blob: 3a6b4cb3cc1f3dc4062441617419cfd9fb8f1015 [file] [log] [blame]
//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template instantiation for declarations.
//
//===----------------------------------------------------------------------===/
#include "Sema.h"
#include "Lookup.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Lex/Preprocessor.h"
using namespace clang;
namespace {
class TemplateDeclInstantiator
: public DeclVisitor<TemplateDeclInstantiator, Decl *> {
Sema &SemaRef;
DeclContext *Owner;
const MultiLevelTemplateArgumentList &TemplateArgs;
void InstantiateAttrs(Decl *Tmpl, Decl *New);
public:
typedef Sema::OwningExprResult OwningExprResult;
TemplateDeclInstantiator(Sema &SemaRef, DeclContext *Owner,
const MultiLevelTemplateArgumentList &TemplateArgs)
: SemaRef(SemaRef), Owner(Owner), TemplateArgs(TemplateArgs) { }
// FIXME: Once we get closer to completion, replace these manually-written
// declarations with automatically-generated ones from
// clang/AST/DeclNodes.def.
Decl *VisitTranslationUnitDecl(TranslationUnitDecl *D);
Decl *VisitNamespaceDecl(NamespaceDecl *D);
Decl *VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
Decl *VisitTypedefDecl(TypedefDecl *D);
Decl *VisitVarDecl(VarDecl *D);
Decl *VisitFieldDecl(FieldDecl *D);
Decl *VisitStaticAssertDecl(StaticAssertDecl *D);
Decl *VisitEnumDecl(EnumDecl *D);
Decl *VisitEnumConstantDecl(EnumConstantDecl *D);
Decl *VisitFriendDecl(FriendDecl *D);
Decl *VisitFunctionDecl(FunctionDecl *D,
TemplateParameterList *TemplateParams = 0);
Decl *VisitCXXRecordDecl(CXXRecordDecl *D);
Decl *VisitCXXMethodDecl(CXXMethodDecl *D,
TemplateParameterList *TemplateParams = 0);
Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D);
Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D);
Decl *VisitCXXConversionDecl(CXXConversionDecl *D);
ParmVarDecl *VisitParmVarDecl(ParmVarDecl *D);
Decl *VisitClassTemplateDecl(ClassTemplateDecl *D);
Decl *VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D);
Decl *VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
Decl *VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
Decl *VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
Decl *VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
Decl *VisitUsingDirectiveDecl(UsingDirectiveDecl *D);
Decl *VisitUsingDecl(UsingDecl *D);
Decl *VisitUsingShadowDecl(UsingShadowDecl *D);
Decl *VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D);
Decl *VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D);
// Base case. FIXME: Remove once we can instantiate everything.
Decl *VisitDecl(Decl *D) {
unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
Diagnostic::Error,
"cannot instantiate %0 yet");
SemaRef.Diag(D->getLocation(), DiagID)
<< D->getDeclKindName();
return 0;
}
const LangOptions &getLangOptions() {
return SemaRef.getLangOptions();
}
// Helper functions for instantiating methods.
QualType SubstFunctionType(FunctionDecl *D,
llvm::SmallVectorImpl<ParmVarDecl *> &Params);
bool InitFunctionInstantiation(FunctionDecl *New, FunctionDecl *Tmpl);
bool InitMethodInstantiation(CXXMethodDecl *New, CXXMethodDecl *Tmpl);
TemplateParameterList *
SubstTemplateParams(TemplateParameterList *List);
bool InstantiateClassTemplatePartialSpecialization(
ClassTemplateDecl *ClassTemplate,
ClassTemplatePartialSpecializationDecl *PartialSpec);
};
}
// FIXME: Is this too simple?
void TemplateDeclInstantiator::InstantiateAttrs(Decl *Tmpl, Decl *New) {
for (const Attr *TmplAttr = Tmpl->getAttrs(); TmplAttr;
TmplAttr = TmplAttr->getNext()) {
// FIXME: Is cloning correct for all attributes?
Attr *NewAttr = TmplAttr->clone(SemaRef.Context);
New->addAttr(NewAttr);
}
}
Decl *
TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
assert(false && "Translation units cannot be instantiated");
return D;
}
Decl *
TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
assert(false && "Namespaces cannot be instantiated");
return D;
}
Decl *
TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
NamespaceAliasDecl *Inst
= NamespaceAliasDecl::Create(SemaRef.Context, Owner,
D->getNamespaceLoc(),
D->getAliasLoc(),
D->getNamespace()->getIdentifier(),
D->getQualifierRange(),
D->getQualifier(),
D->getTargetNameLoc(),
D->getNamespace());
Owner->addDecl(Inst);
return Inst;
}
Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
bool Invalid = false;
TypeSourceInfo *DI = D->getTypeSourceInfo();
if (DI->getType()->isDependentType()) {
DI = SemaRef.SubstType(DI, TemplateArgs,
D->getLocation(), D->getDeclName());
if (!DI) {
Invalid = true;
DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
}
}
// Create the new typedef
TypedefDecl *Typedef
= TypedefDecl::Create(SemaRef.Context, Owner, D->getLocation(),
D->getIdentifier(), DI);
if (Invalid)
Typedef->setInvalidDecl();
if (TypedefDecl *Prev = D->getPreviousDeclaration()) {
NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
TemplateArgs);
Typedef->setPreviousDeclaration(cast<TypedefDecl>(InstPrev));
}
Typedef->setAccess(D->getAccess());
Owner->addDecl(Typedef);
return Typedef;
}
/// \brief Instantiate the arguments provided as part of initialization.
///
/// \returns true if an error occurred, false otherwise.
static bool InstantiateInitializationArguments(Sema &SemaRef,
Expr **Args, unsigned NumArgs,
const MultiLevelTemplateArgumentList &TemplateArgs,
llvm::SmallVectorImpl<SourceLocation> &FakeCommaLocs,
ASTOwningVector<&ActionBase::DeleteExpr> &InitArgs) {
for (unsigned I = 0; I != NumArgs; ++I) {
// When we hit the first defaulted argument, break out of the loop:
// we don't pass those default arguments on.
if (Args[I]->isDefaultArgument())
break;
Sema::OwningExprResult Arg = SemaRef.SubstExpr(Args[I], TemplateArgs);
if (Arg.isInvalid())
return true;
Expr *ArgExpr = (Expr *)Arg.get();
InitArgs.push_back(Arg.release());
// FIXME: We're faking all of the comma locations. Do we need them?
FakeCommaLocs.push_back(
SemaRef.PP.getLocForEndOfToken(ArgExpr->getLocEnd()));
}
return false;
}
/// \brief Instantiate an initializer, breaking it into separate
/// initialization arguments.
///
/// \param S The semantic analysis object.
///
/// \param Init The initializer to instantiate.
///
/// \param TemplateArgs Template arguments to be substituted into the
/// initializer.
///
/// \param NewArgs Will be filled in with the instantiation arguments.
///
/// \returns true if an error occurred, false otherwise
static bool InstantiateInitializer(Sema &S, Expr *Init,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation &LParenLoc,
llvm::SmallVector<SourceLocation, 4> &CommaLocs,
ASTOwningVector<&ActionBase::DeleteExpr> &NewArgs,
SourceLocation &RParenLoc) {
NewArgs.clear();
LParenLoc = SourceLocation();
RParenLoc = SourceLocation();
if (!Init)
return false;
if (CXXExprWithTemporaries *ExprTemp = dyn_cast<CXXExprWithTemporaries>(Init))
Init = ExprTemp->getSubExpr();
while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
Init = Binder->getSubExpr();
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
Init = ICE->getSubExprAsWritten();
if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
LParenLoc = ParenList->getLParenLoc();
RParenLoc = ParenList->getRParenLoc();
return InstantiateInitializationArguments(S, ParenList->getExprs(),
ParenList->getNumExprs(),
TemplateArgs, CommaLocs,
NewArgs);
}
if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) {
if (InstantiateInitializationArguments(S,
Construct->getArgs(),
Construct->getNumArgs(),
TemplateArgs,
CommaLocs, NewArgs))
return true;
// FIXME: Fake locations!
LParenLoc = S.PP.getLocForEndOfToken(Init->getLocStart());
RParenLoc = CommaLocs.empty()? LParenLoc : CommaLocs.back();
return false;
}
Sema::OwningExprResult Result = S.SubstExpr(Init, TemplateArgs);
if (Result.isInvalid())
return true;
NewArgs.push_back(Result.takeAs<Expr>());
return false;
}
Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
// Do substitution on the type of the declaration
TypeSourceInfo *DI = SemaRef.SubstType(D->getTypeSourceInfo(),
TemplateArgs,
D->getTypeSpecStartLoc(),
D->getDeclName());
if (!DI)
return 0;
// Build the instantiated declaration
VarDecl *Var = VarDecl::Create(SemaRef.Context, Owner,
D->getLocation(), D->getIdentifier(),
DI->getType(), DI,
D->getStorageClass());
Var->setThreadSpecified(D->isThreadSpecified());
Var->setCXXDirectInitializer(D->hasCXXDirectInitializer());
Var->setDeclaredInCondition(D->isDeclaredInCondition());
// If we are instantiating a static data member defined
// out-of-line, the instantiation will have the same lexical
// context (which will be a namespace scope) as the template.
if (D->isOutOfLine())
Var->setLexicalDeclContext(D->getLexicalDeclContext());
Var->setAccess(D->getAccess());
// FIXME: In theory, we could have a previous declaration for variables that
// are not static data members.
bool Redeclaration = false;
// FIXME: having to fake up a LookupResult is dumb.
LookupResult Previous(SemaRef, Var->getDeclName(), Var->getLocation(),
Sema::LookupOrdinaryName, Sema::ForRedeclaration);
if (D->isStaticDataMember())
SemaRef.LookupQualifiedName(Previous, Owner, false);
SemaRef.CheckVariableDeclaration(Var, Previous, Redeclaration);
if (D->isOutOfLine()) {
D->getLexicalDeclContext()->addDecl(Var);
Owner->makeDeclVisibleInContext(Var);
} else {
Owner->addDecl(Var);
}
// Link instantiations of static data members back to the template from
// which they were instantiated.
if (Var->isStaticDataMember())
SemaRef.Context.setInstantiatedFromStaticDataMember(Var, D,
TSK_ImplicitInstantiation);
if (Var->getAnyInitializer()) {
// We already have an initializer in the class.
} else if (D->getInit()) {
if (Var->isStaticDataMember() && !D->isOutOfLine())
SemaRef.PushExpressionEvaluationContext(Sema::Unevaluated);
else
SemaRef.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
// Instantiate the initializer.
SourceLocation LParenLoc, RParenLoc;
llvm::SmallVector<SourceLocation, 4> CommaLocs;
ASTOwningVector<&ActionBase::DeleteExpr> InitArgs(SemaRef);
if (!InstantiateInitializer(SemaRef, D->getInit(), TemplateArgs, LParenLoc,
CommaLocs, InitArgs, RParenLoc)) {
// Attach the initializer to the declaration.
if (D->hasCXXDirectInitializer()) {
// Add the direct initializer to the declaration.
SemaRef.AddCXXDirectInitializerToDecl(Sema::DeclPtrTy::make(Var),
LParenLoc,
move_arg(InitArgs),
CommaLocs.data(),
RParenLoc);
} else if (InitArgs.size() == 1) {
Expr *Init = (Expr*)(InitArgs.take()[0]);
SemaRef.AddInitializerToDecl(Sema::DeclPtrTy::make(Var),
SemaRef.Owned(Init),
false);
} else {
assert(InitArgs.size() == 0);
SemaRef.ActOnUninitializedDecl(Sema::DeclPtrTy::make(Var), false);
}
} else {
// FIXME: Not too happy about invalidating the declaration
// because of a bogus initializer.
Var->setInvalidDecl();
}
SemaRef.PopExpressionEvaluationContext();
} else if (!Var->isStaticDataMember() || Var->isOutOfLine())
SemaRef.ActOnUninitializedDecl(Sema::DeclPtrTy::make(Var), false);
return Var;
}
Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
bool Invalid = false;
TypeSourceInfo *DI = D->getTypeSourceInfo();
if (DI->getType()->isDependentType()) {
DI = SemaRef.SubstType(DI, TemplateArgs,
D->getLocation(), D->getDeclName());
if (!DI) {
DI = D->getTypeSourceInfo();
Invalid = true;
} else if (DI->getType()->isFunctionType()) {
// C++ [temp.arg.type]p3:
// If a declaration acquires a function type through a type
// dependent on a template-parameter and this causes a
// declaration that does not use the syntactic form of a
// function declarator to have function type, the program is
// ill-formed.
SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
<< DI->getType();
Invalid = true;
}
}
Expr *BitWidth = D->getBitWidth();
if (Invalid)
BitWidth = 0;
else if (BitWidth) {
// The bit-width expression is not potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
OwningExprResult InstantiatedBitWidth
= SemaRef.SubstExpr(BitWidth, TemplateArgs);
if (InstantiatedBitWidth.isInvalid()) {
Invalid = true;
BitWidth = 0;
} else
BitWidth = InstantiatedBitWidth.takeAs<Expr>();
}
FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
DI->getType(), DI,
cast<RecordDecl>(Owner),
D->getLocation(),
D->isMutable(),
BitWidth,
D->getTypeSpecStartLoc(),
D->getAccess(),
0);
if (!Field) {
cast<Decl>(Owner)->setInvalidDecl();
return 0;
}
InstantiateAttrs(D, Field);
if (Invalid)
Field->setInvalidDecl();
if (!Field->getDeclName()) {
// Keep track of where this decl came from.
SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
}
Field->setImplicit(D->isImplicit());
Field->setAccess(D->getAccess());
Owner->addDecl(Field);
return Field;
}
Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
FriendDecl::FriendUnion FU;
// Handle friend type expressions by simply substituting template
// parameters into the pattern type.
if (Type *Ty = D->getFriendType()) {
QualType T = SemaRef.SubstType(QualType(Ty,0), TemplateArgs,
D->getLocation(), DeclarationName());
if (T.isNull()) return 0;
assert(getLangOptions().CPlusPlus0x || T->isRecordType());
FU = T.getTypePtr();
// Handle everything else by appropriate substitution.
} else {
NamedDecl *ND = D->getFriendDecl();
assert(ND && "friend decl must be a decl or a type!");
// FIXME: We have a problem here, because the nested call to Visit(ND)
// will inject the thing that the friend references into the current
// owner, which is wrong.
Decl *NewND;
// Hack to make this work almost well pending a rewrite.
if (ND->getDeclContext()->isRecord()) {
if (!ND->getDeclContext()->isDependentContext()) {
NewND = SemaRef.FindInstantiatedDecl(D->getLocation(), ND,
TemplateArgs);
} else {
// FIXME: Hack to avoid crashing when incorrectly trying to instantiate
// templated friend declarations. This doesn't produce a correct AST;
// however this is sufficient for some AST analysis. The real solution
// must be put in place during the pending rewrite. See PR5848.
return 0;
}
} else if (D->wasSpecialization()) {
// Totally egregious hack to work around PR5866
return 0;
} else
NewND = Visit(ND);
if (!NewND) return 0;
FU = cast<NamedDecl>(NewND);
}
FriendDecl *FD =
FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), FU,
D->getFriendLoc());
FD->setAccess(AS_public);
Owner->addDecl(FD);
return FD;
}
Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
Expr *AssertExpr = D->getAssertExpr();
// The expression in a static assertion is not potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
OwningExprResult InstantiatedAssertExpr
= SemaRef.SubstExpr(AssertExpr, TemplateArgs);
if (InstantiatedAssertExpr.isInvalid())
return 0;
OwningExprResult Message(SemaRef, D->getMessage());
D->getMessage()->Retain();
Decl *StaticAssert
= SemaRef.ActOnStaticAssertDeclaration(D->getLocation(),
move(InstantiatedAssertExpr),
move(Message)).getAs<Decl>();
return StaticAssert;
}
Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner,
D->getLocation(), D->getIdentifier(),
D->getTagKeywordLoc(),
/*PrevDecl=*/0);
Enum->setInstantiationOfMemberEnum(D);
Enum->setAccess(D->getAccess());
Owner->addDecl(Enum);
Enum->startDefinition();
if (D->getDeclContext()->isFunctionOrMethod())
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
llvm::SmallVector<Sema::DeclPtrTy, 4> Enumerators;
EnumConstantDecl *LastEnumConst = 0;
for (EnumDecl::enumerator_iterator EC = D->enumerator_begin(),
ECEnd = D->enumerator_end();
EC != ECEnd; ++EC) {
// The specified value for the enumerator.
OwningExprResult Value = SemaRef.Owned((Expr *)0);
if (Expr *UninstValue = EC->getInitExpr()) {
// The enumerator's value expression is not potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef,
Action::Unevaluated);
Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
}
// Drop the initial value and continue.
bool isInvalid = false;
if (Value.isInvalid()) {
Value = SemaRef.Owned((Expr *)0);
isInvalid = true;
}
EnumConstantDecl *EnumConst
= SemaRef.CheckEnumConstant(Enum, LastEnumConst,
EC->getLocation(), EC->getIdentifier(),
move(Value));
if (isInvalid) {
if (EnumConst)
EnumConst->setInvalidDecl();
Enum->setInvalidDecl();
}
if (EnumConst) {
EnumConst->setAccess(Enum->getAccess());
Enum->addDecl(EnumConst);
Enumerators.push_back(Sema::DeclPtrTy::make(EnumConst));
LastEnumConst = EnumConst;
if (D->getDeclContext()->isFunctionOrMethod()) {
// If the enumeration is within a function or method, record the enum
// constant as a local.
SemaRef.CurrentInstantiationScope->InstantiatedLocal(*EC, EnumConst);
}
}
}
// FIXME: Fixup LBraceLoc and RBraceLoc
// FIXME: Empty Scope and AttributeList (required to handle attribute packed).
SemaRef.ActOnEnumBody(Enum->getLocation(), SourceLocation(), SourceLocation(),
Sema::DeclPtrTy::make(Enum),
&Enumerators[0], Enumerators.size(),
0, 0);
return Enum;
}
Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
assert(false && "EnumConstantDecls can only occur within EnumDecls.");
return 0;
}
namespace {
class SortDeclByLocation {
SourceManager &SourceMgr;
public:
explicit SortDeclByLocation(SourceManager &SourceMgr)
: SourceMgr(SourceMgr) { }
bool operator()(const Decl *X, const Decl *Y) const {
return SourceMgr.isBeforeInTranslationUnit(X->getLocation(),
Y->getLocation());
}
};
}
Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
// Create a local instantiation scope for this class template, which
// will contain the instantiations of the template parameters.
Sema::LocalInstantiationScope Scope(SemaRef);
TemplateParameterList *TempParams = D->getTemplateParameters();
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
if (!InstParams)
return NULL;
CXXRecordDecl *Pattern = D->getTemplatedDecl();
CXXRecordDecl *RecordInst
= CXXRecordDecl::Create(SemaRef.Context, Pattern->getTagKind(), Owner,
Pattern->getLocation(), Pattern->getIdentifier(),
Pattern->getTagKeywordLoc(), /*PrevDecl=*/ NULL,
/*DelayTypeCreation=*/true);
ClassTemplateDecl *Inst
= ClassTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
D->getIdentifier(), InstParams, RecordInst, 0);
RecordInst->setDescribedClassTemplate(Inst);
if (D->getFriendObjectKind())
Inst->setObjectOfFriendDecl(true);
else
Inst->setAccess(D->getAccess());
Inst->setInstantiatedFromMemberTemplate(D);
// Trigger creation of the type for the instantiation.
SemaRef.Context.getTypeDeclType(RecordInst);
// Finish handling of friends.
if (Inst->getFriendObjectKind()) {
return Inst;
}
Inst->setAccess(D->getAccess());
Owner->addDecl(Inst);
// First, we sort the partial specializations by location, so
// that we instantiate them in the order they were declared.
llvm::SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
for (llvm::FoldingSet<ClassTemplatePartialSpecializationDecl>::iterator
P = D->getPartialSpecializations().begin(),
PEnd = D->getPartialSpecializations().end();
P != PEnd; ++P)
PartialSpecs.push_back(&*P);
std::sort(PartialSpecs.begin(), PartialSpecs.end(),
SortDeclByLocation(SemaRef.SourceMgr));
// Instantiate all of the partial specializations of this member class
// template.
for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
InstantiateClassTemplatePartialSpecialization(Inst, PartialSpecs[I]);
return Inst;
}
Decl *
TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D) {
ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
// Lookup the already-instantiated declaration in the instantiation
// of the class template and return that.
DeclContext::lookup_result Found
= Owner->lookup(ClassTemplate->getDeclName());
if (Found.first == Found.second)
return 0;
ClassTemplateDecl *InstClassTemplate
= dyn_cast<ClassTemplateDecl>(*Found.first);
if (!InstClassTemplate)
return 0;
Decl *DCanon = D->getCanonicalDecl();
for (llvm::FoldingSet<ClassTemplatePartialSpecializationDecl>::iterator
P = InstClassTemplate->getPartialSpecializations().begin(),
PEnd = InstClassTemplate->getPartialSpecializations().end();
P != PEnd; ++P) {
if (P->getInstantiatedFromMember()->getCanonicalDecl() == DCanon)
return &*P;
}
return 0;
}
Decl *
TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
// Create a local instantiation scope for this function template, which
// will contain the instantiations of the template parameters and then get
// merged with the local instantiation scope for the function template
// itself.
Sema::LocalInstantiationScope Scope(SemaRef);
TemplateParameterList *TempParams = D->getTemplateParameters();
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
if (!InstParams)
return NULL;
FunctionDecl *Instantiated = 0;
if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
InstParams));
else
Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
D->getTemplatedDecl(),
InstParams));
if (!Instantiated)
return 0;
Instantiated->setAccess(D->getAccess());
// Link the instantiated function template declaration to the function
// template from which it was instantiated.
FunctionTemplateDecl *InstTemplate
= Instantiated->getDescribedFunctionTemplate();
InstTemplate->setAccess(D->getAccess());
assert(InstTemplate &&
"VisitFunctionDecl/CXXMethodDecl didn't create a template!");
// Link the instantiation back to the pattern *unless* this is a
// non-definition friend declaration.
if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
!(InstTemplate->getFriendObjectKind() &&
!D->getTemplatedDecl()->isThisDeclarationADefinition()))
InstTemplate->setInstantiatedFromMemberTemplate(D);
// Add non-friends into the owner.
if (!InstTemplate->getFriendObjectKind())
Owner->addDecl(InstTemplate);
return InstTemplate;
}
Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
CXXRecordDecl *PrevDecl = 0;
if (D->isInjectedClassName())
PrevDecl = cast<CXXRecordDecl>(Owner);
else if (D->getPreviousDeclaration()) {
NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
D->getPreviousDeclaration(),
TemplateArgs);
if (!Prev) return 0;
PrevDecl = cast<CXXRecordDecl>(Prev);
}
CXXRecordDecl *Record
= CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner,
D->getLocation(), D->getIdentifier(),
D->getTagKeywordLoc(), PrevDecl);
Record->setImplicit(D->isImplicit());
// FIXME: Check against AS_none is an ugly hack to work around the issue that
// the tag decls introduced by friend class declarations don't have an access
// specifier. Remove once this area of the code gets sorted out.
if (D->getAccess() != AS_none)
Record->setAccess(D->getAccess());
if (!D->isInjectedClassName())
Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
// If the original function was part of a friend declaration,
// inherit its namespace state.
if (Decl::FriendObjectKind FOK = D->getFriendObjectKind())
Record->setObjectOfFriendDecl(FOK == Decl::FOK_Declared);
Record->setAnonymousStructOrUnion(D->isAnonymousStructOrUnion());
Owner->addDecl(Record);
return Record;
}
/// Normal class members are of more specific types and therefore
/// don't make it here. This function serves two purposes:
/// 1) instantiating function templates
/// 2) substituting friend declarations
/// FIXME: preserve function definitions in case #2
Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D,
TemplateParameterList *TemplateParams) {
// Check whether there is already a function template specialization for
// this declaration.
FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
void *InsertPos = 0;
if (FunctionTemplate && !TemplateParams) {
llvm::FoldingSetNodeID ID;
FunctionTemplateSpecializationInfo::Profile(ID,
TemplateArgs.getInnermost().getFlatArgumentList(),
TemplateArgs.getInnermost().flat_size(),
SemaRef.Context);
FunctionTemplateSpecializationInfo *Info
= FunctionTemplate->getSpecializations().FindNodeOrInsertPos(ID,
InsertPos);
// If we already have a function template specialization, return it.
if (Info)
return Info->Function;
}
bool MergeWithParentScope = (TemplateParams != 0) ||
!(isa<Decl>(Owner) &&
cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
Sema::LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
llvm::SmallVector<ParmVarDecl *, 4> Params;
QualType T = SubstFunctionType(D, Params);
if (T.isNull())
return 0;
// If we're instantiating a local function declaration, put the result
// in the owner; otherwise we need to find the instantiated context.
DeclContext *DC;
if (D->getDeclContext()->isFunctionOrMethod())
DC = Owner;
else
DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
TemplateArgs);
FunctionDecl *Function =
FunctionDecl::Create(SemaRef.Context, DC, D->getLocation(),
D->getDeclName(), T, D->getTypeSourceInfo(),
D->getStorageClass(),
D->isInlineSpecified(), D->hasWrittenPrototype());
Function->setLexicalDeclContext(Owner);
// Attach the parameters
for (unsigned P = 0; P < Params.size(); ++P)
Params[P]->setOwningFunction(Function);
Function->setParams(Params.data(), Params.size());
if (TemplateParams) {
// Our resulting instantiation is actually a function template, since we
// are substituting only the outer template parameters. For example, given
//
// template<typename T>
// struct X {
// template<typename U> friend void f(T, U);
// };
//
// X<int> x;
//
// We are instantiating the friend function template "f" within X<int>,
// which means substituting int for T, but leaving "f" as a friend function
// template.
// Build the function template itself.
FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Owner,
Function->getLocation(),
Function->getDeclName(),
TemplateParams, Function);
Function->setDescribedFunctionTemplate(FunctionTemplate);
FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
} else if (FunctionTemplate) {
// Record this function template specialization.
Function->setFunctionTemplateSpecialization(FunctionTemplate,
&TemplateArgs.getInnermost(),
InsertPos);
}
if (InitFunctionInstantiation(Function, D))
Function->setInvalidDecl();
bool Redeclaration = false;
bool OverloadableAttrRequired = false;
LookupResult Previous(SemaRef, Function->getDeclName(), SourceLocation(),
Sema::LookupOrdinaryName, Sema::ForRedeclaration);
if (TemplateParams || !FunctionTemplate) {
// Look only into the namespace where the friend would be declared to
// find a previous declaration. This is the innermost enclosing namespace,
// as described in ActOnFriendFunctionDecl.
SemaRef.LookupQualifiedName(Previous, DC);
// In C++, the previous declaration we find might be a tag type
// (class or enum). In this case, the new declaration will hide the
// tag type. Note that this does does not apply if we're declaring a
// typedef (C++ [dcl.typedef]p4).
if (Previous.isSingleTagDecl())
Previous.clear();
}
SemaRef.CheckFunctionDeclaration(/*Scope*/ 0, Function, Previous,
false, Redeclaration,
/*FIXME:*/OverloadableAttrRequired);
// If the original function was part of a friend declaration,
// inherit its namespace state and add it to the owner.
NamedDecl *FromFriendD
= TemplateParams? cast<NamedDecl>(D->getDescribedFunctionTemplate()) : D;
if (FromFriendD->getFriendObjectKind()) {
NamedDecl *ToFriendD = 0;
NamedDecl *PrevDecl;
if (TemplateParams) {
ToFriendD = cast<NamedDecl>(FunctionTemplate);
PrevDecl = FunctionTemplate->getPreviousDeclaration();
} else {
ToFriendD = Function;
PrevDecl = Function->getPreviousDeclaration();
}
ToFriendD->setObjectOfFriendDecl(PrevDecl != NULL);
if (!Owner->isDependentContext() && !PrevDecl)
DC->makeDeclVisibleInContext(ToFriendD, /* Recoverable = */ false);
if (!TemplateParams)
Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
}
return Function;
}
Decl *
TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D,
TemplateParameterList *TemplateParams) {
FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
void *InsertPos = 0;
if (FunctionTemplate && !TemplateParams) {
// We are creating a function template specialization from a function
// template. Check whether there is already a function template
// specialization for this particular set of template arguments.
llvm::FoldingSetNodeID ID;
FunctionTemplateSpecializationInfo::Profile(ID,
TemplateArgs.getInnermost().getFlatArgumentList(),
TemplateArgs.getInnermost().flat_size(),
SemaRef.Context);
FunctionTemplateSpecializationInfo *Info
= FunctionTemplate->getSpecializations().FindNodeOrInsertPos(ID,
InsertPos);
// If we already have a function template specialization, return it.
if (Info)
return Info->Function;
}
bool MergeWithParentScope = (TemplateParams != 0) ||
!(isa<Decl>(Owner) &&
cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
Sema::LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
llvm::SmallVector<ParmVarDecl *, 4> Params;
QualType T = SubstFunctionType(D, Params);
if (T.isNull())
return 0;
// Build the instantiated method declaration.
CXXRecordDecl *Record = cast<CXXRecordDecl>(Owner);
CXXMethodDecl *Method = 0;
DeclarationName Name = D->getDeclName();
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
QualType ClassTy = SemaRef.Context.getTypeDeclType(Record);
Name = SemaRef.Context.DeclarationNames.getCXXConstructorName(
SemaRef.Context.getCanonicalType(ClassTy));
Method = CXXConstructorDecl::Create(SemaRef.Context, Record,
Constructor->getLocation(),
Name, T,
Constructor->getTypeSourceInfo(),
Constructor->isExplicit(),
Constructor->isInlineSpecified(), false);
} else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
QualType ClassTy = SemaRef.Context.getTypeDeclType(Record);
Name = SemaRef.Context.DeclarationNames.getCXXDestructorName(
SemaRef.Context.getCanonicalType(ClassTy));
Method = CXXDestructorDecl::Create(SemaRef.Context, Record,
Destructor->getLocation(), Name,
T, Destructor->isInlineSpecified(), false);
} else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
CanQualType ConvTy
= SemaRef.Context.getCanonicalType(
T->getAs<FunctionType>()->getResultType());
Name = SemaRef.Context.DeclarationNames.getCXXConversionFunctionName(
ConvTy);
Method = CXXConversionDecl::Create(SemaRef.Context, Record,
Conversion->getLocation(), Name,
T, Conversion->getTypeSourceInfo(),
Conversion->isInlineSpecified(),
Conversion->isExplicit());
} else {
Method = CXXMethodDecl::Create(SemaRef.Context, Record, D->getLocation(),
D->getDeclName(), T, D->getTypeSourceInfo(),
D->isStatic(), D->isInlineSpecified());
}
if (TemplateParams) {
// Our resulting instantiation is actually a function template, since we
// are substituting only the outer template parameters. For example, given
//
// template<typename T>
// struct X {
// template<typename U> void f(T, U);
// };
//
// X<int> x;
//
// We are instantiating the member template "f" within X<int>, which means
// substituting int for T, but leaving "f" as a member function template.
// Build the function template itself.
FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
Method->getLocation(),
Method->getDeclName(),
TemplateParams, Method);
if (D->isOutOfLine())
FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
Method->setDescribedFunctionTemplate(FunctionTemplate);
} else if (FunctionTemplate) {
// Record this function template specialization.
Method->setFunctionTemplateSpecialization(FunctionTemplate,
&TemplateArgs.getInnermost(),
InsertPos);
} else {
// Record that this is an instantiation of a member function.
Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
}
// If we are instantiating a member function defined
// out-of-line, the instantiation will have the same lexical
// context (which will be a namespace scope) as the template.
if (D->isOutOfLine())
Method->setLexicalDeclContext(D->getLexicalDeclContext());
// Attach the parameters
for (unsigned P = 0; P < Params.size(); ++P)
Params[P]->setOwningFunction(Method);
Method->setParams(Params.data(), Params.size());
if (InitMethodInstantiation(Method, D))
Method->setInvalidDecl();
LookupResult Previous(SemaRef, Name, SourceLocation(),
Sema::LookupOrdinaryName, Sema::ForRedeclaration);
if (!FunctionTemplate || TemplateParams) {
SemaRef.LookupQualifiedName(Previous, Owner);
// In C++, the previous declaration we find might be a tag type
// (class or enum). In this case, the new declaration will hide the
// tag type. Note that this does does not apply if we're declaring a
// typedef (C++ [dcl.typedef]p4).
if (Previous.isSingleTagDecl())
Previous.clear();
}
bool Redeclaration = false;
bool OverloadableAttrRequired = false;
SemaRef.CheckFunctionDeclaration(0, Method, Previous, false, Redeclaration,
/*FIXME:*/OverloadableAttrRequired);
if (D->isPure())
SemaRef.CheckPureMethod(Method, SourceRange());
Method->setAccess(D->getAccess());
if (!FunctionTemplate && (!Method->isInvalidDecl() || Previous.empty()) &&
!Method->getFriendObjectKind())
Owner->addDecl(Method);
return Method;
}
Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
return VisitCXXMethodDecl(D);
}
ParmVarDecl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
QualType T;
TypeSourceInfo *DI = D->getTypeSourceInfo();
if (DI) {
DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(),
D->getDeclName());
if (DI) T = DI->getType();
} else {
T = SemaRef.SubstType(D->getType(), TemplateArgs, D->getLocation(),
D->getDeclName());
DI = 0;
}
if (T.isNull())
return 0;
T = SemaRef.adjustParameterType(T);
// Allocate the parameter
ParmVarDecl *Param
= ParmVarDecl::Create(SemaRef.Context,
SemaRef.Context.getTranslationUnitDecl(),
D->getLocation(),
D->getIdentifier(), T, DI, D->getStorageClass(), 0);
// Mark the default argument as being uninstantiated.
if (D->hasUninstantiatedDefaultArg())
Param->setUninstantiatedDefaultArg(D->getUninstantiatedDefaultArg());
else if (Expr *Arg = D->getDefaultArg())
Param->setUninstantiatedDefaultArg(Arg);
// Note: we don't try to instantiate function parameters until after
// we've instantiated the function's type. Therefore, we don't have
// to check for 'void' parameter types here.
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
return Param;
}
Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
TemplateTypeParmDecl *D) {
// TODO: don't always clone when decls are refcounted.
const Type* T = D->getTypeForDecl();
assert(T->isTemplateTypeParmType());
const TemplateTypeParmType *TTPT = T->getAs<TemplateTypeParmType>();
TemplateTypeParmDecl *Inst =
TemplateTypeParmDecl::Create(SemaRef.Context, Owner, D->getLocation(),
TTPT->getDepth() - 1, TTPT->getIndex(),
TTPT->getName(),
D->wasDeclaredWithTypename(),
D->isParameterPack());
if (D->hasDefaultArgument())
Inst->setDefaultArgument(D->getDefaultArgumentInfo(), false);
// Introduce this template parameter's instantiation into the instantiation
// scope.
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
return Inst;
}
Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
NonTypeTemplateParmDecl *D) {
// Substitute into the type of the non-type template parameter.
QualType T;
TypeSourceInfo *DI = D->getTypeSourceInfo();
if (DI) {
DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(),
D->getDeclName());
if (DI) T = DI->getType();
} else {
T = SemaRef.SubstType(D->getType(), TemplateArgs, D->getLocation(),
D->getDeclName());
DI = 0;
}
if (T.isNull())
return 0;
// Check that this type is acceptable for a non-type template parameter.
bool Invalid = false;
T = SemaRef.CheckNonTypeTemplateParameterType(T, D->getLocation());
if (T.isNull()) {
T = SemaRef.Context.IntTy;
Invalid = true;
}
NonTypeTemplateParmDecl *Param
= NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner, D->getLocation(),
D->getDepth() - 1, D->getPosition(),
D->getIdentifier(), T, DI);
if (Invalid)
Param->setInvalidDecl();
Param->setDefaultArgument(D->getDefaultArgument());
// Introduce this template parameter's instantiation into the instantiation
// scope.
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
return Param;
}
Decl *
TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
TemplateTemplateParmDecl *D) {
// Instantiate the template parameter list of the template template parameter.
TemplateParameterList *TempParams = D->getTemplateParameters();
TemplateParameterList *InstParams;
{
// Perform the actual substitution of template parameters within a new,
// local instantiation scope.
Sema::LocalInstantiationScope Scope(SemaRef);
InstParams = SubstTemplateParams(TempParams);
if (!InstParams)
return NULL;
}
// Build the template template parameter.
TemplateTemplateParmDecl *Param
= TemplateTemplateParmDecl::Create(SemaRef.Context, Owner, D->getLocation(),
D->getDepth() - 1, D->getPosition(),
D->getIdentifier(), InstParams);
Param->setDefaultArgument(D->getDefaultArgument());
// Introduce this template parameter's instantiation into the instantiation
// scope.
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
return Param;
}
Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
// Using directives are never dependent, so they require no explicit
UsingDirectiveDecl *Inst
= UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
D->getNamespaceKeyLocation(),
D->getQualifierRange(), D->getQualifier(),
D->getIdentLocation(),
D->getNominatedNamespace(),
D->getCommonAncestor());
Owner->addDecl(Inst);
return Inst;
}
Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
// The nested name specifier is non-dependent, so no transformation
// is required.
// We only need to do redeclaration lookups if we're in a class
// scope (in fact, it's not really even possible in non-class
// scopes).
bool CheckRedeclaration = Owner->isRecord();
LookupResult Prev(SemaRef, D->getDeclName(), D->getLocation(),
Sema::LookupUsingDeclName, Sema::ForRedeclaration);
UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
D->getLocation(),
D->getNestedNameRange(),
D->getUsingLocation(),
D->getTargetNestedNameDecl(),
D->getDeclName(),
D->isTypeName());
CXXScopeSpec SS;
SS.setScopeRep(D->getTargetNestedNameDecl());
SS.setRange(D->getNestedNameRange());
if (CheckRedeclaration) {
Prev.setHideTags(false);
SemaRef.LookupQualifiedName(Prev, Owner);
// Check for invalid redeclarations.
if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLocation(),
D->isTypeName(), SS,
D->getLocation(), Prev))
NewUD->setInvalidDecl();
}
if (!NewUD->isInvalidDecl() &&
SemaRef.CheckUsingDeclQualifier(D->getUsingLocation(), SS,
D->getLocation()))
NewUD->setInvalidDecl();
SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
NewUD->setAccess(D->getAccess());
Owner->addDecl(NewUD);
// Don't process the shadow decls for an invalid decl.
if (NewUD->isInvalidDecl())
return NewUD;
bool isFunctionScope = Owner->isFunctionOrMethod();
// Process the shadow decls.
for (UsingDecl::shadow_iterator I = D->shadow_begin(), E = D->shadow_end();
I != E; ++I) {
UsingShadowDecl *Shadow = *I;
NamedDecl *InstTarget =
cast<NamedDecl>(SemaRef.FindInstantiatedDecl(Shadow->getLocation(),
Shadow->getTargetDecl(),
TemplateArgs));
if (CheckRedeclaration &&
SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev))
continue;
UsingShadowDecl *InstShadow
= SemaRef.BuildUsingShadowDecl(/*Scope*/ 0, NewUD, InstTarget);
SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
if (isFunctionScope)
SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
}
return NewUD;
}
Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
// Ignore these; we handle them in bulk when processing the UsingDecl.
return 0;
}
Decl * TemplateDeclInstantiator
::VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) {
NestedNameSpecifier *NNS =
SemaRef.SubstNestedNameSpecifier(D->getTargetNestedNameSpecifier(),
D->getTargetNestedNameRange(),
TemplateArgs);
if (!NNS)
return 0;
CXXScopeSpec SS;
SS.setRange(D->getTargetNestedNameRange());
SS.setScopeRep(NNS);
NamedDecl *UD =
SemaRef.BuildUsingDeclaration(/*Scope*/ 0, D->getAccess(),
D->getUsingLoc(), SS, D->getLocation(),
D->getDeclName(), 0,
/*instantiation*/ true,
/*typename*/ true, D->getTypenameLoc());
if (UD)
SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D);
return UD;
}
Decl * TemplateDeclInstantiator
::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
NestedNameSpecifier *NNS =
SemaRef.SubstNestedNameSpecifier(D->getTargetNestedNameSpecifier(),
D->getTargetNestedNameRange(),
TemplateArgs);
if (!NNS)
return 0;
CXXScopeSpec SS;
SS.setRange(D->getTargetNestedNameRange());
SS.setScopeRep(NNS);
NamedDecl *UD =
SemaRef.BuildUsingDeclaration(/*Scope*/ 0, D->getAccess(),
D->getUsingLoc(), SS, D->getLocation(),
D->getDeclName(), 0,
/*instantiation*/ true,
/*typename*/ false, SourceLocation());
if (UD)
SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D);
return UD;
}
Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
const MultiLevelTemplateArgumentList &TemplateArgs) {
TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
if (D->isInvalidDecl())
return 0;
return Instantiator.Visit(D);
}
/// \brief Instantiates a nested template parameter list in the current
/// instantiation context.
///
/// \param L The parameter list to instantiate
///
/// \returns NULL if there was an error
TemplateParameterList *
TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
// Get errors for all the parameters before bailing out.
bool Invalid = false;
unsigned N = L->size();
typedef llvm::SmallVector<NamedDecl *, 8> ParamVector;
ParamVector Params;
Params.reserve(N);
for (TemplateParameterList::iterator PI = L->begin(), PE = L->end();
PI != PE; ++PI) {
NamedDecl *D = cast_or_null<NamedDecl>(Visit(*PI));
Params.push_back(D);
Invalid = Invalid || !D || D->isInvalidDecl();
}
// Clean up if we had an error.
if (Invalid) {
for (ParamVector::iterator PI = Params.begin(), PE = Params.end();
PI != PE; ++PI)
if (*PI)
(*PI)->Destroy(SemaRef.Context);
return NULL;
}
TemplateParameterList *InstL
= TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
L->getLAngleLoc(), &Params.front(), N,
L->getRAngleLoc());
return InstL;
}
/// \brief Instantiate the declaration of a class template partial
/// specialization.
///
/// \param ClassTemplate the (instantiated) class template that is partially
// specialized by the instantiation of \p PartialSpec.
///
/// \param PartialSpec the (uninstantiated) class template partial
/// specialization that we are instantiating.
///
/// \returns true if there was an error, false otherwise.
bool
TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
ClassTemplateDecl *ClassTemplate,
ClassTemplatePartialSpecializationDecl *PartialSpec) {
// Create a local instantiation scope for this class template partial
// specialization, which will contain the instantiations of the template
// parameters.
Sema::LocalInstantiationScope Scope(SemaRef);
// Substitute into the template parameters of the class template partial
// specialization.
TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
if (!InstParams)
return true;
// Substitute into the template arguments of the class template partial
// specialization.
const TemplateArgumentLoc *PartialSpecTemplateArgs
= PartialSpec->getTemplateArgsAsWritten();
unsigned N = PartialSpec->getNumTemplateArgsAsWritten();
TemplateArgumentListInfo InstTemplateArgs; // no angle locations
for (unsigned I = 0; I != N; ++I) {
TemplateArgumentLoc Loc;
if (SemaRef.Subst(PartialSpecTemplateArgs[I], Loc, TemplateArgs))
return true;
InstTemplateArgs.addArgument(Loc);
}
// Check that the template argument list is well-formed for this
// class template.
TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
InstTemplateArgs.size());
if (SemaRef.CheckTemplateArgumentList(ClassTemplate,
PartialSpec->getLocation(),
InstTemplateArgs,
false,
Converted))
return true;
// Figure out where to insert this class template partial specialization
// in the member template's set of class template partial specializations.
llvm::FoldingSetNodeID ID;
ClassTemplatePartialSpecializationDecl::Profile(ID,
Converted.getFlatArguments(),
Converted.flatSize(),
SemaRef.Context);
void *InsertPos = 0;
ClassTemplateSpecializationDecl *PrevDecl
= ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
InsertPos);
// Build the canonical type that describes the converted template
// arguments of the class template partial specialization.
QualType CanonType
= SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate),
Converted.getFlatArguments(),
Converted.flatSize());
// Build the fully-sugared type for this class template
// specialization as the user wrote in the specialization
// itself. This means that we'll pretty-print the type retrieved
// from the specialization's declaration the way that the user
// actually wrote the specialization, rather than formatting the
// name based on the "canonical" representation used to store the
// template arguments in the specialization.
QualType WrittenTy
= SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate),
InstTemplateArgs,
CanonType);
if (PrevDecl) {
// We've already seen a partial specialization with the same template
// parameters and template arguments. This can happen, for example, when
// substituting the outer template arguments ends up causing two
// class template partial specializations of a member class template
// to have identical forms, e.g.,
//
// template<typename T, typename U>
// struct Outer {
// template<typename X, typename Y> struct Inner;
// template<typename Y> struct Inner<T, Y>;
// template<typename Y> struct Inner<U, Y>;
// };
//
// Outer<int, int> outer; // error: the partial specializations of Inner
// // have the same signature.
SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
<< WrittenTy;
SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
<< SemaRef.Context.getTypeDeclType(PrevDecl);
return true;
}
// Create the class template partial specialization declaration.
ClassTemplatePartialSpecializationDecl *InstPartialSpec
= ClassTemplatePartialSpecializationDecl::Create(SemaRef.Context, Owner,
PartialSpec->getLocation(),
InstParams,
ClassTemplate,
Converted,
InstTemplateArgs,
0);
InstPartialSpec->setInstantiatedFromMember(PartialSpec);
InstPartialSpec->setTypeAsWritten(WrittenTy);
// Add this partial specialization to the set of class template partial
// specializations.
ClassTemplate->getPartialSpecializations().InsertNode(InstPartialSpec,
InsertPos);
return false;
}
/// \brief Does substitution on the type of the given function, including
/// all of the function parameters.
///
/// \param D The function whose type will be the basis of the substitution
///
/// \param Params the instantiated parameter declarations
/// \returns the instantiated function's type if successful, a NULL
/// type if there was an error.
QualType
TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
llvm::SmallVectorImpl<ParmVarDecl *> &Params) {
bool InvalidDecl = false;
// Substitute all of the function's formal parameter types.
TemplateDeclInstantiator ParamInstantiator(SemaRef, 0, TemplateArgs);
llvm::SmallVector<QualType, 4> ParamTys;
for (FunctionDecl::param_iterator P = D->param_begin(),
PEnd = D->param_end();
P != PEnd; ++P) {
if (ParmVarDecl *PInst = ParamInstantiator.VisitParmVarDecl(*P)) {
if (PInst->getType()->isVoidType()) {
SemaRef.Diag(PInst->getLocation(), diag::err_param_with_void_type);
PInst->setInvalidDecl();
} else if (SemaRef.RequireNonAbstractType(PInst->getLocation(),
PInst->getType(),
diag::err_abstract_type_in_decl,
Sema::AbstractParamType))
PInst->setInvalidDecl();
Params.push_back(PInst);
ParamTys.push_back(PInst->getType());
if (PInst->isInvalidDecl())
InvalidDecl = true;
} else
InvalidDecl = true;
}
// FIXME: Deallocate dead declarations.
if (InvalidDecl)
return QualType();
const FunctionProtoType *Proto = D->getType()->getAs<FunctionProtoType>();
assert(Proto && "Missing prototype?");
QualType ResultType
= SemaRef.SubstType(Proto->getResultType(), TemplateArgs,
D->getLocation(), D->getDeclName());
if (ResultType.isNull())
return QualType();
return SemaRef.BuildFunctionType(ResultType, ParamTys.data(), ParamTys.size(),
Proto->isVariadic(), Proto->getTypeQuals(),
D->getLocation(), D->getDeclName());
}
/// \brief Initializes the common fields of an instantiation function
/// declaration (New) from the corresponding fields of its template (Tmpl).
///
/// \returns true if there was an error
bool
TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
FunctionDecl *Tmpl) {
if (Tmpl->isDeleted())
New->setDeleted();
// If we are performing substituting explicitly-specified template arguments
// or deduced template arguments into a function template and we reach this
// point, we are now past the point where SFINAE applies and have committed
// to keeping the new function template specialization. We therefore
// convert the active template instantiation for the function template
// into a template instantiation for this specific function template
// specialization, which is not a SFINAE context, so that we diagnose any
// further errors in the declaration itself.
typedef Sema::ActiveTemplateInstantiation ActiveInstType;
ActiveInstType &ActiveInst = SemaRef.ActiveTemplateInstantiations.back();
if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
if (FunctionTemplateDecl *FunTmpl
= dyn_cast<FunctionTemplateDecl>((Decl *)ActiveInst.Entity)) {
assert(FunTmpl->getTemplatedDecl() == Tmpl &&
"Deduction from the wrong function template?");
(void) FunTmpl;
ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
ActiveInst.Entity = reinterpret_cast<uintptr_t>(New);
--SemaRef.NonInstantiationEntries;
}
}
const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
assert(Proto && "Function template without prototype?");
if (Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec() ||
Proto->getNoReturnAttr()) {
// The function has an exception specification or a "noreturn"
// attribute. Substitute into each of the exception types.
llvm::SmallVector<QualType, 4> Exceptions;
for (unsigned I = 0, N = Proto->getNumExceptions(); I != N; ++I) {
// FIXME: Poor location information!
QualType T
= SemaRef.SubstType(Proto->getExceptionType(I), TemplateArgs,
New->getLocation(), New->getDeclName());
if (T.isNull() ||
SemaRef.CheckSpecifiedExceptionType(T, New->getLocation()))
continue;
Exceptions.push_back(T);
}
// Rebuild the function type
const FunctionProtoType *NewProto
= New->getType()->getAs<FunctionProtoType>();
assert(NewProto && "Template instantiation without function prototype?");
New->setType(SemaRef.Context.getFunctionType(NewProto->getResultType(),
NewProto->arg_type_begin(),
NewProto->getNumArgs(),
NewProto->isVariadic(),
NewProto->getTypeQuals(),
Proto->hasExceptionSpec(),
Proto->hasAnyExceptionSpec(),
Exceptions.size(),
Exceptions.data(),
Proto->getNoReturnAttr(),
Proto->getCallConv()));
}
return false;
}
/// \brief Initializes common fields of an instantiated method
/// declaration (New) from the corresponding fields of its template
/// (Tmpl).
///
/// \returns true if there was an error
bool
TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
CXXMethodDecl *Tmpl) {
if (InitFunctionInstantiation(New, Tmpl))
return true;
CXXRecordDecl *Record = cast<CXXRecordDecl>(Owner);
New->setAccess(Tmpl->getAccess());
if (Tmpl->isVirtualAsWritten())
Record->setMethodAsVirtual(New);
// FIXME: attributes
// FIXME: New needs a pointer to Tmpl
return false;
}
/// \brief Instantiate the definition of the given function from its
/// template.
///
/// \param PointOfInstantiation the point at which the instantiation was
/// required. Note that this is not precisely a "point of instantiation"
/// for the function, but it's close.
///
/// \param Function the already-instantiated declaration of a
/// function template specialization or member function of a class template
/// specialization.
///
/// \param Recursive if true, recursively instantiates any functions that
/// are required by this instantiation.
///
/// \param DefinitionRequired if true, then we are performing an explicit
/// instantiation where the body of the function is required. Complain if
/// there is no such body.
void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
FunctionDecl *Function,
bool Recursive,
bool DefinitionRequired) {
if (Function->isInvalidDecl())
return;
assert(!Function->getBody() && "Already instantiated!");
// Never instantiate an explicit specialization.
if (Function->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
return;
// Find the function body that we'll be substituting.
const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
Stmt *Pattern = 0;
if (PatternDecl)
Pattern = PatternDecl->getBody(PatternDecl);
if (!Pattern) {
if (DefinitionRequired) {
if (Function->getPrimaryTemplate())
Diag(PointOfInstantiation,
diag::err_explicit_instantiation_undefined_func_template)
<< Function->getPrimaryTemplate();
else
Diag(PointOfInstantiation,
diag::err_explicit_instantiation_undefined_member)
<< 1 << Function->getDeclName() << Function->getDeclContext();
if (PatternDecl)
Diag(PatternDecl->getLocation(),
diag::note_explicit_instantiation_here);
}
return;
}
// C++0x [temp.explicit]p9:
// Except for inline functions, other explicit instantiation declarations
// have the effect of suppressing the implicit instantiation of the entity
// to which they refer.
if (Function->getTemplateSpecializationKind()
== TSK_ExplicitInstantiationDeclaration &&
!PatternDecl->isInlined())
return;
InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
if (Inst)
return;
// If we're performing recursive template instantiation, create our own
// queue of pending implicit instantiations that we will instantiate later,
// while we're still within our own instantiation context.
std::deque<PendingImplicitInstantiation> SavedPendingImplicitInstantiations;
if (Recursive)
PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations);
ActOnStartOfFunctionDef(0, DeclPtrTy::make(Function));
// Introduce a new scope where local variable instantiations will be
// recorded, unless we're actually a member function within a local
// class, in which case we need to merge our results with the parent
// scope (of the enclosing function).
bool MergeWithParentScope = false;
if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
MergeWithParentScope = Rec->isLocalClass();
LocalInstantiationScope Scope(*this, MergeWithParentScope);
// Introduce the instantiated function parameters into the local
// instantiation scope.
for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I)
Scope.InstantiatedLocal(PatternDecl->getParamDecl(I),
Function->getParamDecl(I));
// Enter the scope of this instantiation. We don't use
// PushDeclContext because we don't have a scope.
DeclContext *PreviousContext = CurContext;
CurContext = Function;
MultiLevelTemplateArgumentList TemplateArgs =
getTemplateInstantiationArgs(Function);
// If this is a constructor, instantiate the member initializers.
if (const CXXConstructorDecl *Ctor =
dyn_cast<CXXConstructorDecl>(PatternDecl)) {
InstantiateMemInitializers(cast<CXXConstructorDecl>(Function), Ctor,
TemplateArgs);
}
// Instantiate the function body.
OwningStmtResult Body = SubstStmt(Pattern, TemplateArgs);
if (Body.isInvalid())
Function->setInvalidDecl();
ActOnFinishFunctionBody(DeclPtrTy::make(Function), move(Body),
/*IsInstantiation=*/true);
CurContext = PreviousContext;
DeclGroupRef DG(Function);
Consumer.HandleTopLevelDecl(DG);
// This class may have local implicit instantiations that need to be
// instantiation within this scope.
PerformPendingImplicitInstantiations(/*LocalOnly=*/true);
Scope.Exit();
if (Recursive) {
// Instantiate any pending implicit instantiations found during the
// instantiation of this template.
PerformPendingImplicitInstantiations();
// Restore the set of pending implicit instantiations.
PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations);
}
}
/// \brief Instantiate the definition of the given variable from its
/// template.
///
/// \param PointOfInstantiation the point at which the instantiation was
/// required. Note that this is not precisely a "point of instantiation"
/// for the function, but it's close.
///
/// \param Var the already-instantiated declaration of a static member
/// variable of a class template specialization.
///
/// \param Recursive if true, recursively instantiates any functions that
/// are required by this instantiation.
///
/// \param DefinitionRequired if true, then we are performing an explicit
/// instantiation where an out-of-line definition of the member variable
/// is required. Complain if there is no such definition.
void Sema::InstantiateStaticDataMemberDefinition(
SourceLocation PointOfInstantiation,
VarDecl *Var,
bool Recursive,
bool DefinitionRequired) {
if (Var->isInvalidDecl())
return;
// Find the out-of-line definition of this static data member.
VarDecl *Def = Var->getInstantiatedFromStaticDataMember();
assert(Def && "This data member was not instantiated from a template?");
assert(Def->isStaticDataMember() && "Not a static data member?");
Def = Def->getOutOfLineDefinition();
if (!Def) {
// We did not find an out-of-line definition of this static data member,
// so we won't perform any instantiation. Rather, we rely on the user to
// instantiate this definition (or provide a specialization for it) in
// another translation unit.
if (DefinitionRequired) {
Def = Var->getInstantiatedFromStaticDataMember();
Diag(PointOfInstantiation,
diag::err_explicit_instantiation_undefined_member)
<< 2 << Var->getDeclName() << Var->getDeclContext();
Diag(Def->getLocation(), diag::note_explicit_instantiation_here);
}
return;
}
// Never instantiate an explicit specialization.
if (Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
return;
// C++0x [temp.explicit]p9:
// Except for inline functions, other explicit instantiation declarations
// have the effect of suppressing the implicit instantiation of the entity
// to which they refer.
if (Var->getTemplateSpecializationKind()
== TSK_ExplicitInstantiationDeclaration)
return;
InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
if (Inst)
return;
// If we're performing recursive template instantiation, create our own
// queue of pending implicit instantiations that we will instantiate later,
// while we're still within our own instantiation context.
std::deque<PendingImplicitInstantiation> SavedPendingImplicitInstantiations;
if (Recursive)
PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations);
// Enter the scope of this instantiation. We don't use
// PushDeclContext because we don't have a scope.
DeclContext *PreviousContext = CurContext;
CurContext = Var->getDeclContext();
VarDecl *OldVar = Var;
Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
getTemplateInstantiationArgs(Var)));
CurContext = PreviousContext;
if (Var) {
MemberSpecializationInfo *MSInfo = OldVar->getMemberSpecializationInfo();
assert(MSInfo && "Missing member specialization information?");
Var->setTemplateSpecializationKind(MSInfo->getTemplateSpecializationKind(),
MSInfo->getPointOfInstantiation());
DeclGroupRef DG(Var);
Consumer.HandleTopLevelDecl(DG);
}
if (Recursive) {
// Instantiate any pending implicit instantiations found during the
// instantiation of this template.
PerformPendingImplicitInstantiations();
// Restore the set of pending implicit instantiations.
PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations);
}
}
void
Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
const CXXConstructorDecl *Tmpl,
const MultiLevelTemplateArgumentList &TemplateArgs) {
llvm::SmallVector<MemInitTy*, 4> NewInits;
bool AnyErrors = false;
// Instantiate all the initializers.
for (CXXConstructorDecl::init_const_iterator Inits = Tmpl->init_begin(),
InitsEnd = Tmpl->init_end();
Inits != InitsEnd; ++Inits) {
CXXBaseOrMemberInitializer *Init = *Inits;
SourceLocation LParenLoc, RParenLoc;
ASTOwningVector<&ActionBase::DeleteExpr> NewArgs(*this);
llvm::SmallVector<SourceLocation, 4> CommaLocs;
// Instantiate the initializer.
if (InstantiateInitializer(*this, Init->getInit(), TemplateArgs,
LParenLoc, CommaLocs, NewArgs, RParenLoc)) {
AnyErrors = true;
continue;
}
MemInitResult NewInit;
if (Init->isBaseInitializer()) {
TypeSourceInfo *BaseTInfo = SubstType(Init->getBaseClassInfo(),
TemplateArgs,
Init->getSourceLocation(),
New->getDeclName());
if (!BaseTInfo) {
AnyErrors = true;
New->setInvalidDecl();
continue;
}
NewInit = BuildBaseInitializer(BaseTInfo->getType(), BaseTInfo,
(Expr **)NewArgs.data(),
NewArgs.size(),
Init->getLParenLoc(),
Init->getRParenLoc(),
New->getParent());
} else if (Init->isMemberInitializer()) {
FieldDecl *Member;
// Is this an anonymous union?
if (FieldDecl *UnionInit = Init->getAnonUnionMember())
Member = cast<FieldDecl>(FindInstantiatedDecl(Init->getMemberLocation(),
UnionInit, TemplateArgs));
else
Member = cast<FieldDecl>(FindInstantiatedDecl(Init->getMemberLocation(),
Init->getMember(),
TemplateArgs));
NewInit = BuildMemberInitializer(Member, (Expr **)NewArgs.data(),
NewArgs.size(),
Init->getSourceLocation(),
Init->getLParenLoc(),
Init->getRParenLoc());
}
if (NewInit.isInvalid()) {
AnyErrors = true;
New->setInvalidDecl();
} else {
// FIXME: It would be nice if ASTOwningVector had a release function.
NewArgs.take();
NewInits.push_back((MemInitTy *)NewInit.get());
}
}
// Assign all the initializers to the new constructor.
ActOnMemInitializers(DeclPtrTy::make(New),
/*FIXME: ColonLoc */
SourceLocation(),
NewInits.data(), NewInits.size(),
AnyErrors);
}
// TODO: this could be templated if the various decl types used the
// same method name.
static bool isInstantiationOf(ClassTemplateDecl *Pattern,
ClassTemplateDecl *Instance) {
Pattern = Pattern->getCanonicalDecl();
do {
Instance = Instance->getCanonicalDecl();
if (Pattern == Instance) return true;
Instance = Instance->getInstantiatedFromMemberTemplate();
} while (Instance);
return false;
}
static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
FunctionTemplateDecl *Instance) {
Pattern = Pattern->getCanonicalDecl();
do {
Instance = Instance->getCanonicalDecl();
if (Pattern == Instance) return true;
Instance = Instance->getInstantiatedFromMemberTemplate();
} while (Instance);
return false;
}
static bool
isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
ClassTemplatePartialSpecializationDecl *Instance) {
Pattern
= cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
do {
Instance = cast<ClassTemplatePartialSpecializationDecl>(
Instance->getCanonicalDecl());
if (Pattern == Instance)
return true;
Instance = Instance->getInstantiatedFromMember();
} while (Instance);
return false;
}
static bool isInstantiationOf(CXXRecordDecl *Pattern,
CXXRecordDecl *Instance) {
Pattern = Pattern->getCanonicalDecl();
do {
Instance = Instance->getCanonicalDecl();
if (Pattern == Instance) return true;
Instance = Instance->getInstantiatedFromMemberClass();
} while (Instance);
return false;
}
static bool isInstantiationOf(FunctionDecl *Pattern,
FunctionDecl *Instance) {
Pattern = Pattern->getCanonicalDecl();
do {
Instance = Instance->getCanonicalDecl();
if (Pattern == Instance) return true;
Instance = Instance->getInstantiatedFromMemberFunction();
} while (Instance);
return false;
}
static bool isInstantiationOf(EnumDecl *Pattern,
EnumDecl *Instance) {
Pattern = Pattern->getCanonicalDecl();
do {
Instance = Instance->getCanonicalDecl();
if (Pattern == Instance) return true;
Instance = Instance->getInstantiatedFromMemberEnum();
} while (Instance);
return false;
}
static bool isInstantiationOf(UsingShadowDecl *Pattern,
UsingShadowDecl *Instance,
ASTContext &C) {
return C.getInstantiatedFromUsingShadowDecl(Instance) == Pattern;
}
static bool isInstantiationOf(UsingDecl *Pattern,
UsingDecl *Instance,
ASTContext &C) {
return C.getInstantiatedFromUsingDecl(Instance) == Pattern;
}
static bool isInstantiationOf(UnresolvedUsingValueDecl *Pattern,
UsingDecl *Instance,
ASTContext &C) {
return C.getInstantiatedFromUsingDecl(Instance) == Pattern;
}
static bool isInstantiationOf(UnresolvedUsingTypenameDecl *Pattern,
UsingDecl *Instance,
ASTContext &C) {
return C.getInstantiatedFromUsingDecl(Instance) == Pattern;
}
static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
VarDecl *Instance) {
assert(Instance->isStaticDataMember());
Pattern = Pattern->getCanonicalDecl();
do {
Instance = Instance->getCanonicalDecl();
if (Pattern == Instance) return true;
Instance = Instance->getInstantiatedFromStaticDataMember();
} while (Instance);
return false;
}
// Other is the prospective instantiation
// D is the prospective pattern
static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
if (D->getKind() != Other->getKind()) {
if (UnresolvedUsingTypenameDecl *UUD
= dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) {
return isInstantiationOf(UUD, UD, Ctx);
}
}
if (UnresolvedUsingValueDecl *UUD
= dyn_cast<UnresolvedUsingValueDecl>(D)) {
if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) {
return isInstantiationOf(UUD, UD, Ctx);
}
}
return false;
}
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Other))
return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Other))
return isInstantiationOf(cast<FunctionDecl>(D), Function);
if (EnumDecl *Enum = dyn_cast<EnumDecl>(Other))
return isInstantiationOf(cast<EnumDecl>(D), Enum);
if (VarDecl *Var = dyn_cast<VarDecl>(Other))
if (Var->isStaticDataMember())
return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
if (ClassTemplateDecl *Temp = dyn_cast<ClassTemplateDecl>(Other))
return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
if (FunctionTemplateDecl *Temp = dyn_cast<FunctionTemplateDecl>(Other))
return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
if (ClassTemplatePartialSpecializationDecl *PartialSpec
= dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
PartialSpec);
if (FieldDecl *Field = dyn_cast<FieldDecl>(Other)) {
if (!Field->getDeclName()) {
// This is an unnamed field.
return Ctx.getInstantiatedFromUnnamedFieldDecl(Field) ==
cast<FieldDecl>(D);
}
}
if (UsingDecl *Using = dyn_cast<UsingDecl>(Other))
return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Other))
return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
return D->getDeclName() && isa<NamedDecl>(Other) &&
D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
}
template<typename ForwardIterator>
static NamedDecl *findInstantiationOf(ASTContext &Ctx,
NamedDecl *D,
ForwardIterator first,
ForwardIterator last) {
for (; first != last; ++first)
if (isInstantiationOf(Ctx, D, *first))
return cast<NamedDecl>(*first);
return 0;
}
/// \brief Finds the instantiation of the given declaration context
/// within the current instantiation.
///
/// \returns NULL if there was an error
DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
const MultiLevelTemplateArgumentList &TemplateArgs) {
if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs);
return cast_or_null<DeclContext>(ID);
} else return DC;
}
/// \brief Find the instantiation of the given declaration within the
/// current instantiation.
///
/// This routine is intended to be used when \p D is a declaration
/// referenced from within a template, that needs to mapped into the
/// corresponding declaration within an instantiation. For example,
/// given:
///
/// \code
/// template<typename T>
/// struct X {
/// enum Kind {
/// KnownValue = sizeof(T)
/// };
///
/// bool getKind() const { return KnownValue; }
/// };
///
/// template struct X<int>;
/// \endcode
///
/// In the instantiation of X<int>::getKind(), we need to map the
/// EnumConstantDecl for KnownValue (which refers to
/// X<T>::<Kind>::KnownValue) to its instantiation
/// (X<int>::<Kind>::KnownValue). InstantiateCurrentDeclRef() performs
/// this mapping from within the instantiation of X<int>.
NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs) {
DeclContext *ParentDC = D->getDeclContext();
if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
ParentDC->isFunctionOrMethod()) {
// D is a local of some kind. Look into the map of local
// declarations to their instantiations.
return cast<NamedDecl>(CurrentInstantiationScope->getInstantiationOf(D));
}
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
if (!Record->isDependentContext())
return D;
// If the RecordDecl is actually the injected-class-name or a
// "templated" declaration for a class template, class template
// partial specialization, or a member class of a class template,
// substitute into the injected-class-name of the class template
// or partial specialization to find the new DeclContext.
QualType T;
ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
if (ClassTemplate) {
T = ClassTemplate->getInjectedClassNameType(Context);
} else if (ClassTemplatePartialSpecializationDecl *PartialSpec
= dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
T = Context.getTypeDeclType(Record);
ClassTemplate = PartialSpec->getSpecializedTemplate();
}
if (!T.isNull()) {
// Substitute into the injected-class-name to get the type
// corresponding to the instantiation we want, which may also be
// the current instantiation (if we're in a template
// definition). This substitution should never fail, since we
// know we can instantiate the injected-class-name or we
// wouldn't have gotten to the injected-class-name!
// FIXME: Can we use the CurrentInstantiationScope to avoid this
// extra instantiation in the common case?
T = SubstType(T, TemplateArgs, SourceLocation(), DeclarationName());
assert(!T.isNull() && "Instantiation of injected-class-name cannot fail.");
if (!T->isDependentType()) {
assert(T->isRecordType() && "Instantiation must produce a record type");
return T->getAs<RecordType>()->getDecl();
}
// We are performing "partial" template instantiation to create
// the member declarations for the members of a class template
// specialization. Therefore, D is actually referring to something
// in the current instantiation. Look through the current
// context, which contains actual instantiations, to find the
// instantiation of the "current instantiation" that D refers
// to.
bool SawNonDependentContext = false;
for (DeclContext *DC = CurContext; !DC->isFileContext();
DC = DC->getParent()) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(DC))
if (isInstantiationOf(ClassTemplate,
Spec->getSpecializedTemplate()))
return Spec;
if (!DC->isDependentContext())
SawNonDependentContext = true;
}
// We're performing "instantiation" of a member of the current
// instantiation while we are type-checking the
// definition. Compute the declaration context and return that.
assert(!SawNonDependentContext &&
"No dependent context while instantiating record");
DeclContext *DC = computeDeclContext(T);
assert(DC &&
"Unable to find declaration for the current instantiation");
return cast<CXXRecordDecl>(DC);
}
// Fall through to deal with other dependent record types (e.g.,
// anonymous unions in class templates).
}
if (!ParentDC->isDependentContext())
return D;
ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
if (!ParentDC)
return 0;
if (ParentDC != D->getDeclContext()) {
// We performed some kind of instantiation in the parent context,
// so now we need to look into the instantiated parent context to
// find the instantiation of the declaration D.
// If our context is a class template specialization, we may need
// to instantiate it before performing lookup into that context.
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(ParentDC)) {
if (!Spec->isDependentContext()) {
QualType T = Context.getTypeDeclType(Spec);
if (const TagType *Tag = T->getAs<TagType>())
if (!Tag->isBeingDefined() &&
RequireCompleteType(Loc, T, diag::err_incomplete_type))
return 0;
}
}
NamedDecl *Result = 0;
if (D->getDeclName()) {
DeclContext::lookup_result Found = ParentDC->lookup(D->getDeclName());
Result = findInstantiationOf(Context, D, Found.first, Found.second);
} else {
// Since we don't have a name for the entity we're looking for,
// our only option is to walk through all of the declarations to
// find that name. This will occur in a few cases:
//
// - anonymous struct/union within a template
// - unnamed class/struct/union/enum within a template
//
// FIXME: Find a better way to find these instantiations!
Result = findInstantiationOf(Context, D,
ParentDC->decls_begin(),
ParentDC->decls_end());
}
// UsingShadowDecls can instantiate to nothing because of using hiding.
assert((Result || isa<UsingShadowDecl>(D) || D->isInvalidDecl() ||
cast<Decl>(ParentDC)->isInvalidDecl())
&& "Unable to find instantiation of declaration!");
D = Result;
}
return D;
}
/// \brief Performs template instantiation for all implicit template
/// instantiations we have seen until this point.
void Sema::PerformPendingImplicitInstantiations(bool LocalOnly) {
while (!PendingLocalImplicitInstantiations.empty() ||
(!LocalOnly && !PendingImplicitInstantiations.empty())) {
PendingImplicitInstantiation Inst;
if (PendingLocalImplicitInstantiations.empty()) {
Inst = PendingImplicitInstantiations.front();
PendingImplicitInstantiations.pop_front();
} else {
Inst = PendingLocalImplicitInstantiations.front();
PendingLocalImplicitInstantiations.pop_front();
}
// Instantiate function definitions
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) {
PrettyStackTraceActionsDecl CrashInfo(DeclPtrTy::make(Function),
Function->getLocation(), *this,
Context.getSourceManager(),
"instantiating function definition");
if (!Function->getBody())
InstantiateFunctionDefinition(/*FIXME:*/Inst.second, Function, true);
continue;
}
// Instantiate static data member definitions.
VarDecl *Var = cast<VarDecl>(Inst.first);
assert(Var->isStaticDataMember() && "Not a static data member?");
// Don't try to instantiate declarations if the most recent redeclaration
// is invalid.
if (Var->getMostRecentDeclaration()->isInvalidDecl())
continue;
// Check if the most recent declaration has changed the specialization kind
// and removed the need for implicit instantiation.
switch (Var->getMostRecentDeclaration()->getTemplateSpecializationKind()) {
case TSK_Undeclared:
assert(false && "Cannot instantitiate an undeclared specialization.");
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
continue; // No longer need implicit instantiation.
case TSK_ImplicitInstantiation:
break;
}
PrettyStackTraceActionsDecl CrashInfo(DeclPtrTy::make(Var),
Var->getLocation(), *this,
Context.getSourceManager(),
"instantiating static data member "
"definition");
InstantiateStaticDataMemberDefinition(/*FIXME:*/Inst.second, Var, true);
}
}