
| FinalPhase = phases::IfsMerge; |
| |
| // -S only runs up to the backend. |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { |
| FinalPhase = phases::Backend; |
| |
| // -c compilation only runs up to the assembler. |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { |
| FinalPhase = phases::Assemble; |
| |
| // Otherwise do everything. |
| } else |
| FinalPhase = phases::Link; |
| |
| if (FinalPhaseArg) |
| *FinalPhaseArg = PhaseArg; |
| |
| return FinalPhase; |
| } |
| |
| static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, |
| StringRef Value, bool Claim = true) { |
| Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, |
| Args.getBaseArgs().MakeIndex(Value), Value.data()); |
| Args.AddSynthesizedArg(A); |
| if (Claim) |
| A->claim(); |
| return A; |
| } |
| |
| DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { |
| const llvm::opt::OptTable &Opts = getOpts(); |
| DerivedArgList *DAL = new DerivedArgList(Args); |
| |
| bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); |
| bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); |
| bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); |
| for (Arg *A : Args) { |
| // Unfortunately, we have to parse some forwarding options (-Xassembler, |
| // -Xlinker, -Xpreprocessor) because we either integrate their functionality |
| // (assembler and preprocessor), or bypass a previous driver ('collect2'). |
| |
| // Rewrite linker options, to replace --no-demangle with a custom internal |
| // option. |
| if ((A->getOption().matches(options::OPT_Wl_COMMA) || |
| A->getOption().matches(options::OPT_Xlinker)) && |
| A->containsValue("--no-demangle")) { |
| // Add the rewritten no-demangle argument. |
| DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); |
| |
| // Add the remaining values as Xlinker arguments. |
| for (StringRef Val : A->getValues()) |
| if (Val != "--no-demangle") |
| DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); |
| |
| continue; |
| } |
| |
| // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by |
| // some build systems. We don't try to be complete here because we don't |
| // care to encourage this usage model. |
| if (A->getOption().matches(options::OPT_Wp_COMMA) && |
| (A->getValue(0) == StringRef("-MD") || |
| A->getValue(0) == StringRef("-MMD"))) { |
| // Rewrite to -MD/-MMD along with -MF. |
| if (A->getValue(0) == StringRef("-MD")) |
| DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); |
| else |
| DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); |
| if (A->getNumValues() == 2) |
| DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); |
| continue; |
| } |
| |
| // Rewrite reserved library names. |
| if (A->getOption().matches(options::OPT_l)) { |
| StringRef Value = A->getValue(); |
| |
| // Rewrite unless -nostdlib is present. |
| if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && |
| Value == "stdc++") { |
| DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); |
| continue; |
| } |
| |
| // Rewrite unconditionally. |
| if (Value == "cc_kext") { |
| DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); |
| continue; |
| } |
| } |
| |
| // Pick up inputs via the -- option. |
| if (A->getOption().matches(options::OPT__DASH_DASH)) { |
| A->claim(); |
| for (StringRef Val : A->getValues()) |
| DAL->append(MakeInputArg(*DAL, Opts, Val, false)); |
| continue; |
| } |
| |
| DAL->append(A); |
| } |
| |
| // Enforce -static if -miamcu is present. |
| if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) |
| DAL->AddFlagArg(0, Opts.getOption(options::OPT_static)); |
| |
| // Add a default value of -mlinker-version=, if one was given and the user |
| // didn't specify one. |
| #if defined(HOST_LINK_VERSION) |
| if (!Args.hasArg(options::OPT_mlinker_version_EQ) && |
| strlen(HOST_LINK_VERSION) > 0) { |
| DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), |
| HOST_LINK_VERSION); |
| DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); |
| } |
| #endif |
| |
| return DAL; |
| } |
| |
| /// Compute target triple from args. |
| /// |
| /// This routine provides the logic to compute a target triple from various |
| /// args passed to the driver and the default triple string. |
| static llvm::Triple computeTargetTriple(const Driver &D, |
| StringRef TargetTriple, |
| const ArgList &Args, |
| StringRef DarwinArchName = "") { |
| // FIXME: Already done in Compilation *Driver::BuildCompilation |
| if (const Arg *A = Args.getLastArg(options::OPT_target)) |
| TargetTriple = A->getValue(); |
| |
| llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); |
| |
| // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made |
| // -gnu* only, and we can not change this, so we have to detect that case as |
| // being the Hurd OS. |
| if (TargetTriple.find("-unknown-gnu") != StringRef::npos || |
| TargetTriple.find("-pc-gnu") != StringRef::npos) |
| Target.setOSName("hurd"); |
| |
| // Handle Apple-specific options available here. |
| if (Target.isOSBinFormatMachO()) { |
| // If an explicit Darwin arch name is given, that trumps all. |
| if (!DarwinArchName.empty()) { |
| tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); |
| return Target; |
| } |
| |
| // Handle the Darwin '-arch' flag. |
| if (Arg *A = Args.getLastArg(options::OPT_arch)) { |
| StringRef ArchName = A->getValue(); |
| tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); |
| } |
| } |
| |
| // Handle pseudo-target flags '-mlittle-endian'/'-EL' and |
| // '-mbig-endian'/'-EB'. |
| if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, |
| options::OPT_mbig_endian)) { |
| if (A->getOption().matches(options::OPT_mlittle_endian)) { |
| llvm::Triple LE = Target.getLittleEndianArchVariant(); |
| if (LE.getArch() != llvm::Triple::UnknownArch) |
| Target = std::move(LE); |
| } else { |
| llvm::Triple BE = Target.getBigEndianArchVariant(); |
| if (BE.getArch() != llvm::Triple::UnknownArch) |
| Target = std::move(BE); |
| } |
| } |
| |
| // Skip further flag support on OSes which don't support '-m32' or '-m64'. |
| if (Target.getArch() == llvm::Triple::tce || |
| Target.getOS() == llvm::Triple::Minix) |
| return Target; |
| |
| // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. |
| Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, |
| options::OPT_m32, options::OPT_m16); |
| if (A) { |
| llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; |
| |
| if (A->getOption().matches(options::OPT_m64)) { |
| AT = Target.get64BitArchVariant().getArch(); |
| if (Target.getEnvironment() == llvm::Triple::GNUX32) |
| Target.setEnvironment(llvm::Triple::GNU); |
| } else if (A->getOption().matches(options::OPT_mx32) && |
| Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { |
| AT = llvm::Triple::x86_64; |
| Target.setEnvironment(llvm::Triple::GNUX32); |
| } else if (A->getOption().matches(options::OPT_m32)) { |
| AT = Target.get32BitArchVariant().getArch(); |
| if (Target.getEnvironment() == llvm::Triple::GNUX32) |
| Target.setEnvironment(llvm::Triple::GNU); |
| } else if (A->getOption().matches(options::OPT_m16) && |
| Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { |
| AT = llvm::Triple::x86; |
| Target.setEnvironment(llvm::Triple::CODE16); |
| } |
| |
| if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) |
| Target.setArch(AT); |
| } |
| |
| // Handle -miamcu flag. |
| if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { |
| if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) |
| D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" |
| << Target.str(); |
| |
| if (A && !A->getOption().matches(options::OPT_m32)) |
| D.Diag(diag::err_drv_argument_not_allowed_with) |
| << "-miamcu" << A->getBaseArg().getAsString(Args); |
| |
| Target.setArch(llvm::Triple::x86); |
| Target.setArchName("i586"); |
| Target.setEnvironment(llvm::Triple::UnknownEnvironment); |
| Target.setEnvironmentName(""); |
| Target.setOS(llvm::Triple::ELFIAMCU); |
| Target.setVendor(llvm::Triple::UnknownVendor); |
| Target.setVendorName("intel"); |
| } |
| |
| // If target is MIPS adjust the target triple |
| // accordingly to provided ABI name. |
| A = Args.getLastArg(options::OPT_mabi_EQ); |
| if (A && Target.isMIPS()) { |
| StringRef ABIName = A->getValue(); |
| if (ABIName == "32") { |
| Target = Target.get32BitArchVariant(); |
| if (Target.getEnvironment() == llvm::Triple::GNUABI64 || |
| Target.getEnvironment() == llvm::Triple::GNUABIN32) |
| Target.setEnvironment(llvm::Triple::GNU); |
| } else if (ABIName == "n32") { |
| Target = Target.get64BitArchVariant(); |
| if (Target.getEnvironment() == llvm::Triple::GNU || |
| Target.getEnvironment() == llvm::Triple::GNUABI64) |
| Target.setEnvironment(llvm::Triple::GNUABIN32); |
| } else if (ABIName == "64") { |
| Target = Target.get64BitArchVariant(); |
| if (Target.getEnvironment() == llvm::Triple::GNU || |
| Target.getEnvironment() == llvm::Triple::GNUABIN32) |
| Target.setEnvironment(llvm::Triple::GNUABI64); |
| } |
| } |
| |
| return Target; |
| } |
| |
| // Parse the LTO options and record the type of LTO compilation |
| // based on which -f(no-)?lto(=.*)? option occurs last. |
| void Driver::setLTOMode(const llvm::opt::ArgList &Args) { |
| LTOMode = LTOK_None; |
| if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, |
| options::OPT_fno_lto, false)) |
| return; |
| |
| StringRef LTOName("full"); |
| |
| const Arg *A = Args.getLastArg(options::OPT_flto_EQ); |
| if (A) |
| LTOName = A->getValue(); |
| |
| LTOMode = llvm::StringSwitch<LTOKind>(LTOName) |
| .Case("full", LTOK_Full) |
| .Case("thin", LTOK_Thin) |
| .Default(LTOK_Unknown); |
| |
| if (LTOMode == LTOK_Unknown) { |
| assert(A); |
| Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() |
| << A->getValue(); |
| } |
| } |
| |
| /// Compute the desired OpenMP runtime from the flags provided. |
| Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { |
| StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); |
| |
| const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); |
| if (A) |
| RuntimeName = A->getValue(); |
| |
| auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) |
| .Case("libomp", OMPRT_OMP) |
| .Case("libgomp", OMPRT_GOMP) |
| .Case("libiomp5", OMPRT_IOMP5) |
| .Default(OMPRT_Unknown); |
| |
| if (RT == OMPRT_Unknown) { |
| if (A) |
| Diag(diag::err_drv_unsupported_option_argument) |
| << A->getOption().getName() << A->getValue(); |
| else |
| // FIXME: We could use a nicer diagnostic here. |
| Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; |
| } |
| |
| return RT; |
| } |
| |
| void Driver::CreateOffloadingDeviceToolChains(Compilation &C, |
| InputList &Inputs) { |
| |
| // |
| // CUDA/HIP |
| // |
| // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA |
| // or HIP type. However, mixed CUDA/HIP compilation is not supported. |
| bool IsCuda = |
| llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { |
| return types::isCuda(I.first); |
| }); |
| bool IsHIP = |
| llvm::any_of(Inputs, |
| [](std::pair<types::ID, const llvm::opt::Arg *> &I) { |
| return types::isHIP(I.first); |
| }) || |
| C.getInputArgs().hasArg(options::OPT_hip_link); |
| if (IsCuda && IsHIP) { |
| Diag(clang::diag::err_drv_mix_cuda_hip); |
| return; |
| } |
| if (IsCuda) { |
| const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); |
| const llvm::Triple &HostTriple = HostTC->getTriple(); |
| StringRef DeviceTripleStr; |
| auto OFK = Action::OFK_Cuda; |
| DeviceTripleStr = |
| HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; |
| llvm::Triple CudaTriple(DeviceTripleStr); |
| // Use the CUDA and host triples as the key into the ToolChains map, |
| // because the device toolchain we create depends on both. |
| auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; |
| if (!CudaTC) { |
| CudaTC = std::make_unique<toolchains::CudaToolChain>( |
| *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); |
| } |
| C.addOffloadDeviceToolChain(CudaTC.get(), OFK); |
| } else if (IsHIP) { |
| const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); |
| const llvm::Triple &HostTriple = HostTC->getTriple(); |
| StringRef DeviceTripleStr; |
| auto OFK = Action::OFK_HIP; |
| DeviceTripleStr = "amdgcn-amd-amdhsa"; |
| llvm::Triple HIPTriple(DeviceTripleStr); |
| // Use the HIP and host triples as the key into the ToolChains map, |
| // because the device toolchain we create depends on both. |
| auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; |
| if (!HIPTC) { |
| HIPTC = std::make_unique<toolchains::HIPToolChain>( |
| *this, HIPTriple, *HostTC, C.getInputArgs()); |
| } |
| C.addOffloadDeviceToolChain(HIPTC.get(), OFK); |
| } |
| |
| // |
| // OpenMP |
| // |
| // We need to generate an OpenMP toolchain if the user specified targets with |
| // the -fopenmp-targets option. |
| if (Arg *OpenMPTargets = |
| C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { |
| if (OpenMPTargets->getNumValues()) { |
| // We expect that -fopenmp-targets is always used in conjunction with the |
| // option -fopenmp specifying a valid runtime with offloading support, |
| // i.e. libomp or libiomp. |
| bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( |
| options::OPT_fopenmp, options::OPT_fopenmp_EQ, |
| options::OPT_fno_openmp, false); |
| if (HasValidOpenMPRuntime) { |
| OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); |
| HasValidOpenMPRuntime = |
| OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; |
| } |
| |
| if (HasValidOpenMPRuntime) { |
| llvm::StringMap<const char *> FoundNormalizedTriples; |
| for (const char *Val : OpenMPTargets->getValues()) { |
| llvm::Triple TT(Val); |
| std::string NormalizedName = TT.normalize(); |
| |
| // Make sure we don't have a duplicate triple. |
| auto Duplicate = FoundNormalizedTriples.find(NormalizedName); |
| if (Duplicate != FoundNormalizedTriples.end()) { |
| Diag(clang::diag::warn_drv_omp_offload_target_duplicate) |
| << Val << Duplicate->second; |
| continue; |
| } |
| |
| // Store the current triple so that we can check for duplicates in the |
| // following iterations. |
| FoundNormalizedTriples[NormalizedName] = Val; |
| |
| // If the specified target is invalid, emit a diagnostic. |
| if (TT.getArch() == llvm::Triple::UnknownArch) |
| Diag(clang::diag::err_drv_invalid_omp_target) << Val; |
| else { |
| const ToolChain *TC; |
| // CUDA toolchains have to be selected differently. They pair host |
| // and device in their implementation. |
| if (TT.isNVPTX()) { |
| const ToolChain *HostTC = |
| C.getSingleOffloadToolChain<Action::OFK_Host>(); |
| assert(HostTC && "Host toolchain should be always defined."); |
| auto &CudaTC = |
| ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; |
| if (!CudaTC) |
| CudaTC = std::make_unique<toolchains::CudaToolChain>( |
| *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); |
| TC = CudaTC.get(); |
| } else |
| TC = &getToolChain(C.getInputArgs(), TT); |
| C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); |
| } |
| } |
| } else |
| Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); |
| } else |
| Diag(clang::diag::warn_drv_empty_joined_argument) |
| << OpenMPTargets->getAsString(C.getInputArgs()); |
| } |
| |
| // |
| // TODO: Add support for other offloading programming models here. |
| // |
| } |
| |
| /// Looks the given directories for the specified file. |
| /// |
| /// \param[out] FilePath File path, if the file was found. |
| /// \param[in] Dirs Directories used for the search. |
| /// \param[in] FileName Name of the file to search for. |
| /// \return True if file was found. |
| /// |
| /// Looks for file specified by FileName sequentially in directories specified |
| /// by Dirs. |
| /// |
| static bool searchForFile(SmallVectorImpl<char> &FilePath, |
| ArrayRef<std::string> Dirs, |
| StringRef FileName) { |
| SmallString<128> WPath; |
| for (const StringRef &Dir : Dirs) { |
| if (Dir.empty()) |
| continue; |
| WPath.clear(); |
| llvm::sys::path::append(WPath, Dir, FileName); |
| llvm::sys::path::native(WPath); |
| if (llvm::sys::fs::is_regular_file(WPath)) { |
| FilePath = std::move(WPath); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool Driver::readConfigFile(StringRef FileName) { |
| // Try reading the given file. |
| SmallVector<const char *, 32> NewCfgArgs; |
| if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { |
| Diag(diag::err_drv_cannot_read_config_file) << FileName; |
| return true; |
| } |
| |
| // Read options from config file. |
| llvm::SmallString<128> CfgFileName(FileName); |
| llvm::sys::path::native(CfgFileName); |
| ConfigFile = CfgFileName.str(); |
| bool ContainErrors; |
| CfgOptions = std::make_unique<InputArgList>( |
| ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); |
| if (ContainErrors) { |
| CfgOptions.reset(); |
| return true; |
| } |
| |
| if (CfgOptions->hasArg(options::OPT_config)) { |
| CfgOptions.reset(); |
| Diag(diag::err_drv_nested_config_file); |
| return true; |
| } |
| |
| // Claim all arguments that come from a configuration file so that the driver |
| // does not warn on any that is unused. |
| for (Arg *A : *CfgOptions) |
| A->claim(); |
| return false; |
| } |
| |
| bool Driver::loadConfigFile() { |
| std::string CfgFileName; |
| bool FileSpecifiedExplicitly = false; |
| |
| // Process options that change search path for config files. |
| if (CLOptions) { |
| if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { |
| SmallString<128> CfgDir; |
| CfgDir.append( |
| CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); |
| if (!CfgDir.empty()) { |
| if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) |
| SystemConfigDir.clear(); |
| else |
| SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); |
| } |
| } |
| if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { |
| SmallString<128> CfgDir; |
| CfgDir.append( |
| CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); |
| if (!CfgDir.empty()) { |
| if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) |
| UserConfigDir.clear(); |
| else |
| UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); |
| } |
| } |
| } |
| |
| // First try to find config file specified in command line. |
| if (CLOptions) { |
| std::vector<std::string> ConfigFiles = |
| CLOptions->getAllArgValues(options::OPT_config); |
| if (ConfigFiles.size() > 1) { |
| Diag(diag::err_drv_duplicate_config); |
| return true; |
| } |
| |
| if (!ConfigFiles.empty()) { |
| CfgFileName = ConfigFiles.front(); |
| assert(!CfgFileName.empty()); |
| |
| // If argument contains directory separator, treat it as a path to |
| // configuration file. |
| if (llvm::sys::path::has_parent_path(CfgFileName)) { |
| SmallString<128> CfgFilePath; |
| if (llvm::sys::path::is_relative(CfgFileName)) |
| llvm::sys::fs::current_path(CfgFilePath); |
| llvm::sys::path::append(CfgFilePath, CfgFileName); |
| if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { |
| Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; |
| return true; |
| } |
| return readConfigFile(CfgFilePath); |
| } |
| |
| FileSpecifiedExplicitly = true; |
| } |
| } |
| |
| // If config file is not specified explicitly, try to deduce configuration |
| // from executable name. For instance, an executable 'armv7l-clang' will |
| // search for config file 'armv7l-clang.cfg'. |
| if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) |
| CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; |
| |
| if (CfgFileName.empty()) |
| return false; |
| |
| // Determine architecture part of the file name, if it is present. |
| StringRef CfgFileArch = CfgFileName; |
| size_t ArchPrefixLen = CfgFileArch.find('-'); |
| if (ArchPrefixLen == StringRef::npos) |
| ArchPrefixLen = CfgFileArch.size(); |
| llvm::Triple CfgTriple; |
| CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); |
| CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); |
| if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) |
| ArchPrefixLen = 0; |
| |
| if (!StringRef(CfgFileName).endswith(".cfg")) |
| CfgFileName += ".cfg"; |
| |
| // If config file starts with architecture name and command line options |
| // redefine architecture (with options like -m32 -LE etc), try finding new |
| // config file with that architecture. |
| SmallString<128> FixedConfigFile; |
| size_t FixedArchPrefixLen = 0; |
| if (ArchPrefixLen) { |
| // Get architecture name from config file name like 'i386.cfg' or |
| // 'armv7l-clang.cfg'. |
| // Check if command line options changes effective triple. |
| llvm::Triple EffectiveTriple = computeTargetTriple(*this, |
| CfgTriple.getTriple(), *CLOptions); |
| if (CfgTriple.getArch() != EffectiveTriple.getArch()) { |
| FixedConfigFile = EffectiveTriple.getArchName(); |
| FixedArchPrefixLen = FixedConfigFile.size(); |
| // Append the rest of original file name so that file name transforms |
| // like: i386-clang.cfg -> x86_64-clang.cfg. |
| if (ArchPrefixLen < CfgFileName.size()) |
| FixedConfigFile += CfgFileName.substr(ArchPrefixLen); |
| } |
| } |
| |
| // Prepare list of directories where config file is searched for. |
| SmallVector<std::string, 3> CfgFileSearchDirs; |
| CfgFileSearchDirs.push_back(UserConfigDir); |
| CfgFileSearchDirs.push_back(SystemConfigDir); |
| CfgFileSearchDirs.push_back(Dir); |
| |
| // Try to find config file. First try file with corrected architecture. |
| llvm::SmallString<128> CfgFilePath; |
| if (!FixedConfigFile.empty()) { |
| if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) |
| return readConfigFile(CfgFilePath); |
| // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. |
| FixedConfigFile.resize(FixedArchPrefixLen); |
| FixedConfigFile.append(".cfg"); |
| if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) |
| return readConfigFile(CfgFilePath); |
| } |
| |
| // Then try original file name. |
| if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) |
| return readConfigFile(CfgFilePath); |
| |
| // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. |
| if (!ClangNameParts.ModeSuffix.empty() && |
| !ClangNameParts.TargetPrefix.empty()) { |
| CfgFileName.assign(ClangNameParts.TargetPrefix); |
| CfgFileName.append(".cfg"); |
| if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) |
| return readConfigFile(CfgFilePath); |
| } |
| |
| // Report error but only if config file was specified explicitly, by option |
| // --config. If it was deduced from executable name, it is not an error. |
| if (FileSpecifiedExplicitly) { |
| Diag(diag::err_drv_config_file_not_found) << CfgFileName; |
| for (const std::string &SearchDir : CfgFileSearchDirs) |
| if (!SearchDir.empty()) |
| Diag(diag::note_drv_config_file_searched_in) << SearchDir; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { |
| llvm::PrettyStackTraceString CrashInfo("Compilation construction"); |
| |
| // FIXME: Handle environment options which affect driver behavior, somewhere |
| // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. |
| |
| if (Optional<std::string> CompilerPathValue = |
| llvm::sys::Process::GetEnv("COMPILER_PATH")) { |
| StringRef CompilerPath = *CompilerPathValue; |
| while (!CompilerPath.empty()) { |
| std::pair<StringRef, StringRef> Split = |
| CompilerPath.split(llvm::sys::EnvPathSeparator); |
| PrefixDirs.push_back(Split.first); |
| CompilerPath = Split.second; |
| } |
| } |
| |
| // We look for the driver mode option early, because the mode can affect |
| // how other options are parsed. |
| ParseDriverMode(ClangExecutable, ArgList.slice(1)); |
| |
| // FIXME: What are we going to do with -V and -b? |
| |
| // Arguments specified in command line. |
| bool ContainsError; |
| CLOptions = std::make_unique<InputArgList>( |
| ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); |
| |
| // Try parsing configuration file. |
| if (!ContainsError) |
| ContainsError = loadConfigFile(); |
| bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); |
| |
| // All arguments, from both config file and command line. |
| InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) |
| : std::move(*CLOptions)); |
| |
| // The args for config files or /clang: flags belong to different InputArgList |
| // objects than Args. This copies an Arg from one of those other InputArgLists |
| // to the ownership of Args. |
| auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { |
| unsigned Index = Args.MakeIndex(Opt->getSpelling()); |
| Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), |
| Index, BaseArg); |
| Copy->getValues() = Opt->getValues(); |
| if (Opt->isClaimed()) |
| Copy->claim(); |
| Args.append(Copy); |
| }; |
| |
| if (HasConfigFile) |
| for (auto *Opt : *CLOptions) { |
| if (Opt->getOption().matches(options::OPT_config)) |
| continue; |
| const Arg *BaseArg = &Opt->getBaseArg(); |
| if (BaseArg == Opt) |
| BaseArg = nullptr; |
| appendOneArg(Opt, BaseArg); |
| } |
| |
| // In CL mode, look for any pass-through arguments |
| if (IsCLMode() && !ContainsError) { |
| SmallVector<const char *, 16> CLModePassThroughArgList; |
| for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { |
| A->claim(); |
| CLModePassThroughArgList.push_back(A->getValue()); |
| } |
| |
| if (!CLModePassThroughArgList.empty()) { |
| // Parse any pass through args using default clang processing rather |
| // than clang-cl processing. |
| auto CLModePassThroughOptions = std::make_unique<InputArgList>( |
| ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); |
| |
| if (!ContainsError) |
| for (auto *Opt : *CLModePassThroughOptions) { |
| appendOneArg(Opt, nullptr); |
| } |
| } |
| } |
| |
| // Check for working directory option before accessing any files |
| if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) |
| if (VFS->setCurrentWorkingDirectory(WD->getValue())) |
| Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); |
| |
| // FIXME: This stuff needs to go into the Compilation, not the driver. |
| bool CCCPrintPhases; |
| |
| // Silence driver warnings if requested |
| Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); |
| |
| // -no-canonical-prefixes is used very early in main. |
| Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); |
| |
| // Ignore -pipe. |
| Args.ClaimAllArgs(options::OPT_pipe); |
| |
| // Extract -ccc args. |
| // |
| // FIXME: We need to figure out where this behavior should live. Most of it |
| // should be outside in the client; the parts that aren't should have proper |
| // options, either by introducing new ones or by overloading gcc ones like -V |
| // or -b. |
| CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); |
| CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); |
| if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) |
| CCCGenericGCCName = A->getValue(); |
| GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, |
| options::OPT_fno_crash_diagnostics, |
| !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); |
| // FIXME: TargetTriple is used by the target-prefixed calls to as/ld |
| // and getToolChain is const. |
| if (IsCLMode()) { |
| // clang-cl targets MSVC-style Win32. |
| llvm::Triple T(TargetTriple); |
| T.setOS(llvm::Triple::Win32); |
| T.setVendor(llvm::Triple::PC); |
| T.setEnvironment(llvm::Triple::MSVC); |
| T.setObjectFormat(llvm::Triple::COFF); |
| TargetTriple = T.str(); |
| } |
| if (const Arg *A = Args.getLastArg(options::OPT_target)) |
| TargetTriple = A->getValue(); |
| if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) |
| Dir = InstalledDir = A->getValue(); |
| for (const Arg *A : Args.filtered(options::OPT_B)) { |
| A->claim(); |
| PrefixDirs.push_back(A->getValue(0)); |
| } |
| if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) |
| SysRoot = A->getValue(); |
| if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) |
| DyldPrefix = A->getValue(); |
| |
| if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) |
| ResourceDir = A->getValue(); |
| |
| if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { |
| SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) |
| .Case("cwd", SaveTempsCwd) |
| .Case("obj", SaveTempsObj) |
| .Default(SaveTempsCwd); |
| } |
| |
| setLTOMode(Args); |
| |
| // Process -fembed-bitcode= flags. |
| if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { |
| StringRef Name = A->getValue(); |
| unsigned Model = llvm::StringSwitch<unsigned>(Name) |
| .Case("off", EmbedNone) |
| .Case("all", EmbedBitcode) |
| .Case("bitcode", EmbedBitcode) |
| .Case("marker", EmbedMarker) |
| .Default(~0U); |
| if (Model == ~0U) { |
| Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) |
| << Name; |
| } else |
| BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); |
| } |
| |
| std::unique_ptr<llvm::opt::InputArgList> UArgs = |
| std::make_unique<InputArgList>(std::move(Args)); |
| |
| // Perform the default argument translations. |
| DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); |
| |
| // Owned by the host. |
| const ToolChain &TC = getToolChain( |
| *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); |
| |
| // The compilation takes ownership of Args. |
| Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, |
| ContainsError); |
| |
| if (!HandleImmediateArgs(*C)) |
| return C; |
| |
| // Construct the list of inputs. |
| InputList Inputs; |
| BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); |
| |
| // Populate the tool chains for the offloading devices, if any. |
| CreateOffloadingDeviceToolChains(*C, Inputs); |
| |
| // Construct the list of abstract actions to perform for this compilation. On |
| // MachO targets this uses the driver-driver and universal actions. |
| if (TC.getTriple().isOSBinFormatMachO()) |
| BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); |
| else |
| BuildActions(*C, C->getArgs(), Inputs, C->getActions()); |
| |
| if (CCCPrintPhases) { |
| PrintActions(*C); |
| return C; |
| } |
| |
| BuildJobs(*C); |
| |
| return C; |
| } |
| |
| static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { |
| llvm::opt::ArgStringList ASL; |
| for (const auto *A : Args) |
| A->render(Args, ASL); |
| |
| for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { |
| if (I != ASL.begin()) |
| OS << ' '; |
| Command::printArg(OS, *I, true); |
| } |
| OS << '\n'; |
| } |
| |
| bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, |
| SmallString<128> &CrashDiagDir) { |
| using namespace llvm::sys; |
| assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && |
| "Only knows about .crash files on Darwin"); |
| |
| // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ |
| // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern |
| // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. |
| path::home_directory(CrashDiagDir); |
| if (CrashDiagDir.startswith("/var/root")) |
| CrashDiagDir = "/"; |
| path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); |
| int PID = |
| #if LLVM_ON_UNIX |
| getpid(); |
| #else |
| 0; |
| #endif |
| std::error_code EC; |
| fs::file_status FileStatus; |
| TimePoint<> LastAccessTime; |
| SmallString<128> CrashFilePath; |
| // Lookup the .crash files and get the one generated by a subprocess spawned |
| // by this driver invocation. |
| for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; |
| File != FileEnd && !EC; File.increment(EC)) { |
| StringRef FileName = path::filename(File->path()); |
| if (!FileName.startswith(Name)) |
| continue; |
| if (fs::status(File->path(), FileStatus)) |
| continue; |
| llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = |
| llvm::MemoryBuffer::getFile(File->path()); |
| if (!CrashFile) |
| continue; |
| // The first line should start with "Process:", otherwise this isn't a real |
| // .crash file. |
| StringRef Data = CrashFile.get()->getBuffer(); |
| if (!Data.startswith("Process:")) |
| continue; |
| // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" |
| size_t ParentProcPos = Data.find("Parent Process:"); |
| if (ParentProcPos == StringRef::npos) |
| continue; |
| size_t LineEnd = Data.find_first_of("\n", ParentProcPos); |
| if (LineEnd == StringRef::npos) |
| continue; |
| StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); |
| int OpenBracket = -1, CloseBracket = -1; |
| for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { |
| if (ParentProcess[i] == '[') |
| OpenBracket = i; |
| if (ParentProcess[i] == ']') |
| CloseBracket = i; |
| } |
| // Extract the parent process PID from the .crash file and check whether |
| // it matches this driver invocation pid. |
| int CrashPID; |
| if (OpenBracket < 0 || CloseBracket < 0 || |
| ParentProcess.slice(OpenBracket + 1, CloseBracket) |
| .getAsInteger(10, CrashPID) || CrashPID != PID) { |
| continue; |
| } |
| |
| // Found a .crash file matching the driver pid. To avoid getting an older |
| // and misleading crash file, continue looking for the most recent. |
| // FIXME: the driver can dispatch multiple cc1 invocations, leading to |
| // multiple crashes poiting to the same parent process. Since the driver |
| // does not collect pid information for the dispatched invocation there's |
| // currently no way to distinguish among them. |
| const auto FileAccessTime = FileStatus.getLastModificationTime(); |
| if (FileAccessTime > LastAccessTime) { |
| CrashFilePath.assign(File->path()); |
| LastAccessTime = FileAccessTime; |
| } |
| } |
| |
| // If found, copy it over to the location of other reproducer files. |
| if (!CrashFilePath.empty()) { |
| EC = fs::copy_file(CrashFilePath, ReproCrashFilename); |
| if (EC) |
| return false; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // When clang crashes, produce diagnostic information including the fully |
| // preprocessed source file(s). Request that the developer attach the |
| // diagnostic information to a bug report. |
| void Driver::generateCompilationDiagnostics( |
| Compilation &C, const Command &FailingCommand, |
| StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { |
| if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) |
| return; |
| |
| // Don't try to generate diagnostics for link or dsymutil jobs. |
| if (FailingCommand.getCreator().isLinkJob() || |
| FailingCommand.getCreator().isDsymutilJob()) |
| return; |
| |
| // Print the version of the compiler. |
| PrintVersion(C, llvm::errs()); |
| |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " |
| "crash backtrace, preprocessed source, and associated run script."; |
| |
| // Suppress driver output and emit preprocessor output to temp file. |
| Mode = CPPMode; |
| CCGenDiagnostics = true; |
| |
| // Save the original job command(s). |
| Command Cmd = FailingCommand; |
| |
| // Keep track of whether we produce any errors while trying to produce |
| // preprocessed sources. |
| DiagnosticErrorTrap Trap(Diags); |
| |
| // Suppress tool output. |
| C.initCompilationForDiagnostics(); |
| |
| // Construct the list of inputs. |
| InputList Inputs; |
| BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); |
| |
| for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { |
| bool IgnoreInput = false; |
| |
| // Ignore input from stdin or any inputs that cannot be preprocessed. |
| // Check type first as not all linker inputs have a value. |
| if (types::getPreprocessedType(it->first) == types::TY_INVALID) { |
| IgnoreInput = true; |
| } else if (!strcmp(it->second->getValue(), "-")) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s) - " |
| "ignoring input from stdin."; |
| IgnoreInput = true; |
| } |
| |
| if (IgnoreInput) { |
| it = Inputs.erase(it); |
| ie = Inputs.end(); |
| } else { |
| ++it; |
| } |
| } |
| |
| if (Inputs.empty()) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s) - " |
| "no preprocessable inputs."; |
| return; |
| } |
| |
| // Don't attempt to generate preprocessed files if multiple -arch options are |
| // used, unless they're all duplicates. |
| llvm::StringSet<> ArchNames; |
| for (const Arg *A : C.getArgs()) { |
| if (A->getOption().matches(options::OPT_arch)) { |
| StringRef ArchName = A->getValue(); |
| ArchNames.insert(ArchName); |
| } |
| } |
| if (ArchNames.size() > 1) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s) - cannot generate " |
| "preprocessed source with multiple -arch options."; |
| return; |
| } |
| |
| // Construct the list of abstract actions to perform for this compilation. On |
| // Darwin OSes this uses the driver-driver and builds universal actions. |
| const ToolChain &TC = C.getDefaultToolChain(); |
| if (TC.getTriple().isOSBinFormatMachO()) |
| BuildUniversalActions(C, TC, Inputs); |
| else |
| BuildActions(C, C.getArgs(), Inputs, C.getActions()); |
| |
| BuildJobs(C); |
| |
| // If there were errors building the compilation, quit now. |
| if (Trap.hasErrorOccurred()) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s)."; |
| return; |
| } |
| |
| // Generate preprocessed output. |
| SmallVector<std::pair<int, const Command *>, 4> FailingCommands; |
| C.ExecuteJobs(C.getJobs(), FailingCommands); |
| |
| // If any of the preprocessing commands failed, clean up and exit. |
| if (!FailingCommands.empty()) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s)."; |
| return; |
| } |
| |
| const ArgStringList &TempFiles = C.getTempFiles(); |
| if (TempFiles.empty()) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s)."; |
| return; |
| } |
| |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "\n********************\n\n" |
| "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" |
| "Preprocessed source(s) and associated run script(s) are located at:"; |
| |
| SmallString<128> VFS; |
| SmallString<128> ReproCrashFilename; |
| for (const char *TempFile : TempFiles) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; |
| if (Report) |
| Report->TemporaryFiles.push_back(TempFile); |
| if (ReproCrashFilename.empty()) { |
| ReproCrashFilename = TempFile; |
| llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); |
| } |
| if (StringRef(TempFile).endswith(".cache")) { |
| // In some cases (modules) we'll dump extra data to help with reproducing |
| // the crash into a directory next to the output. |
| VFS = llvm::sys::path::filename(TempFile); |
| llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); |
| } |
| } |
| |
| // Assume associated files are based off of the first temporary file. |
| CrashReportInfo CrashInfo(TempFiles[0], VFS); |
| |
| llvm::SmallString<128> Script(CrashInfo.Filename); |
| llvm::sys::path::replace_extension(Script, "sh"); |
| std::error_code EC; |
| llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); |
| if (EC) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating run script: " << Script << " " << EC.message(); |
| } else { |
| ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" |
| << "# Driver args: "; |
| printArgList(ScriptOS, C.getInputArgs()); |
| ScriptOS << "# Original command: "; |
| Cmd.Print(ScriptOS, "\n", /*Quote=*/true); |
| Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); |
| if (!AdditionalInformation.empty()) |
| ScriptOS << "\n# Additional information: " << AdditionalInformation |
| << "\n"; |
| if (Report) |
| Report->TemporaryFiles.push_back(Script.str()); |
| Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; |
| } |
| |
| // On darwin, provide information about the .crash diagnostic report. |
| if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { |
| SmallString<128> CrashDiagDir; |
| if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << ReproCrashFilename.str(); |
| } else { // Suggest a directory for the user to look for .crash files. |
| llvm::sys::path::append(CrashDiagDir, Name); |
| CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Crash backtrace is located in"; |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << CrashDiagDir.str(); |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "(choose the .crash file that corresponds to your crash)"; |
| } |
| } |
| |
| for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, |
| options::OPT_frewrite_map_file_EQ)) |
| Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); |
| |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "\n\n********************"; |
| } |
| |
| void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { |
| // Since commandLineFitsWithinSystemLimits() may underestimate system's |
| // capacity if the tool does not support response files, there is a chance/ |
| // that things will just work without a response file, so we silently just |
| // skip it. |
| if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || |
| llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), |
| Cmd.getArguments())) |
| return; |
| |
| std::string TmpName = GetTemporaryPath("response", "txt"); |
| Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); |
| } |
| |
| int Driver::ExecuteCompilation( |
| Compilation &C, |
| SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { |
| // Just print if -### was present. |
| if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { |
| C.getJobs().Print(llvm::errs(), "\n", true); |
| return 0; |
| } |
| |
| // If there were errors building the compilation, quit now. |
| if (Diags.hasErrorOccurred()) |
| return 1; |
| |
| // Set up response file names for each command, if necessary |
| for (auto &Job : C.getJobs()) |
| setUpResponseFiles(C, Job); |
| |
| C.ExecuteJobs(C.getJobs(), FailingCommands); |
| |
| // If the command succeeded, we are done. |
| if (FailingCommands.empty()) |
| return 0; |
| |
| // Otherwise, remove result files and print extra information about abnormal |
| // failures. |
| int Res = 0; |
| for (const auto &CmdPair : FailingCommands) { |
| int CommandRes = CmdPair.first; |
| const Command *FailingCommand = CmdPair.second; |
| |
| // Remove result files if we're not saving temps. |
| if (!isSaveTempsEnabled()) { |
| const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); |
| C.CleanupFileMap(C.getResultFiles(), JA, true); |
| |
| // Failure result files are valid unless we crashed. |
| if (CommandRes < 0) |
| C.CleanupFileMap(C.getFailureResultFiles(), JA, true); |
| } |
| |
| #if LLVM_ON_UNIX |
| // llvm/lib/Support/Unix/Signals.inc will exit with a special return code |
| // for SIGPIPE. Do not print diagnostics for this case. |
| if (CommandRes == EX_IOERR) { |
| Res = CommandRes; |
| continue; |
| } |
| #endif |
| |
| // Print extra information about abnormal failures, if possible. |
| // |
| // This is ad-hoc, but we don't want to be excessively noisy. If the result |
| // status was 1, assume the command failed normally. In particular, if it |
| // was the compiler then assume it gave a reasonable error code. Failures |
| // in other tools are less common, and they generally have worse |
| // diagnostics, so always print the diagnostic there. |
| const Tool &FailingTool = FailingCommand->getCreator(); |
| |
| if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { |
| // FIXME: See FIXME above regarding result code interpretation. |
| if (CommandRes < 0) |
| Diag(clang::diag::err_drv_command_signalled) |
| << FailingTool.getShortName(); |
| else |
| Diag(clang::diag::err_drv_command_failed) |
| << FailingTool.getShortName() << CommandRes; |
| } |
| } |
| return Res; |
| } |
| |
| void Driver::PrintHelp(bool ShowHidden) const { |
| unsigned IncludedFlagsBitmask; |
| unsigned ExcludedFlagsBitmask; |
| std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = |
| getIncludeExcludeOptionFlagMasks(IsCLMode()); |
| |
| ExcludedFlagsBitmask |= options::NoDriverOption; |
| if (!ShowHidden) |
| ExcludedFlagsBitmask |= HelpHidden; |
| |
| std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); |
| getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), |
| IncludedFlagsBitmask, ExcludedFlagsBitmask, |
| /*ShowAllAliases=*/false); |
| } |
| |
| void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { |
| // FIXME: The following handlers should use a callback mechanism, we don't |
| // know what the client would like to do. |
| OS << getClangFullVersion() << '\n'; |
| const ToolChain &TC = C.getDefaultToolChain(); |
| OS << "Target: " << TC.getTripleString() << '\n'; |
| |
| // Print the threading model. |
| if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { |
| // Don't print if the ToolChain would have barfed on it already |
| if (TC.isThreadModelSupported(A->getValue())) |
| OS << "Thread model: " << A->getValue(); |
| } else |
| OS << "Thread model: " << TC.getThreadModel(); |
| OS << '\n'; |
| |
| // Print out the install directory. |
| OS << "InstalledDir: " << InstalledDir << '\n'; |
| |
| // If configuration file was used, print its path. |
| if (!ConfigFile.empty()) |
| OS << "Configuration file: " << ConfigFile << '\n'; |
| } |
| |
| /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories |
| /// option. |
| static void PrintDiagnosticCategories(raw_ostream &OS) { |
| // Skip the empty category. |
| for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; |
| ++i) |
| OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; |
| } |
| |
| void Driver::HandleAutocompletions(StringRef PassedFlags) const { |
| if (PassedFlags == "") |
| return; |
| // Print out all options that start with a given argument. This is used for |
| // shell autocompletion. |
| std::vector<std::string> SuggestedCompletions; |
| std::vector<std::string> Flags; |
| |
| unsigned short DisableFlags = |
| options::NoDriverOption | options::Unsupported | options::Ignored; |
| |
| // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," |
| // because the latter indicates that the user put space before pushing tab |
| // which should end up in a file completion. |
| const bool HasSpace = PassedFlags.endswith(","); |
| |
| // Parse PassedFlags by "," as all the command-line flags are passed to this |
| // function separated by "," |
| StringRef TargetFlags = PassedFlags; |
| while (TargetFlags != "") { |
| StringRef CurFlag; |
| std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); |
| Flags.push_back(std::string(CurFlag)); |
| } |
| |
| // We want to show cc1-only options only when clang is invoked with -cc1 or |
| // -Xclang. |
| if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) |
| DisableFlags &= ~options::NoDriverOption; |
| |
| const llvm::opt::OptTable &Opts = getOpts(); |
| StringRef Cur; |
| Cur = Flags.at(Flags.size() - 1); |
| StringRef Prev; |
| if (Flags.size() >= 2) { |
| Prev = Flags.at(Flags.size() - 2); |
| SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); |
| } |
| |
| if (SuggestedCompletions.empty()) |
| SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); |
| |
| // If Flags were empty, it means the user typed `clang [tab]` where we should |
| // list all possible flags. If there was no value completion and the user |
| // pressed tab after a space, we should fall back to a file completion. |
| // We're printing a newline to be consistent with what we print at the end of |
| // this function. |
| if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { |
| llvm::outs() << '\n'; |
| return; |
| } |
| |
| // When flag ends with '=' and there was no value completion, return empty |
| // string and fall back to the file autocompletion. |
| if (SuggestedCompletions.empty() && !Cur.endswith("=")) { |
| // If the flag is in the form of "--autocomplete=-foo", |
| // we were requested to print out all option names that start with "-foo". |
| // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". |
| SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); |
| |
| // We have to query the -W flags manually as they're not in the OptTable. |
| // TODO: Find a good way to add them to OptTable instead and them remove |
| // this code. |
| for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) |
| if (S.startswith(Cur)) |
| SuggestedCompletions.push_back(S); |
| } |
| |
| // Sort the autocomplete candidates so that shells print them out in a |
| // deterministic order. We could sort in any way, but we chose |
| // case-insensitive sorting for consistency with the -help option |
| // which prints out options in the case-insensitive alphabetical order. |
| llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { |
| if (int X = A.compare_lower(B)) |
| return X < 0; |
| return A.compare(B) > 0; |
| }); |
| |
| llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; |
| } |
| |
| bool Driver::HandleImmediateArgs(const Compilation &C) { |
| // The order these options are handled in gcc is all over the place, but we |
| // don't expect inconsistencies w.r.t. that to matter in practice. |
| |
| if (C.getArgs().hasArg(options::OPT_dumpmachine)) { |
| llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_dumpversion)) { |
| // Since -dumpversion is only implemented for pedantic GCC compatibility, we |
| // return an answer which matches our definition of __VERSION__. |
| llvm::outs() << CLANG_VERSION_STRING << "\n"; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { |
| PrintDiagnosticCategories(llvm::outs()); |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_help) || |
| C.getArgs().hasArg(options::OPT__help_hidden)) { |
| PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT__version)) { |
| // Follow gcc behavior and use stdout for --version and stderr for -v. |
| PrintVersion(C, llvm::outs()); |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_v) || |
| C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || |
| C.getArgs().hasArg(options::OPT_print_supported_cpus)) { |
| PrintVersion(C, llvm::errs()); |
| SuppressMissingInputWarning = true; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_v)) { |
| if (!SystemConfigDir.empty()) |
| llvm::errs() << "System configuration file directory: " |
| << SystemConfigDir << "\n"; |
| if (!UserConfigDir.empty()) |
| llvm::errs() << "User configuration file directory: " |
| << UserConfigDir << "\n"; |
| } |
| |
| const ToolChain &TC = C.getDefaultToolChain(); |
| |
| if (C.getArgs().hasArg(options::OPT_v)) |
| TC.printVerboseInfo(llvm::errs()); |
| |
| if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { |
| llvm::outs() << ResourceDir << '\n'; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { |
| llvm::outs() << "programs: ="; |
| bool separator = false; |
| for (const std::string &Path : TC.getProgramPaths()) { |
| if (separator) |
| llvm::outs() << llvm::sys::EnvPathSeparator; |
| llvm::outs() << Path; |
| separator = true; |
| } |
| llvm::outs() << "\n"; |
| llvm::outs() << "libraries: =" << ResourceDir; |
| |
| StringRef sysroot = C.getSysRoot(); |
| |
| for (const std::string &Path : TC.getFilePaths()) { |
| // Always print a separator. ResourceDir was the first item shown. |
| llvm::outs() << llvm::sys::EnvPathSeparator; |
| // Interpretation of leading '=' is needed only for NetBSD. |
| if (Path[0] == '=') |
| llvm::outs() << sysroot << Path.substr(1); |
| else |
| llvm::outs() << Path; |
| } |
| llvm::outs() << "\n"; |
| return false; |
| } |
| |
| // FIXME: The following handlers should use a callback mechanism, we don't |
| // know what the client would like to do. |
| if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { |
| llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; |
| return false; |
| } |
| |
| if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { |
| StringRef ProgName = A->getValue(); |
| |
| // Null program name cannot have a path. |
| if (! ProgName.empty()) |
| llvm::outs() << GetProgramPath(ProgName, TC); |
| |
| llvm::outs() << "\n"; |
| return false; |
| } |
| |
| if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { |
| StringRef PassedFlags = A->getValue(); |
| HandleAutocompletions(PassedFlags); |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { |
| ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); |
| const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); |
| RegisterEffectiveTriple TripleRAII(TC, Triple); |
| switch (RLT) { |
| case ToolChain::RLT_CompilerRT: |
| llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; |
| break; |
| case ToolChain::RLT_Libgcc: |
| llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; |
| break; |
| } |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { |
| for (const Multilib &Multilib : TC.getMultilibs()) |
| llvm::outs() << Multilib << "\n"; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { |
| const Multilib &Multilib = TC.getMultilib(); |
| if (Multilib.gccSuffix().empty()) |
| llvm::outs() << ".\n"; |
| else { |
| StringRef Suffix(Multilib.gccSuffix()); |
| assert(Suffix.front() == '/'); |
| llvm::outs() << Suffix.substr(1) << "\n"; |
| } |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_target_triple)) { |
| llvm::outs() << TC.getTripleString() << "\n"; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { |
| const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); |
| llvm::outs() << Triple.getTriple() << "\n"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| enum { |
| TopLevelAction = 0, |
| HeadSibAction = 1, |
| OtherSibAction = 2, |
| }; |
| |
| // Display an action graph human-readably. Action A is the "sink" node |
| // and latest-occuring action. Traversal is in pre-order, visiting the |
| // inputs to each action before printing the action itself. |
| static unsigned PrintActions1(const Compilation &C, Action *A, |
| std::map<Action *, unsigned> &Ids, |
| Twine Indent = {}, int Kind = TopLevelAction) { |
| if (Ids.count(A)) // A was already visited. |
| return Ids[A]; |
| |
| std::string str; |
| llvm::raw_string_ostream os(str); |
| |
| auto getSibIndent = [](int K) -> Twine { |
| return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; |
| }; |
| |
| Twine SibIndent = Indent + getSibIndent(Kind); |
| int SibKind = HeadSibAction; |
| os << Action::getClassName(A->getKind()) << ", "; |
| if (InputAction *IA = dyn_cast<InputAction>(A)) { |
| os << "\"" << IA->getInputArg().getValue() << "\""; |
| } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { |
| os << '"' << BIA->getArchName() << '"' << ", {" |
| << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; |
| } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { |
| bool IsFirst = true; |
| OA->doOnEachDependence( |
| [&](Action *A, const ToolChain *TC, const char *BoundArch) { |
| // E.g. for two CUDA device dependences whose bound arch is sm_20 and |
| // sm_35 this will generate: |
| // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" |
| // (nvptx64-nvidia-cuda:sm_35) {#ID} |
| if (!IsFirst) |
| os << ", "; |
| os << '"'; |
| if (TC) |
| os << A->getOffloadingKindPrefix(); |
| else |
| os << "host"; |
| os << " ("; |
| os << TC->getTriple().normalize(); |
| |
| if (BoundArch) |
| os << ":" << BoundArch; |
| os << ")"; |
| os << '"'; |
| os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; |
| IsFirst = false; |
| SibKind = OtherSibAction; |
| }); |
| } else { |
| const ActionList *AL = &A->getInputs(); |
| |
| if (AL->size()) { |
| const char *Prefix = "{"; |
| for (Action *PreRequisite : *AL) { |
| os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); |
| Prefix = ", "; |
| SibKind = OtherSibAction; |
| } |
| os << "}"; |
| } else |
| os << "{}"; |
| } |
| |
| // Append offload info for all options other than the offloading action |
| // itself (e.g. (cuda-device, sm_20) or (cuda-host)). |
| std::string offload_str; |
| llvm::raw_string_ostream offload_os(offload_str); |
| if (!isa<OffloadAction>(A)) { |
| auto S = A->getOffloadingKindPrefix(); |
| if (!S.empty()) { |
| offload_os << ", (" << S; |
| if (A->getOffloadingArch()) |
| offload_os << ", " << A->getOffloadingArch(); |
| offload_os << ")"; |
| } |
| } |
| |
| auto getSelfIndent = [](int K) -> Twine { |
| return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; |
| }; |
| |
| unsigned Id = Ids.size(); |
| Ids[A] = Id; |
| llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " |
| << types::getTypeName(A->getType()) << offload_os.str() << "\n"; |
| |
| return Id; |
| } |
| |
| // Print the action graphs in a compilation C. |
| // For example "clang -c file1.c file2.c" is composed of two subgraphs. |
| void Driver::PrintActions(const Compilation &C) const { |
| std::map<Action *, unsigned> Ids; |
| for (Action *A : C.getActions()) |
| PrintActions1(C, A, Ids); |
| } |
| |
| /// Check whether the given input tree contains any compilation or |
| /// assembly actions. |
| static bool ContainsCompileOrAssembleAction(const Action *A) { |
| if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || |
| isa<AssembleJobAction>(A)) |
| return true; |
| |
| for (const Action *Input : A->inputs()) |
| if (ContainsCompileOrAssembleAction(Input)) |
| return true; |
| |
| return false; |
| } |
| |
| void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, |
| const InputList &BAInputs) const { |
| DerivedArgList &Args = C.getArgs(); |
| ActionList &Actions = C.getActions(); |
| llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); |
| // Collect the list of architectures. Duplicates are allowed, but should only |
| // be handled once (in the order seen). |
| llvm::StringSet<> ArchNames; |
| SmallVector<const char *, 4> Archs; |
| for (Arg *A : Args) { |
| if (A->getOption().matches(options::OPT_arch)) { |
| // Validate the option here; we don't save the type here because its |
| // particular spelling may participate in other driver choices. |
| llvm::Triple::ArchType Arch = |
| tools::darwin::getArchTypeForMachOArchName(A->getValue()); |
| if (Arch == llvm::Triple::UnknownArch) { |
| Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); |
| continue; |
| } |
| |
| A->claim(); |
| if (ArchNames.insert(A->getValue()).second) |
| Archs.push_back(A->getValue()); |
| } |
| } |
| |
| // When there is no explicit arch for this platform, make sure we still bind |
| // the architecture (to the default) so that -Xarch_ is handled correctly. |
| if (!Archs.size()) |
| Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); |
| |
| ActionList SingleActions; |
| BuildActions(C, Args, BAInputs, SingleActions); |
| |
| // Add in arch bindings for every top level action, as well as lipo and |
| // dsymutil steps if needed. |
| for (Action* Act : SingleActions) { |
| // Make sure we can lipo this kind of output. If not (and it is an actual |
| // output) then we disallow, since we can't create an output file with the |
| // right name without overwriting it. We could remove this oddity by just |
| // changing the output names to include the arch, which would also fix |
| // -save-temps. Compatibility wins for now. |
| |
| if (Archs.size() > 1 && !types::canLipoType(Act->getType())) |
| Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) |
| << types::getTypeName(Act->getType()); |
| |
| ActionList Inputs; |
| for (unsigned i = 0, e = Archs.size(); i != e; ++i) |
| Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); |
| |
| // Lipo if necessary, we do it this way because we need to set the arch flag |
| // so that -Xarch_ gets overwritten. |
| if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) |
| Actions.append(Inputs.begin(), Inputs.end()); |
| else |
| Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); |
| |
| // Handle debug info queries. |
| Arg *A = Args.getLastArg(options::OPT_g_Group); |
| if (A && !A->getOption().matches(options::OPT_g0) && |
| !A->getOption().matches(options::OPT_gstabs) && |
| ContainsCompileOrAssembleAction(Actions.back())) { |
| |
| // Add a 'dsymutil' step if necessary, when debug info is enabled and we |
| // have a compile input. We need to run 'dsymutil' ourselves in such cases |
| // because the debug info will refer to a temporary object file which |
| // will be removed at the end of the compilation process. |
| if (Act->getType() == types::TY_Image) { |
| ActionList Inputs; |
| Inputs.push_back(Actions.back()); |
| Actions.pop_back(); |
| Actions.push_back( |
| C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); |
| } |
| |
| // Verify the debug info output. |
| if (Args.hasArg(options::OPT_verify_debug_info)) { |
| Action* LastAction = Actions.back(); |
| Actions.pop_back(); |
| Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( |
| LastAction, types::TY_Nothing)); |
| } |
| } |
| } |
| } |
| |
| bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, |
| types::ID Ty, bool TypoCorrect) const { |
| if (!getCheckInputsExist()) |
| return true; |
| |
| // stdin always exists. |
| if (Value == "-") |
| return true; |
| |
| if (getVFS().exists(Value)) |
| return true; |
| |
| if (IsCLMode()) { |
| if (!llvm::sys::path::is_absolute(Twine(Value)) && |
| llvm::sys::Process::FindInEnvPath("LIB", Value)) |
| return true; |
| |
| if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { |
| // Arguments to the /link flag might cause the linker to search for object |
| // and library files in paths we don't know about. Don't error in such |
| // cases. |
| return true; |
| } |
| } |
| |
| if (TypoCorrect) { |
| // Check if the filename is a typo for an option flag. OptTable thinks |
| // that all args that are not known options and that start with / are |
| // filenames, but e.g. `/diagnostic:caret` is more likely a typo for |
| // the option `/diagnostics:caret` than a reference to a file in the root |
| // directory. |
| unsigned IncludedFlagsBitmask; |
| unsigned ExcludedFlagsBitmask; |
| std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = |
| getIncludeExcludeOptionFlagMasks(IsCLMode()); |
| std::string Nearest; |
| if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, |
| ExcludedFlagsBitmask) <= 1) { |
| Diag(clang::diag::err_drv_no_such_file_with_suggestion) |
| << Value << Nearest; |
| return false; |
| } |
| } |
| |
| Diag(clang::diag::err_drv_no_such_file) << Value; |
| return false; |
| } |
| |
| // Construct a the list of inputs and their types. |
| void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, |
| InputList &Inputs) const { |
| const llvm::opt::OptTable &Opts = getOpts(); |
| // Track the current user specified (-x) input. We also explicitly track the |
| // argument used to set the type; we only want to claim the type when we |
| // actually use it, so we warn about unused -x arguments. |
| types::ID InputType = types::TY_Nothing; |
| Arg *InputTypeArg = nullptr; |
| |
| // The last /TC or /TP option sets the input type to C or C++ globally. |
| if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, |
| options::OPT__SLASH_TP)) { |
| InputTypeArg = TCTP; |
| InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) |
| ? types::TY_C |
| : types::TY_CXX; |
| |
| Arg *Previous = nullptr; |
| bool ShowNote = false; |
| for (Arg *A : |
| Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { |
| if (Previous) { |
| Diag(clang::diag::warn_drv_overriding_flag_option) |
| << Previous->getSpelling() << A->getSpelling(); |
| ShowNote = true; |
| } |
| Previous = A; |
| } |
| if (ShowNote) |
| Diag(clang::diag::note_drv_t_option_is_global); |
| |
| // No driver mode exposes -x and /TC or /TP; we don't support mixing them. |
| assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); |
| } |
| |
| for (Arg *A : Args) { |
| if (A->getOption().getKind() == Option::InputClass) { |
| const char *Value = A->getValue(); |
| types::ID Ty = types::TY_INVALID; |
| |
| // Infer the input type if necessary. |
| if (InputType == types::TY_Nothing) { |
| // If there was an explicit arg for this, claim it. |
| if (InputTypeArg) |
| InputTypeArg->claim(); |
| |
| // stdin must be handled specially. |
| if (memcmp(Value, "-", 2) == 0) { |
| // If running with -E, treat as a C input (this changes the builtin |
| // macros, for example). This may be overridden by -ObjC below. |
| // |
| // Otherwise emit an error but still use a valid type to avoid |
| // spurious errors (e.g., no inputs). |
| if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) |
| Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl |
| : clang::diag::err_drv_unknown_stdin_type); |
| Ty = types::TY_C; |
| } else { |
| // Otherwise lookup by extension. |
| // Fallback is C if invoked as C preprocessor, C++ if invoked with |
| // clang-cl /E, or Object otherwise. |
| // We use a host hook here because Darwin at least has its own |
| // idea of what .s is. |
| if (const char *Ext = strrchr(Value, '.')) |
| Ty = TC.LookupTypeForExtension(Ext + 1); |
| |
| if (Ty == types::TY_INVALID) { |
| if (CCCIsCPP()) |
| Ty = types::TY_C; |
| else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) |
| Ty = types::TY_CXX; |
| else |
| Ty = types::TY_Object; |
| } |
| |
| // If the driver is invoked as C++ compiler (like clang++ or c++) it |
| // should autodetect some input files as C++ for g++ compatibility. |
| if (CCCIsCXX()) { |
| types::ID OldTy = Ty; |
| Ty = types::lookupCXXTypeForCType(Ty); |
| |
| if (Ty != OldTy) |
| Diag(clang::diag::warn_drv_treating_input_as_cxx) |
| << getTypeName(OldTy) << getTypeName(Ty); |
| } |
| |
| // If running with -fthinlto-index=, extensions that normally identify |
| // native object files actually identify LLVM bitcode files. |
| if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && |
| Ty == types::TY_Object) |
| Ty = types::TY_LLVM_BC; |
| } |
| |
| // -ObjC and -ObjC++ override the default language, but only for "source |
| // files". We just treat everything that isn't a linker input as a |
| // source file. |
| // |
| // FIXME: Clean this up if we move the phase sequence into the type. |
| if (Ty != types::TY_Object) { |
| if (Args.hasArg(options::OPT_ObjC)) |
| Ty = types::TY_ObjC; |
| else if (Args.hasArg(options::OPT_ObjCXX)) |
| Ty = types::TY_ObjCXX; |
| } |
| } else { |
| assert(InputTypeArg && "InputType set w/o InputTypeArg"); |
| if (!InputTypeArg->getOption().matches(options::OPT_x)) { |
| // If emulating cl.exe, make sure that /TC and /TP don't affect input |
| // object files. |
| const char *Ext = strrchr(Value, '.'); |
| if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) |
| Ty = types::TY_Object; |
| } |
| if (Ty == types::TY_INVALID) { |
| Ty = InputType; |
| InputTypeArg->claim(); |
| } |
| } |
| |
| if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) |
| Inputs.push_back(std::make_pair(Ty, A)); |
| |
| } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { |
| StringRef Value = A->getValue(); |
| if (DiagnoseInputExistence(Args, Value, types::TY_C, |
| /*TypoCorrect=*/false)) { |
| Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); |
| Inputs.push_back(std::make_pair(types::TY_C, InputArg)); |
| } |
| A->claim(); |
| } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { |
| StringRef Value = A->getValue(); |
| if (DiagnoseInputExistence(Args, Value, types::TY_CXX, |
| /*TypoCorrect=*/false)) { |
| Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); |
| Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); |
| } |
| A->claim(); |
| } else if (A->getOption().hasFlag(options::LinkerInput)) { |
| // Just treat as object type, we could make a special type for this if |
| // necessary. |
| Inputs.push_back(std::make_pair(types::TY_Object, A)); |
| |
| } else if (A->getOption().matches(options::OPT_x)) { |
| InputTypeArg = A; |
| InputType = types::lookupTypeForTypeSpecifier(A->getValue()); |
| A->claim(); |
| |
| // Follow gcc behavior and treat as linker input for invalid -x |
| // options. Its not clear why we shouldn't just revert to unknown; but |
| // this isn't very important, we might as well be bug compatible. |
| if (!InputType) { |
| Diag(clang::diag::err_drv_unknown_language) << A->getValue(); |
| InputType = types::TY_Object; |
| } |
| } else if (A->getOption().getID() == options::OPT_U) { |
| assert(A->getNumValues() == 1 && "The /U option has one value."); |
| StringRef Val = A->getValue(0); |
| if (Val.find_first_of("/\\") != StringRef::npos) { |
| // Warn about e.g. "/Users/me/myfile.c". |
| Diag(diag::warn_slash_u_filename) << Val; |
| Diag(diag::note_use_dashdash); |
| } |
| } |
| } |
| if (CCCIsCPP() && Inputs.empty()) { |
| // If called as standalone preprocessor, stdin is processed |
| // if no other input is present. |
| Arg *A = MakeInputArg(Args, Opts, "-"); |
| Inputs.push_back(std::make_pair(types::TY_C, A)); |
| } |
| } |
| |
| namespace { |
| /// Provides a convenient interface for different programming models to generate |
| /// the required device actions. |
| class OffloadingActionBuilder final { |
| /// Flag used to trace errors in the builder. |
| bool IsValid = false; |
| |
| /// The compilation that is using this builder. |
| Compilation &C; |
| |
| /// Map between an input argument and the offload kinds used to process it. |
| std::map<const Arg *, unsigned> InputArgToOffloadKindMap; |
| |
| /// Builder interface. It doesn't build anything or keep any state. |
| class DeviceActionBuilder { |
| public: |
| typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; |
| |
| enum ActionBuilderReturnCode { |
| // The builder acted successfully on the current action. |
| ABRT_Success, |
| // The builder didn't have to act on the current action. |
| ABRT_Inactive, |
| // The builder was successful and requested the host action to not be |
| // generated. |
| ABRT_Ignore_Host, |
| }; |
| |
| protected: |
| /// Compilation associated with this builder. |
| Compilation &C; |
| |
| /// Tool chains associated with this builder. The same programming |
| /// model may have associated one or more tool chains. |
| SmallVector<const ToolChain *, 2> ToolChains; |
| |
| /// The derived arguments associated with this builder. |
| DerivedArgList &Args; |
| |
| /// The inputs associated with this builder. |
| const Driver::InputList &Inputs; |
| |
| /// The associated offload kind. |
| Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; |
| |
| public: |
| DeviceActionBuilder(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs, |
| Action::OffloadKind AssociatedOffloadKind) |
| : C(C), Args(Args), Inputs(Inputs), |
| AssociatedOffloadKind(AssociatedOffloadKind) {} |
| virtual ~DeviceActionBuilder() {} |
| |
| /// Fill up the array \a DA with all the device dependences that should be |
| /// added to the provided host action \a HostAction. By default it is |
| /// inactive. |
| virtual ActionBuilderReturnCode |
| getDeviceDependences(OffloadAction::DeviceDependences &DA, |
| phases::ID CurPhase, phases::ID FinalPhase, |
| PhasesTy &Phases) { |
| return ABRT_Inactive; |
| } |
| |
| /// Update the state to include the provided host action \a HostAction as a |
| /// dependency of the current device action. By default it is inactive. |
| virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { |
| return ABRT_Inactive; |
| } |
| |
| /// Append top level actions generated by the builder. |
| virtual void appendTopLevelActions(ActionList &AL) {} |
| |
| /// Append linker actions generated by the builder. |
| virtual void appendLinkActions(ActionList &AL) {} |
| |
| /// Append linker actions generated by the builder. |
| virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} |
| |
| /// Initialize the builder. Return true if any initialization errors are |
| /// found. |
| virtual bool initialize() { return false; } |
| |
| /// Return true if the builder can use bundling/unbundling. |
| virtual bool canUseBundlerUnbundler() const { return false; } |
| |
| /// Return true if this builder is valid. We have a valid builder if we have |
| /// associated device tool chains. |
| bool isValid() { return !ToolChains.empty(); } |
| |
| /// Return the associated offload kind. |
| Action::OffloadKind getAssociatedOffloadKind() { |
| return AssociatedOffloadKind; |
| } |
| }; |
| |
| /// Base class for CUDA/HIP action builder. It injects device code in |
| /// the host backend action. |
| class CudaActionBuilderBase : public DeviceActionBuilder { |
| protected: |
| /// Flags to signal if the user requested host-only or device-only |
| /// compilation. |
| bool CompileHostOnly = false; |
| bool CompileDeviceOnly = false; |
| bool EmitLLVM = false; |
| bool EmitAsm = false; |
| |
| /// List of GPU architectures to use in this compilation. |
| SmallVector<CudaArch, 4> GpuArchList; |
| |
| /// The CUDA actions for the current input. |
| ActionList CudaDeviceActions; |
| |
| /// The CUDA fat binary if it was generated for the current input. |
| Action *CudaFatBinary = nullptr; |
| |
| /// Flag that is set to true if this builder acted on the current input. |
| bool IsActive = false; |
| |
| /// Flag for -fgpu-rdc. |
| bool Relocatable = false; |
| |
| /// Default GPU architecture if there's no one specified. |
| CudaArch DefaultCudaArch = CudaArch::UNKNOWN; |
| |
| public: |
| CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs, |
| Action::OffloadKind OFKind) |
| : DeviceActionBuilder(C, Args, Inputs, OFKind) {} |
| |
| ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { |
| // While generating code for CUDA, we only depend on the host input action |
| // to trigger the creation of all the CUDA device actions. |
| |
| // If we are dealing with an input action, replicate it for each GPU |
| // architecture. If we are in host-only mode we return 'success' so that |
| // the host uses the CUDA offload kind. |
| if (auto *IA = dyn_cast<InputAction>(HostAction)) { |
| assert(!GpuArchList.empty() && |
| "We should have at least one GPU architecture."); |
| |
| // If the host input is not CUDA or HIP, we don't need to bother about |
| // this input. |
| if (IA->getType() != types::TY_CUDA && |
| IA->getType() != types::TY_HIP) { |
| // The builder will ignore this input. |
| IsActive = false; |
| return ABRT_Inactive; |
| } |
| |
| // Set the flag to true, so that the builder acts on the current input. |
| IsActive = true; |
| |
| if (CompileHostOnly) |
| return ABRT_Success; |
| |
| // Replicate inputs for each GPU architecture. |
| auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE |
| : types::TY_CUDA_DEVICE; |
| for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { |
| CudaDeviceActions.push_back( |
| C.MakeAction<InputAction>(IA->getInputArg(), Ty)); |
| } |
| |
| return ABRT_Success; |
| } |
| |
| // If this is an unbundling action use it as is for each CUDA toolchain. |
| if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { |
| |
| // If -fgpu-rdc is disabled, should not unbundle since there is no |
| // device code to link. |
| if (!Relocatable) |
| return ABRT_Inactive; |
| |
| CudaDeviceActions.clear(); |
| auto *IA = cast<InputAction>(UA->getInputs().back()); |
| std::string FileName = IA->getInputArg().getAsString(Args); |
| // Check if the type of the file is the same as the action. Do not |
| // unbundle it if it is not. Do not unbundle .so files, for example, |
| // which are not object files. |
| if (IA->getType() == types::TY_Object && |
| (!llvm::sys::path::has_extension(FileName) || |
| types::lookupTypeForExtension( |
| llvm::sys::path::extension(FileName).drop_front()) != |
| types::TY_Object)) |
| return ABRT_Inactive; |
| |
| for (auto Arch : GpuArchList) { |
| CudaDeviceActions.push_back(UA); |
| UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch), |
| AssociatedOffloadKind); |
| } |
| return ABRT_Success; |
| } |
| |
| return IsActive ? ABRT_Success : ABRT_Inactive; |
| } |
| |
| void appendTopLevelActions(ActionList &AL) override { |
| // Utility to append actions to the top level list. |
| auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { |
| OffloadAction::DeviceDependences Dep; |
| Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), |
| AssociatedOffloadKind); |
| AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); |
| }; |
| |
| // If we have a fat binary, add it to the list. |
| if (CudaFatBinary) { |
| AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); |
| CudaDeviceActions.clear(); |
| CudaFatBinary = nullptr; |
| return; |
| } |
| |
| if (CudaDeviceActions.empty()) |
| return; |
| |
| // If we have CUDA actions at this point, that's because we have a have |
| // partial compilation, so we should have an action for each GPU |
| // architecture. |
| assert(CudaDeviceActions.size() == GpuArchList.size() && |
| "Expecting one action per GPU architecture."); |
| assert(ToolChains.size() == 1 && |
| "Expecting to have a sing CUDA toolchain."); |
| for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) |
| AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); |
| |
| CudaDeviceActions.clear(); |
| } |
| |
| bool initialize() override { |
| assert(AssociatedOffloadKind == Action::OFK_Cuda || |
| AssociatedOffloadKind == Action::OFK_HIP); |
| |
| // We don't need to support CUDA. |
| if (AssociatedOffloadKind == Action::OFK_Cuda && |
| !C.hasOffloadToolChain<Action::OFK_Cuda>()) |
| return false; |
| |
| // We don't need to support HIP. |
| if (AssociatedOffloadKind == Action::OFK_HIP && |
| !C.hasOffloadToolChain<Action::OFK_HIP>()) |
| return false; |
| |
| Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, |
| options::OPT_fno_gpu_rdc, /*Default=*/false); |
| |
| const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); |
| assert(HostTC && "No toolchain for host compilation."); |
| if (HostTC->getTriple().isNVPTX() || |
| HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { |
| // We do not support targeting NVPTX/AMDGCN for host compilation. Throw |
| // an error and abort pipeline construction early so we don't trip |
| // asserts that assume device-side compilation. |
| C.getDriver().Diag(diag::err_drv_cuda_host_arch) |
| << HostTC->getTriple().getArchName(); |
| return true; |
| } |
| |
| ToolChains.push_back( |
| AssociatedOffloadKind == Action::OFK_Cuda |
| ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() |
| : C.getSingleOffloadToolChain<Action::OFK_HIP>()); |
| |
| Arg *PartialCompilationArg = Args.getLastArg( |
| options::OPT_cuda_host_only, options::OPT_cuda_device_only, |
| options::OPT_cuda_compile_host_device); |
| CompileHostOnly = PartialCompilationArg && |
| PartialCompilationArg->getOption().matches( |
| options::OPT_cuda_host_only); |
| CompileDeviceOnly = PartialCompilationArg && |
| PartialCompilationArg->getOption().matches( |
| options::OPT_cuda_device_only); |
| EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); |
| EmitAsm = Args.getLastArg(options::OPT_S); |
| |
| // Collect all cuda_gpu_arch parameters, removing duplicates. |
| std::set<CudaArch> GpuArchs; |
| bool Error = false; |
| for (Arg *A : Args) { |
| if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || |
| A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) |
| continue; |
| A->claim(); |
| |
| const StringRef ArchStr = A->getValue(); |
| if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && |
| ArchStr == "all") { |
| GpuArchs.clear(); |
| continue; |
| } |
| CudaArch Arch = StringToCudaArch(ArchStr); |
| if (Arch == CudaArch::UNKNOWN) { |
| C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; |
| Error = true; |
| } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) |
| GpuArchs.insert(Arch); |
| else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) |
| GpuArchs.erase(Arch); |
| else |
| llvm_unreachable("Unexpected option."); |
| } |
| |
| // Collect list of GPUs remaining in the set. |
| for (CudaArch Arch : GpuArchs) |
| GpuArchList.push_back(Arch); |
| |
| // Default to sm_20 which is the lowest common denominator for |
| // supported GPUs. sm_20 code should work correctly, if |
| // suboptimally, on all newer GPUs. |
| if (GpuArchList.empty()) |
| GpuArchList.push_back(DefaultCudaArch); |
| |
| return Error; |
| } |
| }; |
| |
| /// \brief CUDA action builder. It injects device code in the host backend |
| /// action. |
| class CudaActionBuilder final : public CudaActionBuilderBase { |
| public: |
| CudaActionBuilder(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs) |
| : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { |
| DefaultCudaArch = CudaArch::SM_20; |
| } |
| |
| ActionBuilderReturnCode |
| getDeviceDependences(OffloadAction::DeviceDependences &DA, |
| phases::ID CurPhase, phases::ID FinalPhase, |
| PhasesTy &Phases) override { |
| if (!IsActive) |
| return ABRT_Inactive; |
| |
| // If we don't have more CUDA actions, we don't have any dependences to |
| // create for the host. |
| if (CudaDeviceActions.empty()) |
| return ABRT_Success; |
| |
| assert(CudaDeviceActions.size() == GpuArchList.size() && |
| "Expecting one action per GPU architecture."); |
| assert(!CompileHostOnly && |
| "Not expecting CUDA actions in host-only compilation."); |
| |
| // If we are generating code for the device or we are in a backend phase, |
| // we attempt to generate the fat binary. We compile each arch to ptx and |
| // assemble to cubin, then feed the cubin *and* the ptx into a device |
| // "link" action, which uses fatbinary to combine these cubins into one |
| // fatbin. The fatbin is then an input to the host action if not in |
| // device-only mode. |
| if (CompileDeviceOnly || CurPhase == phases::Backend) { |
| ActionList DeviceActions; |
| for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { |
| // Produce the device action from the current phase up to the assemble |
| // phase. |
| for (auto Ph : Phases) { |
| // Skip the phases that were already dealt with. |
| if (Ph < CurPhase) |
| continue; |
| // We have to be consistent with the host final phase. |
| if (Ph > FinalPhase) |
| break; |
| |
| CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( |
| C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); |
| |
| if (Ph == phases::Assemble) |
| break; |
| } |
| |
| // If we didn't reach the assemble phase, we can't generate the fat |
| // binary. We don't need to generate the fat binary if we are not in |
| // device-only mode. |
| if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || |
| CompileDeviceOnly) |
| continue; |
| |
| Action *AssembleAction = CudaDeviceActions[I]; |
| assert(AssembleAction->getType() == types::TY_Object); |
| assert(AssembleAction->getInputs().size() == 1); |
| |
| Action *BackendAction = AssembleAction->getInputs()[0]; |
| assert(BackendAction->getType() == types::TY_PP_Asm); |
| |
| for (auto &A : {AssembleAction, BackendAction}) { |
| OffloadAction::DeviceDependences DDep; |
| DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), |
| Action::OFK_Cuda); |
| DeviceActions.push_back( |
| C.MakeAction<OffloadAction>(DDep, A->getType())); |
| } |
| } |
| |
| // We generate the fat binary if we have device input actions. |
| if (!DeviceActions.empty()) { |
| CudaFatBinary = |
| C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); |
| |
| if (!CompileDeviceOnly) { |
| DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, |
| Action::OFK_Cuda); |
| // Clear the fat binary, it is already a dependence to an host |
| // action. |
| CudaFatBinary = nullptr; |
| } |
| |
| // Remove the CUDA actions as they are already connected to an host |
| // action or fat binary. |
| CudaDeviceActions.clear(); |
| } |
| |
| // We avoid creating host action in device-only mode. |
| return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; |
| } else if (CurPhase > phases::Backend) { |
| // If we are past the backend phase and still have a device action, we |
| // don't have to do anything as this action is already a device |
| // top-level action. |
| return ABRT_Success; |
| } |
| |
| assert(CurPhase < phases::Backend && "Generating single CUDA " |
| "instructions should only occur " |
| "before the backend phase!"); |
| |
| // By default, we produce an action for each device arch. |
| for (Action *&A : CudaDeviceActions) |
| |