blob: 2e0580f5e79b2a170e08d56214be7bfae94ef270 [file] [log] [blame]
//===--- Mangle.cpp - Mangle C++ Names --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements C++ name mangling according to the Itanium C++ ABI,
// which is used in GCC 3.2 and newer (and many compilers that are
// ABI-compatible with GCC):
//
// http://www.codesourcery.com/public/cxx-abi/abi.html
//
//===----------------------------------------------------------------------===//
#include "Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ErrorHandling.h"
#include "CGVtable.h"
#define MANGLE_CHECKER 0
#if MANGLE_CHECKER
#include <cxxabi.h>
#endif
using namespace clang;
using namespace CodeGen;
namespace {
static const DeclContext *GetLocalClassFunctionDeclContext(
const DeclContext *DC) {
if (isa<CXXRecordDecl>(DC)) {
while (!DC->isNamespace() && !DC->isTranslationUnit() &&
!isa<FunctionDecl>(DC))
DC = DC->getParent();
if (isa<FunctionDecl>(DC))
return DC;
}
return 0;
}
static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
"Passed in decl is not a ctor or dtor!");
if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
"Templated decl is not a ctor or dtor!");
}
return MD;
}
static const unsigned UnknownArity = ~0U;
/// CXXNameMangler - Manage the mangling of a single name.
class CXXNameMangler {
MangleContext &Context;
llvm::raw_svector_ostream Out;
const CXXMethodDecl *Structor;
unsigned StructorType;
llvm::DenseMap<uintptr_t, unsigned> Substitutions;
ASTContext &getASTContext() const { return Context.getASTContext(); }
public:
CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res)
: Context(C), Out(Res), Structor(0), StructorType(0) { }
CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res,
const CXXConstructorDecl *D, CXXCtorType Type)
: Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type) { }
CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res,
const CXXDestructorDecl *D, CXXDtorType Type)
: Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type) { }
#if MANGLE_CHECKER
~CXXNameMangler() {
if (Out.str()[0] == '\01')
return;
int status = 0;
char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
assert(status == 0 && "Could not demangle mangled name!");
free(result);
}
#endif
llvm::raw_svector_ostream &getStream() { return Out; }
void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
void mangleCallOffset(const ThunkAdjustment &Adjustment);
void mangleNumber(int64_t Number);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleName(const NamedDecl *ND);
void mangleType(QualType T);
private:
bool mangleSubstitution(const NamedDecl *ND);
bool mangleSubstitution(QualType T);
bool mangleSubstitution(uintptr_t Ptr);
bool mangleStandardSubstitution(const NamedDecl *ND);
void addSubstitution(const NamedDecl *ND) {
ND = cast<NamedDecl>(ND->getCanonicalDecl());
addSubstitution(reinterpret_cast<uintptr_t>(ND));
}
void addSubstitution(QualType T);
void addSubstitution(uintptr_t Ptr);
void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
DeclarationName Name,
unsigned KnownArity = UnknownArity);
void mangleName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleUnqualifiedName(const NamedDecl *ND) {
mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
}
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
unsigned KnownArity);
void mangleUnscopedName(const NamedDecl *ND);
void mangleUnscopedTemplateName(const TemplateDecl *ND);
void mangleSourceName(const IdentifierInfo *II);
void mangleLocalName(const NamedDecl *ND);
void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
bool NoFunction=false);
void mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void manglePrefix(const DeclContext *DC, bool NoFunction=false);
void mangleTemplatePrefix(const TemplateDecl *ND);
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
void mangleQualifiers(Qualifiers Quals);
void mangleObjCMethodName(const ObjCMethodDecl *MD);
// Declare manglers for every type class.
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
#include "clang/AST/TypeNodes.def"
void mangleType(const TagType*);
void mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType);
void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
void mangleMemberExpr(const Expr *Base, bool IsArrow,
NestedNameSpecifier *Qualifier,
DeclarationName Name,
unsigned KnownArity);
void mangleCalledExpression(const Expr *E, unsigned KnownArity);
void mangleExpression(const Expr *E);
void mangleCXXCtorType(CXXCtorType T);
void mangleCXXDtorType(CXXDtorType T);
void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleTemplateArgs(const TemplateArgumentList &L);
void mangleTemplateArg(const TemplateArgument &A);
void mangleTemplateParameter(unsigned Index);
};
}
static bool isInCLinkageSpecification(const Decl *D) {
D = D->getCanonicalDecl();
for (const DeclContext *DC = D->getDeclContext();
!DC->isTranslationUnit(); DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
}
return false;
}
bool MangleContext::shouldMangleDeclName(const NamedDecl *D) {
// In C, functions with no attributes never need to be mangled. Fastpath them.
if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
return false;
// Any decl can be declared with __asm("foo") on it, and this takes precedence
// over all other naming in the .o file.
if (D->hasAttr<AsmLabelAttr>())
return true;
// Clang's "overloadable" attribute extension to C/C++ implies name mangling
// (always) as does passing a C++ member function and a function
// whose name is not a simple identifier.
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
!FD->getDeclName().isIdentifier()))
return true;
// Otherwise, no mangling is done outside C++ mode.
if (!getASTContext().getLangOptions().CPlusPlus)
return false;
// Variables at global scope with non-internal linkage are not mangled
if (!FD) {
const DeclContext *DC = D->getDeclContext();
// Check for extern variable declared locally.
if (isa<FunctionDecl>(DC) && D->hasLinkage())
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = DC->getParent();
if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
return false;
}
// C functions and "main" are not mangled.
if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
return false;
return true;
}
void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
// Any decl can be declared with __asm("foo") on it, and this takes precedence
// over all other naming in the .o file.
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
// If we have an asm name, then we use it as the mangling.
Out << '\01'; // LLVM IR Marker for __asm("foo")
Out << ALA->getLabel();
return;
}
// <mangled-name> ::= _Z <encoding>
// ::= <data name>
// ::= <special-name>
Out << Prefix;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
mangleFunctionEncoding(FD);
else
mangleName(cast<VarDecl>(D));
}
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <encoding> ::= <function name> <bare-function-type>
mangleName(FD);
// Don't mangle in the type if this isn't a decl we should typically mangle.
if (!Context.shouldMangleDeclName(FD))
return;
// Whether the mangling of a function type includes the return type depends on
// the context and the nature of the function. The rules for deciding whether
// the return type is included are:
//
// 1. Template functions (names or types) have return types encoded, with
// the exceptions listed below.
// 2. Function types not appearing as part of a function name mangling,
// e.g. parameters, pointer types, etc., have return type encoded, with the
// exceptions listed below.
// 3. Non-template function names do not have return types encoded.
//
// The exceptions mentioned in (1) and (2) above, for which the return type is
// never included, are
// 1. Constructors.
// 2. Destructors.
// 3. Conversion operator functions, e.g. operator int.
bool MangleReturnType = false;
if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
isa<CXXConversionDecl>(FD)))
MangleReturnType = true;
// Mangle the type of the primary template.
FD = PrimaryTemplate->getTemplatedDecl();
}
// Do the canonicalization out here because parameter types can
// undergo additional canonicalization (e.g. array decay).
FunctionType *FT = cast<FunctionType>(Context.getASTContext()
.getCanonicalType(FD->getType()));
mangleBareFunctionType(FT, MangleReturnType);
}
/// isStd - Return whether a given namespace is the 'std' namespace.
static bool isStd(const NamespaceDecl *NS) {
const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
return II && II->isStr("std");
}
static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
while (isa<LinkageSpecDecl>(DC)) {
assert(cast<LinkageSpecDecl>(DC)->getLanguage() ==
LinkageSpecDecl::lang_cxx && "Unexpected linkage decl!");
DC = DC->getParent();
}
return DC;
}
// isStdNamespace - Return whether a given decl context is a toplevel 'std'
// namespace.
static bool isStdNamespace(const DeclContext *DC) {
if (!DC->isNamespace())
return false;
if (!IgnoreLinkageSpecDecls(DC->getParent())->isTranslationUnit())
return false;
return isStd(cast<NamespaceDecl>(DC));
}
static const TemplateDecl *
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
// Check if we have a function template.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
TemplateArgs = FD->getTemplateSpecializationArgs();
return TD;
}
}
// Check if we have a class template.
if (const ClassTemplateSpecializationDecl *Spec =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
return 0;
}
void CXXNameMangler::mangleName(const NamedDecl *ND) {
// <name> ::= <nested-name>
// ::= <unscoped-name>
// ::= <unscoped-template-name> <template-args>
// ::= <local-name>
//
const DeclContext *DC = ND->getDeclContext();
if (GetLocalClassFunctionDeclContext(DC)) {
mangleLocalName(ND);
return;
}
// If this is an extern variable declared locally, the relevant DeclContext
// is that of the containing namespace, or the translation unit.
if (isa<FunctionDecl>(DC) && ND->hasLinkage())
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = DC->getParent();
while (isa<LinkageSpecDecl>(DC))
DC = DC->getParent();
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(*TemplateArgs);
return;
}
mangleUnscopedName(ND);
return;
}
if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
mangleLocalName(ND);
return;
}
mangleNestedName(ND, DC);
}
void CXXNameMangler::mangleName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
} else {
mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
}
}
void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
if (isStdNamespace(ND->getDeclContext()))
Out << "St";
mangleUnqualifiedName(ND);
}
void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
if (mangleSubstitution(ND))
return;
// <template-template-param> ::= <template-param>
if (const TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(ND)) {
mangleTemplateParameter(TTP->getIndex());
return;
}
mangleUnscopedName(ND->getTemplatedDecl());
addSubstitution(ND);
}
void CXXNameMangler::mangleNumber(int64_t Number) {
// <number> ::= [n] <non-negative decimal integer>
if (Number < 0) {
Out << 'n';
Number = -Number;
}
Out << Number;
}
void CXXNameMangler::mangleCallOffset(const ThunkAdjustment &Adjustment) {
// <call-offset> ::= h <nv-offset> _
// ::= v <v-offset> _
// <nv-offset> ::= <offset number> # non-virtual base override
// <v-offset> ::= <offset number> _ <virtual offset number>
// # virtual base override, with vcall offset
if (!Adjustment.Virtual) {
Out << 'h';
mangleNumber(Adjustment.NonVirtual);
Out << '_';
return;
}
Out << 'v';
mangleNumber(Adjustment.NonVirtual);
Out << '_';
mangleNumber(Adjustment.Virtual);
Out << '_';
}
void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
switch (Qualifier->getKind()) {
case NestedNameSpecifier::Global:
// nothing
break;
case NestedNameSpecifier::Namespace:
mangleName(Qualifier->getAsNamespace());
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
mangleType(QualType(Qualifier->getAsType(), 0));
break;
case NestedNameSpecifier::Identifier:
// Member expressions can have these without prefixes.
if (Qualifier->getPrefix())
mangleUnresolvedScope(Qualifier->getPrefix());
mangleSourceName(Qualifier->getAsIdentifier());
break;
}
}
/// Mangles a name which was not resolved to a specific entity.
void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
DeclarationName Name,
unsigned KnownArity) {
if (Qualifier)
mangleUnresolvedScope(Qualifier);
// FIXME: ambiguity of unqualified lookup with ::
mangleUnqualifiedName(0, Name, KnownArity);
}
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
DeclarationName Name,
unsigned KnownArity) {
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
switch (Name.getNameKind()) {
case DeclarationName::Identifier: {
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
// We must avoid conflicts between internally- and externally-
// linked variable declaration names in the same TU.
// This naming convention is the same as that followed by GCC, though it
// shouldn't actually matter.
if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
ND->getDeclContext()->isFileContext())
Out << 'L';
mangleSourceName(II);
break;
}
// Otherwise, an anonymous entity. We must have a declaration.
assert(ND && "mangling empty name without declaration");
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (NS->isAnonymousNamespace()) {
// This is how gcc mangles these names.
Out << "12_GLOBAL__N_1";
break;
}
}
// We must have an anonymous struct.
const TagDecl *TD = cast<TagDecl>(ND);
if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
assert(TD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
mangleSourceName(D->getDeclName().getAsIdentifierInfo());
break;
}
// Get a unique id for the anonymous struct.
uint64_t AnonStructId = Context.getAnonymousStructId(TD);
// Mangle it as a source name in the form
// [n] $_<id>
// where n is the length of the string.
llvm::SmallString<8> Str;
Str += "$_";
Str += llvm::utostr(AnonStructId);
Out << Str.size();
Out << Str.str();
break;
}
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
assert(false && "Can't mangle Objective-C selector names here!");
break;
case DeclarationName::CXXConstructorName:
if (ND == Structor)
// If the named decl is the C++ constructor we're mangling, use the type
// we were given.
mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
else
// Otherwise, use the complete constructor name. This is relevant if a
// class with a constructor is declared within a constructor.
mangleCXXCtorType(Ctor_Complete);
break;
case DeclarationName::CXXDestructorName:
if (ND == Structor)
// If the named decl is the C++ destructor we're mangling, use the type we
// were given.
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
else
// Otherwise, use the complete destructor name. This is relevant if a
// class with a destructor is declared within a destructor.
mangleCXXDtorType(Dtor_Complete);
break;
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= cv <type> # (cast)
Out << "cv";
mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
break;
case DeclarationName::CXXOperatorName: {
unsigned Arity;
if (ND) {
Arity = cast<FunctionDecl>(ND)->getNumParams();
// If we have a C++ member function, we need to include the 'this' pointer.
// FIXME: This does not make sense for operators that are static, but their
// names stay the same regardless of the arity (operator new for instance).
if (isa<CXXMethodDecl>(ND))
Arity++;
} else
Arity = KnownArity;
mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
break;
}
case DeclarationName::CXXLiteralOperatorName:
// FIXME: This mangling is not yet official.
Out << "li";
mangleSourceName(Name.getCXXLiteralIdentifier());
break;
case DeclarationName::CXXUsingDirective:
assert(false && "Can't mangle a using directive name!");
break;
}
}
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
// <source-name> ::= <positive length number> <identifier>
// <number> ::= [n] <non-negative decimal integer>
// <identifier> ::= <unqualified source code identifier>
Out << II->getLength() << II->getName();
}
void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
const DeclContext *DC,
bool NoFunction) {
// <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E
// ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
Out << 'N';
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND))
mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplatePrefix(TD);
mangleTemplateArgs(*TemplateArgs);
}
else {
manglePrefix(DC, NoFunction);
mangleUnqualifiedName(ND);
}
Out << 'E';
}
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
Out << 'N';
mangleTemplatePrefix(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
Out << 'E';
}
void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// <discriminator> := _ <non-negative number>
const DeclContext *DC = ND->getDeclContext();
Out << 'Z';
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
mangleObjCMethodName(MD);
else if (const DeclContext *CDC = GetLocalClassFunctionDeclContext(DC)) {
mangleFunctionEncoding(cast<FunctionDecl>(CDC));
Out << 'E';
mangleNestedName(ND, DC, true /*NoFunction*/);
// FIXME. This still does not cover all cases.
unsigned disc;
if (Context.getNextDiscriminator(ND, disc)) {
if (disc < 10)
Out << '_' << disc;
else
Out << "__" << disc << '_';
}
return;
}
else
mangleFunctionEncoding(cast<FunctionDecl>(DC));
Out << 'E';
mangleUnqualifiedName(ND);
}
void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= # empty
// ::= <substitution>
while (isa<LinkageSpecDecl>(DC))
DC = DC->getParent();
if (DC->isTranslationUnit())
return;
if (mangleSubstitution(cast<NamedDecl>(DC)))
return;
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
mangleTemplatePrefix(TD);
mangleTemplateArgs(*TemplateArgs);
}
else if(NoFunction && isa<FunctionDecl>(DC))
return;
else {
manglePrefix(DC->getParent(), NoFunction);
mangleUnqualifiedName(cast<NamedDecl>(DC));
}
addSubstitution(cast<NamedDecl>(DC));
}
void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
// <template-template-param> ::= <template-param>
// <substitution>
if (mangleSubstitution(ND))
return;
// <template-template-param> ::= <template-param>
if (const TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(ND)) {
mangleTemplateParameter(TTP->getIndex());
return;
}
manglePrefix(ND->getDeclContext());
mangleUnqualifiedName(ND->getTemplatedDecl());
addSubstitution(ND);
}
void
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
switch (OO) {
// <operator-name> ::= nw # new
case OO_New: Out << "nw"; break;
// ::= na # new[]
case OO_Array_New: Out << "na"; break;
// ::= dl # delete
case OO_Delete: Out << "dl"; break;
// ::= da # delete[]
case OO_Array_Delete: Out << "da"; break;
// ::= ps # + (unary)
// ::= pl # +
case OO_Plus:
assert((Arity == 1 || Arity == 2) && "Invalid arity!");
Out << (Arity == 1? "ps" : "pl"); break;
// ::= ng # - (unary)
// ::= mi # -
case OO_Minus:
assert((Arity == 1 || Arity == 2) && "Invalid arity!");
Out << (Arity == 1? "ng" : "mi"); break;
// ::= ad # & (unary)
// ::= an # &
case OO_Amp:
assert((Arity == 1 || Arity == 2) && "Invalid arity!");
Out << (Arity == 1? "ad" : "an"); break;
// ::= de # * (unary)
// ::= ml # *
case OO_Star:
assert((Arity == 1 || Arity == 2) && "Invalid arity!");
Out << (Arity == 1? "de" : "ml"); break;
// ::= co # ~
case OO_Tilde: Out << "co"; break;
// ::= dv # /
case OO_Slash: Out << "dv"; break;
// ::= rm # %
case OO_Percent: Out << "rm"; break;
// ::= or # |
case OO_Pipe: Out << "or"; break;
// ::= eo # ^
case OO_Caret: Out << "eo"; break;
// ::= aS # =
case OO_Equal: Out << "aS"; break;
// ::= pL # +=
case OO_PlusEqual: Out << "pL"; break;
// ::= mI # -=
case OO_MinusEqual: Out << "mI"; break;
// ::= mL # *=
case OO_StarEqual: Out << "mL"; break;
// ::= dV # /=
case OO_SlashEqual: Out << "dV"; break;
// ::= rM # %=
case OO_PercentEqual: Out << "rM"; break;
// ::= aN # &=
case OO_AmpEqual: Out << "aN"; break;
// ::= oR # |=
case OO_PipeEqual: Out << "oR"; break;
// ::= eO # ^=
case OO_CaretEqual: Out << "eO"; break;
// ::= ls # <<
case OO_LessLess: Out << "ls"; break;
// ::= rs # >>
case OO_GreaterGreater: Out << "rs"; break;
// ::= lS # <<=
case OO_LessLessEqual: Out << "lS"; break;
// ::= rS # >>=
case OO_GreaterGreaterEqual: Out << "rS"; break;
// ::= eq # ==
case OO_EqualEqual: Out << "eq"; break;
// ::= ne # !=
case OO_ExclaimEqual: Out << "ne"; break;
// ::= lt # <
case OO_Less: Out << "lt"; break;
// ::= gt # >
case OO_Greater: Out << "gt"; break;
// ::= le # <=
case OO_LessEqual: Out << "le"; break;
// ::= ge # >=
case OO_GreaterEqual: Out << "ge"; break;
// ::= nt # !
case OO_Exclaim: Out << "nt"; break;
// ::= aa # &&
case OO_AmpAmp: Out << "aa"; break;
// ::= oo # ||
case OO_PipePipe: Out << "oo"; break;
// ::= pp # ++
case OO_PlusPlus: Out << "pp"; break;
// ::= mm # --
case OO_MinusMinus: Out << "mm"; break;
// ::= cm # ,
case OO_Comma: Out << "cm"; break;
// ::= pm # ->*
case OO_ArrowStar: Out << "pm"; break;
// ::= pt # ->
case OO_Arrow: Out << "pt"; break;
// ::= cl # ()
case OO_Call: Out << "cl"; break;
// ::= ix # []
case OO_Subscript: Out << "ix"; break;
// ::= qu # ?
// The conditional operator can't be overloaded, but we still handle it when
// mangling expressions.
case OO_Conditional: Out << "qu"; break;
case OO_None:
case NUM_OVERLOADED_OPERATORS:
assert(false && "Not an overloaded operator");
break;
}
}
void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
if (Quals.hasRestrict())
Out << 'r';
if (Quals.hasVolatile())
Out << 'V';
if (Quals.hasConst())
Out << 'K';
// FIXME: For now, just drop all extension qualifiers on the floor.
}
void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
llvm::SmallString<64> Name;
llvm::raw_svector_ostream OS(Name);
const ObjCContainerDecl *CD =
dyn_cast<ObjCContainerDecl>(MD->getDeclContext());
assert (CD && "Missing container decl in GetNameForMethod");
OS << (MD->isInstanceMethod() ? '-' : '+') << '[' << CD->getName();
if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(CD))
OS << '(' << CID->getNameAsString() << ')';
OS << ' ' << MD->getSelector().getAsString() << ']';
Out << OS.str().size() << OS.str();
}
void CXXNameMangler::mangleType(QualType T) {
// Only operate on the canonical type!
T = Context.getASTContext().getCanonicalType(T);
bool IsSubstitutable = T.hasLocalQualifiers() || !isa<BuiltinType>(T);
if (IsSubstitutable && mangleSubstitution(T))
return;
if (Qualifiers Quals = T.getLocalQualifiers()) {
mangleQualifiers(Quals);
// Recurse: even if the qualified type isn't yet substitutable,
// the unqualified type might be.
mangleType(T.getLocalUnqualifiedType());
} else {
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
case Type::CLASS: \
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
return;
#define TYPE(CLASS, PARENT) \
case Type::CLASS: \
mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
break;
#include "clang/AST/TypeNodes.def"
}
}
// Add the substitution.
if (IsSubstitutable)
addSubstitution(T);
}
void CXXNameMangler::mangleType(const BuiltinType *T) {
// <type> ::= <builtin-type>
// <builtin-type> ::= v # void
// ::= w # wchar_t
// ::= b # bool
// ::= c # char
// ::= a # signed char
// ::= h # unsigned char
// ::= s # short
// ::= t # unsigned short
// ::= i # int
// ::= j # unsigned int
// ::= l # long
// ::= m # unsigned long
// ::= x # long long, __int64
// ::= y # unsigned long long, __int64
// ::= n # __int128
// UNSUPPORTED: ::= o # unsigned __int128
// ::= f # float
// ::= d # double
// ::= e # long double, __float80
// UNSUPPORTED: ::= g # __float128
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
// UNSUPPORTED: ::= Dh # IEEE 754r half-precision floating point (16 bits)
// ::= Di # char32_t
// ::= Ds # char16_t
// ::= u <source-name> # vendor extended type
// From our point of view, std::nullptr_t is a builtin, but as far as mangling
// is concerned, it's a type called std::nullptr_t.
switch (T->getKind()) {
case BuiltinType::Void: Out << 'v'; break;
case BuiltinType::Bool: Out << 'b'; break;
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
case BuiltinType::UChar: Out << 'h'; break;
case BuiltinType::UShort: Out << 't'; break;
case BuiltinType::UInt: Out << 'j'; break;
case BuiltinType::ULong: Out << 'm'; break;
case BuiltinType::ULongLong: Out << 'y'; break;
case BuiltinType::UInt128: Out << 'o'; break;
case BuiltinType::SChar: Out << 'a'; break;
case BuiltinType::WChar: Out << 'w'; break;
case BuiltinType::Char16: Out << "Ds"; break;
case BuiltinType::Char32: Out << "Di"; break;
case BuiltinType::Short: Out << 's'; break;
case BuiltinType::Int: Out << 'i'; break;
case BuiltinType::Long: Out << 'l'; break;
case BuiltinType::LongLong: Out << 'x'; break;
case BuiltinType::Int128: Out << 'n'; break;
case BuiltinType::Float: Out << 'f'; break;
case BuiltinType::Double: Out << 'd'; break;
case BuiltinType::LongDouble: Out << 'e'; break;
case BuiltinType::NullPtr: Out << "St9nullptr_t"; break;
case BuiltinType::Overload:
case BuiltinType::Dependent:
assert(false &&
"Overloaded and dependent types shouldn't get to name mangling");
break;
case BuiltinType::UndeducedAuto:
assert(0 && "Should not see undeduced auto here");
break;
case BuiltinType::ObjCId: Out << "11objc_object"; break;
case BuiltinType::ObjCClass: Out << "10objc_class"; break;
case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
}
}
// <type> ::= <function-type>
// <function-type> ::= F [Y] <bare-function-type> E
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
Out << 'F';
// FIXME: We don't have enough information in the AST to produce the 'Y'
// encoding for extern "C" function types.
mangleBareFunctionType(T, /*MangleReturnType=*/true);
Out << 'E';
}
void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
llvm_unreachable("Can't mangle K&R function prototypes");
}
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType) {
// We should never be mangling something without a prototype.
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
// <bare-function-type> ::= <signature type>+
if (MangleReturnType)
mangleType(Proto->getResultType());
if (Proto->getNumArgs() == 0) {
Out << 'v';
return;
}
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
ArgEnd = Proto->arg_type_end();
Arg != ArgEnd; ++Arg)
mangleType(*Arg);
// <builtin-type> ::= z # ellipsis
if (Proto->isVariadic())
Out << 'z';
}
// <type> ::= <class-enum-type>
// <class-enum-type> ::= <name>
void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
mangleName(T->getDecl());
}
// <type> ::= <class-enum-type>
// <class-enum-type> ::= <name>
void CXXNameMangler::mangleType(const EnumType *T) {
mangleType(static_cast<const TagType*>(T));
}
void CXXNameMangler::mangleType(const RecordType *T) {
mangleType(static_cast<const TagType*>(T));
}
void CXXNameMangler::mangleType(const TagType *T) {
mangleName(T->getDecl());
}
// <type> ::= <array-type>
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
void CXXNameMangler::mangleType(const ConstantArrayType *T) {
Out << 'A' << T->getSize() << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const VariableArrayType *T) {
Out << 'A';
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
Out << 'A';
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
Out << 'A' << '_';
mangleType(T->getElementType());
}
// <type> ::= <pointer-to-member-type>
// <pointer-to-member-type> ::= M <class type> <member type>
void CXXNameMangler::mangleType(const MemberPointerType *T) {
Out << 'M';
mangleType(QualType(T->getClass(), 0));
QualType PointeeType = T->getPointeeType();
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
mangleType(FPT);
} else
mangleType(PointeeType);
}
// <type> ::= <template-param>
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
mangleTemplateParameter(T->getIndex());
}
// FIXME: <type> ::= <template-template-param> <template-args>
// <type> ::= P <type> # pointer-to
void CXXNameMangler::mangleType(const PointerType *T) {
Out << 'P';
mangleType(T->getPointeeType());
}
void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
Out << 'P';
mangleType(T->getPointeeType());
}
// <type> ::= R <type> # reference-to
void CXXNameMangler::mangleType(const LValueReferenceType *T) {
Out << 'R';
mangleType(T->getPointeeType());
}
// <type> ::= O <type> # rvalue reference-to (C++0x)
void CXXNameMangler::mangleType(const RValueReferenceType *T) {
Out << 'O';
mangleType(T->getPointeeType());
}
// <type> ::= C <type> # complex pair (C 2000)
void CXXNameMangler::mangleType(const ComplexType *T) {
Out << 'C';
mangleType(T->getElementType());
}
// GNU extension: vector types
void CXXNameMangler::mangleType(const VectorType *T) {
Out << "U8__vector";
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const ExtVectorType *T) {
mangleType(static_cast<const VectorType*>(T));
}
void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
Out << "U8__vector";
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
mangleSourceName(T->getDecl()->getIdentifier());
}
void CXXNameMangler::mangleType(const BlockPointerType *T) {
Out << "U13block_pointer";
mangleType(T->getPointeeType());
}
void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
assert(TD && "FIXME: Support dependent template names!");
mangleName(TD, T->getArgs(), T->getNumArgs());
}
void CXXNameMangler::mangleType(const TypenameType *T) {
// Typename types are always nested
Out << 'N';
const Type *QTy = T->getQualifier()->getAsType();
if (const TemplateSpecializationType *TST =
dyn_cast<TemplateSpecializationType>(QTy)) {
if (!mangleSubstitution(QualType(TST, 0))) {
TemplateDecl *TD = TST->getTemplateName().getAsTemplateDecl();
assert(TD && "FIXME: Support dependent template names");
mangleTemplatePrefix(TD);
mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
addSubstitution(QualType(TST, 0));
}
} else if (const TemplateTypeParmType *TTPT =
dyn_cast<TemplateTypeParmType>(QTy)) {
// We use the QualType mangle type variant here because it handles
// substitutions.
mangleType(QualType(TTPT, 0));
} else
assert(false && "Unhandled type!");
mangleSourceName(T->getIdentifier());
Out << 'E';
}
void CXXNameMangler::mangleType(const TypeOfType *T) {
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
// "extension with parameters" mangling.
Out << "u6typeof";
}
void CXXNameMangler::mangleType(const TypeOfExprType *T) {
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
// "extension with parameters" mangling.
Out << "u6typeof";
}
void CXXNameMangler::mangleType(const DecltypeType *T) {
Expr *E = T->getUnderlyingExpr();
// type ::= Dt <expression> E # decltype of an id-expression
// # or class member access
// ::= DT <expression> E # decltype of an expression
// This purports to be an exhaustive list of id-expressions and
// class member accesses. Note that we do not ignore parentheses;
// parentheses change the semantics of decltype for these
// expressions (and cause the mangler to use the other form).
if (isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) ||
isa<UnresolvedLookupExpr>(E) ||
isa<DependentScopeDeclRefExpr>(E) ||
isa<CXXDependentScopeMemberExpr>(E) ||
isa<UnresolvedMemberExpr>(E))
Out << "Dt";
else
Out << "DT";
mangleExpression(E);
Out << 'E';
}
void CXXNameMangler::mangleIntegerLiteral(QualType T,
const llvm::APSInt &Value) {
// <expr-primary> ::= L <type> <value number> E # integer literal
Out << 'L';
mangleType(T);
if (T->isBooleanType()) {
// Boolean values are encoded as 0/1.
Out << (Value.getBoolValue() ? '1' : '0');
} else {
if (Value.isNegative())
Out << 'n';
Value.abs().print(Out, false);
}
Out << 'E';
}
void CXXNameMangler::mangleCalledExpression(const Expr *E, unsigned Arity) {
if (E->getType() != getASTContext().OverloadTy)
mangleExpression(E);
// propagate arity to dependent overloads?
llvm::PointerIntPair<OverloadExpr*,1> R
= OverloadExpr::find(const_cast<Expr*>(E));
if (R.getInt())
Out << "an"; // &
const OverloadExpr *Ovl = R.getPointer();
if (const UnresolvedMemberExpr *ME = dyn_cast<UnresolvedMemberExpr>(Ovl)) {
mangleMemberExpr(ME->getBase(), ME->isArrow(), ME->getQualifier(),
ME->getMemberName(), Arity);
return;
}
mangleUnresolvedName(Ovl->getQualifier(), Ovl->getName(), Arity);
}
/// Mangles a member expression. Implicit accesses are not handled,
/// but that should be okay, because you shouldn't be able to
/// make an implicit access in a function template declaration.
void CXXNameMangler::mangleMemberExpr(const Expr *Base,
bool IsArrow,
NestedNameSpecifier *Qualifier,
DeclarationName Member,
unsigned Arity) {
// gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
// OTOH, gcc also mangles the name as an expression.
Out << (IsArrow ? "pt" : "dt");
mangleExpression(Base);
mangleUnresolvedName(Qualifier, Member, Arity);
}
void CXXNameMangler::mangleExpression(const Expr *E) {
// <expression> ::= <unary operator-name> <expression>
// ::= <binary operator-name> <expression> <expression>
// ::= <trinary operator-name> <expression> <expression> <expression>
// ::= cl <expression>* E # call
// ::= cv <type> expression # conversion with one argument
// ::= cv <type> _ <expression>* E # conversion with a different number of arguments
// ::= st <type> # sizeof (a type)
// ::= at <type> # alignof (a type)
// ::= <template-param>
// ::= <function-param>
// ::= sr <type> <unqualified-name> # dependent name
// ::= sr <type> <unqualified-name> <template-args> # dependent template-id
// ::= sZ <template-param> # size of a parameter pack
// ::= <expr-primary>
// <expr-primary> ::= L <type> <value number> E # integer literal
// ::= L <type <value float> E # floating literal
// ::= L <mangled-name> E # external name
switch (E->getStmtClass()) {
default:
llvm_unreachable("unexpected statement kind");
break;
case Expr::CallExprClass: {
const CallExpr *CE = cast<CallExpr>(E);
Out << "cl";
mangleCalledExpression(CE->getCallee(), CE->getNumArgs());
for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
mangleExpression(CE->getArg(I));
Out << "E";
break;
}
case Expr::MemberExprClass: {
const MemberExpr *ME = cast<MemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
UnknownArity);
break;
}
case Expr::UnresolvedMemberExprClass: {
const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), ME->getMemberName(),
UnknownArity);
break;
}
case Expr::CXXDependentScopeMemberExprClass: {
const CXXDependentScopeMemberExpr *ME
= cast<CXXDependentScopeMemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), ME->getMember(),
UnknownArity);
break;
}
case Expr::UnresolvedLookupExprClass: {
// The ABI doesn't cover how to mangle overload sets, so we mangle
// using something as close as possible to the original lookup
// expression.
const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), UnknownArity);
break;
}
case Expr::CXXUnresolvedConstructExprClass: {
const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
unsigned N = CE->arg_size();
Out << "cv";
mangleType(CE->getType());
if (N != 1) Out << "_";
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
if (N != 1) Out << "E";
break;
}
case Expr::CXXTemporaryObjectExprClass:
case Expr::CXXConstructExprClass: {
const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
unsigned N = CE->getNumArgs();
Out << "cv";
mangleType(CE->getType());
if (N != 1) Out << "_";
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
if (N != 1) Out << "E";
break;
}
case Expr::SizeOfAlignOfExprClass: {
const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
if (SAE->isSizeOf()) Out << "s";
else Out << "a";
if (SAE->isArgumentType()) {
Out << "t";
mangleType(SAE->getArgumentType());
} else {
Out << "z";
mangleExpression(SAE->getArgumentExpr());
}
break;
}
case Expr::UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(E);
mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
/*Arity=*/1);
mangleExpression(UO->getSubExpr());
break;
}
case Expr::BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(E);
mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
/*Arity=*/2);
mangleExpression(BO->getLHS());
mangleExpression(BO->getRHS());
break;
}
case Expr::ConditionalOperatorClass: {
const ConditionalOperator *CO = cast<ConditionalOperator>(E);
mangleOperatorName(OO_Conditional, /*Arity=*/3);
mangleExpression(CO->getCond());
mangleExpression(CO->getLHS());
mangleExpression(CO->getRHS());
break;
}
case Expr::ImplicitCastExprClass: {
mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr());
break;
}
case Expr::CStyleCastExprClass:
case Expr::CXXStaticCastExprClass:
case Expr::CXXDynamicCastExprClass:
case Expr::CXXReinterpretCastExprClass:
case Expr::CXXConstCastExprClass:
case Expr::CXXFunctionalCastExprClass: {
const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
Out << "cv";
mangleType(ECE->getType());
mangleExpression(ECE->getSubExpr());
break;
}
case Expr::CXXOperatorCallExprClass: {
const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
unsigned NumArgs = CE->getNumArgs();
mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
// Mangle the arguments.
for (unsigned i = 0; i != NumArgs; ++i)
mangleExpression(CE->getArg(i));
break;
}
case Expr::ParenExprClass:
mangleExpression(cast<ParenExpr>(E)->getSubExpr());
break;
case Expr::DeclRefExprClass: {
const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
switch (D->getKind()) {
default:
// <expr-primary> ::= L <mangled-name> E # external name
Out << 'L';
mangle(D, "_Z");
Out << 'E';
break;
case Decl::NonTypeTemplateParm: {
const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
mangleTemplateParameter(PD->getIndex());
break;
}
}
break;
}
case Expr::DependentScopeDeclRefExprClass: {
const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
NestedNameSpecifier *NNS = DRE->getQualifier();
const Type *QTy = NNS->getAsType();
// When we're dealing with a nested-name-specifier that has just a
// dependent identifier in it, mangle that as a typename. FIXME:
// It isn't clear that we ever actually want to have such a
// nested-name-specifier; why not just represent it as a typename type?
if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
QTy = getASTContext().getTypenameType(NNS->getPrefix(),
NNS->getAsIdentifier())
.getTypePtr();
}
assert(QTy && "Qualifier was not type!");
// ::= sr <type> <unqualified-name> # dependent name
Out << "sr";
mangleType(QualType(QTy, 0));
assert(DRE->getDeclName().getNameKind() == DeclarationName::Identifier &&
"Unhandled decl name kind!");
mangleSourceName(DRE->getDeclName().getAsIdentifierInfo());
break;
}
case Expr::FloatingLiteralClass: {
const FloatingLiteral *FL = cast<FloatingLiteral>(E);
Out << "L";
mangleType(FL->getType());
// TODO: avoid this copy with careful stream management.
llvm::SmallVector<char,20> Buffer;
FL->getValue().bitcastToAPInt().toString(Buffer, 16, false);
Out.write(Buffer.data(), Buffer.size());
Out << "E";
break;
}
case Expr::IntegerLiteralClass:
mangleIntegerLiteral(E->getType(),
llvm::APSInt(cast<IntegerLiteral>(E)->getValue()));
break;
}
}
// FIXME: <type> ::= G <type> # imaginary (C 2000)
// FIXME: <type> ::= U <source-name> <type> # vendor extended type qualifier
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
// ::= C3 # complete object allocating constructor
//
switch (T) {
case Ctor_Complete:
Out << "C1";
break;
case Ctor_Base:
Out << "C2";
break;
case Ctor_CompleteAllocating:
Out << "C3";
break;
}
}
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
// <ctor-dtor-name> ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
//
switch (T) {
case Dtor_Deleting:
Out << "D0";
break;
case Dtor_Complete:
Out << "D1";
break;
case Dtor_Base:
Out << "D2";
break;
}
}
void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &L) {
// <template-args> ::= I <template-arg>+ E
Out << "I";
for (unsigned i = 0, e = L.size(); i != e; ++i)
mangleTemplateArg(L[i]);
Out << "E";
}
void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <template-args> ::= I <template-arg>+ E
Out << "I";
for (unsigned i = 0; i != NumTemplateArgs; ++i)
mangleTemplateArg(TemplateArgs[i]);
Out << "E";
}
void CXXNameMangler::mangleTemplateArg(const TemplateArgument &A) {
// <template-arg> ::= <type> # type or template
// ::= X <expression> E # expression
// ::= <expr-primary> # simple expressions
// ::= I <template-arg>* E # argument pack
// ::= sp <expression> # pack expansion of (C++0x)
switch (A.getKind()) {
default:
assert(0 && "Unknown template argument kind!");
case TemplateArgument::Type:
mangleType(A.getAsType());
break;
case TemplateArgument::Template:
assert(A.getAsTemplate().getAsTemplateDecl() &&
"FIXME: Support dependent template names");
mangleName(A.getAsTemplate().getAsTemplateDecl());
break;
case TemplateArgument::Expression:
Out << 'X';
mangleExpression(A.getAsExpr());
Out << 'E';
break;
case TemplateArgument::Integral:
mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
break;
case TemplateArgument::Declaration: {
// <expr-primary> ::= L <mangled-name> E # external name
// FIXME: Clang produces AST's where pointer-to-member-function expressions
// and pointer-to-function expressions are represented as a declaration not
// an expression; this is not how gcc represents them and this changes the
// mangling.
Out << 'L';
// References to external entities use the mangled name; if the name would
// not normally be manged then mangle it as unqualified.
//
// FIXME: The ABI specifies that external names here should have _Z, but
// gcc leaves this off.
mangle(cast<NamedDecl>(A.getAsDecl()), "Z");
Out << 'E';
break;
}
}
}
void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
if (Index == 0)
Out << "T_";
else
Out << 'T' << (Index - 1) << '_';
}
// <substitution> ::= S <seq-id> _
// ::= S_
bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
// Try one of the standard substitutions first.
if (mangleStandardSubstitution(ND))
return true;
ND = cast<NamedDecl>(ND->getCanonicalDecl());
return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
}
bool CXXNameMangler::mangleSubstitution(QualType T) {
if (!T.getCVRQualifiers()) {
if (const RecordType *RT = T->getAs<RecordType>())
return mangleSubstitution(RT->getDecl());
}
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
return mangleSubstitution(TypePtr);
}
bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
llvm::DenseMap<uintptr_t, unsigned>::iterator I =
Substitutions.find(Ptr);
if (I == Substitutions.end())
return false;
unsigned SeqID = I->second;
if (SeqID == 0)
Out << "S_";
else {
SeqID--;
// <seq-id> is encoded in base-36, using digits and upper case letters.
char Buffer[10];
char *BufferPtr = Buffer + 9;
*BufferPtr = 0;
if (SeqID == 0) *--BufferPtr = '0';
while (SeqID) {
assert(BufferPtr > Buffer && "Buffer overflow!");
unsigned char c = static_cast<unsigned char>(SeqID) % 36;
*--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
SeqID /= 36;
}
Out << 'S' << BufferPtr << '_';
}
return true;
}
static bool isCharType(QualType T) {
if (T.isNull())
return false;
return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
T->isSpecificBuiltinType(BuiltinType::Char_U);
}
/// isCharSpecialization - Returns whether a given type is a template
/// specialization of a given name with a single argument of type char.
static bool isCharSpecialization(QualType T, const char *Name) {
if (T.isNull())
return false;
const RecordType *RT = T->getAs<RecordType>();
if (!RT)
return false;
const ClassTemplateSpecializationDecl *SD =
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
if (!SD)
return false;
if (!isStdNamespace(SD->getDeclContext()))
return false;
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 1)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
return SD->getIdentifier()->getName() == Name;
}
template <std::size_t StrLen>
bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl *SD,
const char (&Str)[StrLen]) {
if (!SD->getIdentifier()->isStr(Str))
return false;
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 2)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
return false;
return true;
}
bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
// <substitution> ::= St # ::std::
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (isStd(NS)) {
Out << "St";
return true;
}
}
if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
if (!isStdNamespace(TD->getDeclContext()))
return false;
// <substitution> ::= Sa # ::std::allocator
if (TD->getIdentifier()->isStr("allocator")) {
Out << "Sa";
return true;
}
// <<substitution> ::= Sb # ::std::basic_string
if (TD->getIdentifier()->isStr("basic_string")) {
Out << "Sb";
return true;
}
}
if (const ClassTemplateSpecializationDecl *SD =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
if (!isStdNamespace(SD->getDeclContext()))
return false;
// <substitution> ::= Ss # ::std::basic_string<char,
// ::std::char_traits<char>,
// ::std::allocator<char> >
if (SD->getIdentifier()->isStr("basic_string")) {
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 3)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
return false;
if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
return false;
Out << "Ss";
return true;
}
// <substitution> ::= Si # ::std::basic_istream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_istream")) {
Out << "Si";
return true;
}
// <substitution> ::= So # ::std::basic_ostream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_ostream")) {
Out << "So";
return true;
}
// <substitution> ::= Sd # ::std::basic_iostream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_iostream")) {
Out << "Sd";
return true;
}
}
return false;
}
void CXXNameMangler::addSubstitution(QualType T) {
if (!T.getCVRQualifiers()) {
if (const RecordType *RT = T->getAs<RecordType>()) {
addSubstitution(RT->getDecl());
return;
}
}
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
addSubstitution(TypePtr);
}
void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
unsigned SeqID = Substitutions.size();
assert(!Substitutions.count(Ptr) && "Substitution already exists!");
Substitutions[Ptr] = SeqID;
}
//
/// \brief Mangles the name of the declaration D and emits that name to the
/// given output stream.
///
/// If the declaration D requires a mangled name, this routine will emit that
/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
/// and this routine will return false. In this case, the caller should just
/// emit the identifier of the declaration (\c D->getIdentifier()) as its
/// name.
void MangleContext::mangleName(const NamedDecl *D,
llvm::SmallVectorImpl<char> &Res) {
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
"Invalid mangleName() call, argument is not a variable or function!");
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
"Invalid mangleName() call on 'structor decl!");
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
getASTContext().getSourceManager(),
"Mangling declaration");
CXXNameMangler Mangler(*this, Res);
return Mangler.mangle(D);
}
void MangleContext::mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
llvm::SmallVectorImpl<char> &Res) {
CXXNameMangler Mangler(*this, Res, D, Type);
Mangler.mangle(D);
}
void MangleContext::mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
llvm::SmallVectorImpl<char> &Res) {
CXXNameMangler Mangler(*this, Res, D, Type);
Mangler.mangle(D);
}
/// \brief Mangles the a thunk with the offset n for the declaration D and
/// emits that name to the given output stream.
void MangleContext::mangleThunk(const FunctionDecl *FD,
const ThunkAdjustment &ThisAdjustment,
llvm::SmallVectorImpl<char> &Res) {
assert(!isa<CXXDestructorDecl>(FD) &&
"Use mangleCXXDtor for destructor decls!");
// <special-name> ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
CXXNameMangler Mangler(*this, Res);
Mangler.getStream() << "_ZT";
Mangler.mangleCallOffset(ThisAdjustment);
Mangler.mangleFunctionEncoding(FD);
}
void MangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *D,
CXXDtorType Type,
const ThunkAdjustment &ThisAdjustment,
llvm::SmallVectorImpl<char> &Res) {
// <special-name> ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
CXXNameMangler Mangler(*this, Res, D, Type);
Mangler.getStream() << "_ZT";
Mangler.mangleCallOffset(ThisAdjustment);
Mangler.mangleFunctionEncoding(D);
}
/// \brief Mangles the a covariant thunk for the declaration D and emits that
/// name to the given output stream.
void
MangleContext::mangleCovariantThunk(const FunctionDecl *FD,
const CovariantThunkAdjustment& Adjustment,
llvm::SmallVectorImpl<char> &Res) {
assert(!isa<CXXDestructorDecl>(FD) &&
"No such thing as a covariant thunk for a destructor!");
// <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
// # base is the nominal target function of thunk
// # first call-offset is 'this' adjustment
// # second call-offset is result adjustment
CXXNameMangler Mangler(*this, Res);
Mangler.getStream() << "_ZTc";
Mangler.mangleCallOffset(Adjustment.ThisAdjustment);
Mangler.mangleCallOffset(Adjustment.ReturnAdjustment);
Mangler.mangleFunctionEncoding(FD);
}
/// mangleGuardVariable - Returns the mangled name for a guard variable
/// for the passed in VarDecl.
void MangleContext::mangleGuardVariable(const VarDecl *D,
llvm::SmallVectorImpl<char> &Res) {
// <special-name> ::= GV <object name> # Guard variable for one-time
// # initialization
CXXNameMangler Mangler(*this, Res);
Mangler.getStream() << "_ZGV";
Mangler.mangleName(D);
}
void MangleContext::mangleCXXVtable(const CXXRecordDecl *RD,
llvm::SmallVectorImpl<char> &Res) {
// <special-name> ::= TV <type> # virtual table
CXXNameMangler Mangler(*this, Res);
Mangler.getStream() << "_ZTV";
Mangler.mangleName(RD);
}
void MangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
llvm::SmallVectorImpl<char> &Res) {
// <special-name> ::= TT <type> # VTT structure
CXXNameMangler Mangler(*this, Res);
Mangler.getStream() << "_ZTT";
Mangler.mangleName(RD);
}
void MangleContext::mangleCXXCtorVtable(const CXXRecordDecl *RD, int64_t Offset,
const CXXRecordDecl *Type,
llvm::SmallVectorImpl<char> &Res) {
// <special-name> ::= TC <type> <offset number> _ <base type>
CXXNameMangler Mangler(*this, Res);
Mangler.getStream() << "_ZTC";
Mangler.mangleName(RD);
Mangler.getStream() << Offset;
Mangler.getStream() << "_";
Mangler.mangleName(Type);
}
void MangleContext::mangleCXXRTTI(QualType Ty,
llvm::SmallVectorImpl<char> &Res) {
// <special-name> ::= TI <type> # typeinfo structure
assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
CXXNameMangler Mangler(*this, Res);
Mangler.getStream() << "_ZTI";
Mangler.mangleType(Ty);
}
void MangleContext::mangleCXXRTTIName(QualType Ty,
llvm::SmallVectorImpl<char> &Res) {
// <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
CXXNameMangler Mangler(*this, Res);
Mangler.getStream() << "_ZTS";
Mangler.mangleType(Ty);
}