blob: 10c5089f2253f6a49c479af3035bca0fc1d9d23d [file] [log] [blame]
//=== ASTRecordLayoutBuilder.cpp - Helper class for building record layouts ==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "RecordLayoutBuilder.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
#include <llvm/ADT/SmallSet.h>
#include <llvm/Support/MathExtras.h>
using namespace clang;
ASTRecordLayoutBuilder::ASTRecordLayoutBuilder(ASTContext &Ctx)
: Ctx(Ctx), Size(0), Alignment(8), Packed(false), UnfilledBitsInLastByte(0),
MaxFieldAlignment(0), DataSize(0), IsUnion(false), NonVirtualSize(0),
NonVirtualAlignment(8) { }
/// LayoutVtable - Lay out the vtable and set PrimaryBase.
void ASTRecordLayoutBuilder::LayoutVtable(const CXXRecordDecl *RD) {
if (!RD->isDynamicClass()) {
// There is no primary base in this case.
return;
}
SelectPrimaryBase(RD);
if (!PrimaryBase.getBase()) {
int AS = 0;
UpdateAlignment(Ctx.Target.getPointerAlign(AS));
Size += Ctx.Target.getPointerWidth(AS);
DataSize = Size;
}
}
void
ASTRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
if (!i->isVirtual()) {
assert(!i->getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
// Skip the PrimaryBase here, as it is laid down first.
if (Base != PrimaryBase.getBase() || PrimaryBase.isVirtual())
LayoutBaseNonVirtually(Base, false);
}
}
}
// Helper routines related to the abi definition from:
// http://www.codesourcery.com/public/cxx-abi/abi.html
//
/// IsNearlyEmpty - Indicates when a class has a vtable pointer, but
/// no other data.
bool ASTRecordLayoutBuilder::IsNearlyEmpty(const CXXRecordDecl *RD) const {
// FIXME: Audit the corners
if (!RD->isDynamicClass())
return false;
const ASTRecordLayout &BaseInfo = Ctx.getASTRecordLayout(RD);
if (BaseInfo.getNonVirtualSize() == Ctx.Target.getPointerWidth(0))
return true;
return false;
}
void ASTRecordLayoutBuilder::IdentifyPrimaryBases(const CXXRecordDecl *RD) {
const ASTRecordLayout::PrimaryBaseInfo &BaseInfo =
Ctx.getASTRecordLayout(RD).getPrimaryBaseInfo();
// If the record has a primary base class that is virtual, add it to the set
// of primary bases.
if (BaseInfo.isVirtual())
IndirectPrimaryBases.insert(BaseInfo.getBase());
// Now traverse all bases and find primary bases for them.
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
assert(!i->getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
// Only bases with virtual bases participate in computing the
// indirect primary virtual base classes.
if (Base->getNumVBases())
IdentifyPrimaryBases(Base);
}
}
void
ASTRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD,
const CXXRecordDecl *&FirstPrimary) {
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
assert(!i->getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
if (!i->isVirtual()) {
SelectPrimaryVBase(Base, FirstPrimary);
if (PrimaryBase.getBase())
return;
continue;
}
if (IsNearlyEmpty(Base)) {
if (FirstPrimary==0)
FirstPrimary = Base;
if (!IndirectPrimaryBases.count(Base)) {
setPrimaryBase(Base, /*IsVirtual=*/true);
return;
}
}
assert(i->isVirtual());
SelectPrimaryVBase(Base, FirstPrimary);
if (PrimaryBase.getBase())
return;
}
}
/// SelectPrimaryBase - Selects the primary base for the given class and
/// record that with setPrimaryBase. We also calculate the IndirectPrimaries.
void ASTRecordLayoutBuilder::SelectPrimaryBase(const CXXRecordDecl *RD) {
// Compute all the primary virtual bases for all of our direct and
// indirect bases, and record all their primary virtual base classes.
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
assert(!i->getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
IdentifyPrimaryBases(Base);
}
// If the record has a dynamic base class, attempt to choose a primary base
// class. It is the first (in direct base class order) non-virtual dynamic
// base class, if one exists.
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
// Ignore virtual bases.
if (i->isVirtual())
continue;
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
if (Base->isDynamicClass()) {
// We found it.
PrimaryBase = ASTRecordLayout::PrimaryBaseInfo(Base, /*IsVirtual=*/false);
return;
}
}
// Otherwise, it is the first nearly empty virtual base that is not an
// indirect primary virtual base class, if one exists.
// If we have no virtual bases at this point, bail out as the searching below
// is expensive.
if (RD->getNumVBases() == 0)
return;
// Then we can search for the first nearly empty virtual base itself.
const CXXRecordDecl *FirstPrimary = 0;
SelectPrimaryVBase(RD, FirstPrimary);
// Otherwise if is the first nearly empty virtual base, if one exists,
// otherwise there is no primary base class.
if (!PrimaryBase.getBase())
setPrimaryBase(FirstPrimary, /*IsVirtual=*/true);
}
void ASTRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *RD) {
LayoutBaseNonVirtually(RD, true);
}
uint64_t ASTRecordLayoutBuilder::getBaseOffset(const CXXRecordDecl *Base) {
for (size_t i = 0; i < Bases.size(); ++i) {
if (Bases[i].first == Base)
return Bases[i].second;
}
for (size_t i = 0; i < VBases.size(); ++i) {
if (VBases[i].first == Base)
return VBases[i].second;
}
assert(0 && "missing base");
return 0;
}
void ASTRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *Class,
const CXXRecordDecl *RD,
const CXXRecordDecl *PB,
uint64_t Offset,
llvm::SmallSet<const CXXRecordDecl*, 32> &mark,
llvm::SmallSet<const CXXRecordDecl*, 32> &IndirectPrimary) {
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
assert(!i->getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
uint64_t BaseOffset = Offset;
if (i->isVirtual()) {
if (Base == PB) {
// Only lay things out once.
if (mark.count(Base))
continue;
// Mark it so we don't lay it out twice.
mark.insert(Base);
assert (IndirectPrimary.count(Base) && "IndirectPrimary was wrong");
VBases.push_back(std::make_pair(Base, Offset));
} else if (IndirectPrimary.count(Base)) {
// Someone else will eventually lay this out.
;
} else {
// Only lay things out once.
if (mark.count(Base))
continue;
// Mark it so we don't lay it out twice.
mark.insert(Base);
LayoutVirtualBase(Base);
BaseOffset = VBases.back().second;
}
} else {
if (RD == Class)
BaseOffset = getBaseOffset(Base);
else {
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
BaseOffset = Offset + Layout.getBaseClassOffset(Base);
}
}
if (Base->getNumVBases()) {
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Base);
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBaseInfo().getBase();
LayoutVirtualBases(Class, Base, PrimaryBase, BaseOffset, mark,
IndirectPrimary);
}
}
}
bool ASTRecordLayoutBuilder::canPlaceRecordAtOffset(const CXXRecordDecl *RD,
uint64_t Offset) const {
// Look for an empty class with the same type at the same offset.
for (EmptyClassOffsetsTy::const_iterator I =
EmptyClassOffsets.lower_bound(Offset),
E = EmptyClassOffsets.upper_bound(Offset); I != E; ++I) {
if (I->second == RD)
return false;
}
const ASTRecordLayout &Info = Ctx.getASTRecordLayout(RD);
// Check bases.
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
assert(!I->getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
if (I->isVirtual())
continue;
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
uint64_t BaseClassOffset = Info.getBaseClassOffset(Base);
if (!canPlaceRecordAtOffset(Base, Offset + BaseClassOffset))
return false;
}
// Check fields.
unsigned FieldNo = 0;
for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
I != E; ++I, ++FieldNo) {
const FieldDecl *FD = *I;
uint64_t FieldOffset = Info.getFieldOffset(FieldNo);
if (!canPlaceFieldAtOffset(FD, Offset + FieldOffset))
return false;
}
// FIXME: virtual bases.
return true;
}
bool ASTRecordLayoutBuilder::canPlaceFieldAtOffset(const FieldDecl *FD,
uint64_t Offset) const {
QualType T = FD->getType();
if (const RecordType *RT = T->getAs<RecordType>()) {
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
return canPlaceRecordAtOffset(RD, Offset);
}
if (const ConstantArrayType *AT = Ctx.getAsConstantArrayType(T)) {
QualType ElemTy = Ctx.getBaseElementType(AT);
const RecordType *RT = ElemTy->getAs<RecordType>();
if (!RT)
return true;
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
if (!RD)
return true;
const ASTRecordLayout &Info = Ctx.getASTRecordLayout(RD);
uint64_t NumElements = Ctx.getConstantArrayElementCount(AT);
uint64_t ElementOffset = Offset;
for (uint64_t I = 0; I != NumElements; ++I) {
if (!canPlaceRecordAtOffset(RD, ElementOffset))
return false;
ElementOffset += Info.getSize();
}
}
return true;
}
void ASTRecordLayoutBuilder::UpdateEmptyClassOffsets(const CXXRecordDecl *RD,
uint64_t Offset) {
if (RD->isEmpty())
EmptyClassOffsets.insert(std::make_pair(Offset, RD));
const ASTRecordLayout &Info = Ctx.getASTRecordLayout(RD);
// Update bases.
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
assert(!I->getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
if (I->isVirtual())
continue;
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
uint64_t BaseClassOffset = Info.getBaseClassOffset(Base);
UpdateEmptyClassOffsets(Base, Offset + BaseClassOffset);
}
// Update fields.
unsigned FieldNo = 0;
for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
I != E; ++I, ++FieldNo) {
const FieldDecl *FD = *I;
uint64_t FieldOffset = Info.getFieldOffset(FieldNo);
UpdateEmptyClassOffsets(FD, Offset + FieldOffset);
}
// FIXME: Update virtual bases.
}
void
ASTRecordLayoutBuilder::UpdateEmptyClassOffsets(const FieldDecl *FD,
uint64_t Offset) {
QualType T = FD->getType();
if (const RecordType *RT = T->getAs<RecordType>()) {
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
UpdateEmptyClassOffsets(RD, Offset);
return;
}
}
if (const ConstantArrayType *AT = Ctx.getAsConstantArrayType(T)) {
QualType ElemTy = Ctx.getBaseElementType(AT);
const RecordType *RT = ElemTy->getAs<RecordType>();
if (!RT)
return;
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
if (!RD)
return;
const ASTRecordLayout &Info = Ctx.getASTRecordLayout(RD);
uint64_t NumElements = Ctx.getConstantArrayElementCount(AT);
uint64_t ElementOffset = Offset;
for (uint64_t I = 0; I != NumElements; ++I) {
UpdateEmptyClassOffsets(RD, ElementOffset);
ElementOffset += Info.getSize();
}
}
}
uint64_t ASTRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *RD) {
const ASTRecordLayout &BaseInfo = Ctx.getASTRecordLayout(RD);
// If we have an empty base class, try to place it at offset 0.
if (RD->isEmpty() && canPlaceRecordAtOffset(RD, 0)) {
// We were able to place the class at offset 0.
UpdateEmptyClassOffsets(RD, 0);
Size = std::max(Size, BaseInfo.getSize());
return 0;
}
unsigned BaseAlign = BaseInfo.getNonVirtualAlign();
// Round up the current record size to the base's alignment boundary.
uint64_t Offset = llvm::RoundUpToAlignment(DataSize, BaseAlign);
// Try to place the base.
while (true) {
if (canPlaceRecordAtOffset(RD, Offset))
break;
Offset += BaseAlign;
}
if (!RD->isEmpty()) {
// Update the data size.
DataSize = Offset + BaseInfo.getNonVirtualSize();
Size = std::max(Size, DataSize);
} else
Size = std::max(Size, Offset + BaseInfo.getSize());
// Remember max struct/class alignment.
UpdateAlignment(BaseAlign);
UpdateEmptyClassOffsets(RD, Offset);
return Offset;
}
void ASTRecordLayoutBuilder::LayoutBaseNonVirtually(const CXXRecordDecl *RD,
bool IsVirtualBase) {
// Layout the base.
uint64_t Offset = LayoutBase(RD);
// Add base class offsets.
if (IsVirtualBase)
VBases.push_back(std::make_pair(RD, Offset));
else
Bases.push_back(std::make_pair(RD, Offset));
}
void ASTRecordLayoutBuilder::Layout(const RecordDecl *D) {
IsUnion = D->isUnion();
Packed = D->hasAttr<PackedAttr>();
// The #pragma pack attribute specifies the maximum field alignment.
if (const PragmaPackAttr *PPA = D->getAttr<PragmaPackAttr>())
MaxFieldAlignment = PPA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
UpdateAlignment(AA->getMaxAlignment());
// If this is a C++ class, lay out the vtable and the non-virtual bases.
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
if (RD) {
LayoutVtable(RD);
// PrimaryBase goes first.
if (PrimaryBase.getBase()) {
if (PrimaryBase.isVirtual())
IndirectPrimaryBases.insert(PrimaryBase.getBase());
LayoutBaseNonVirtually(PrimaryBase.getBase(), PrimaryBase.isVirtual());
}
LayoutNonVirtualBases(RD);
}
LayoutFields(D);
NonVirtualSize = Size;
NonVirtualAlignment = Alignment;
if (RD) {
llvm::SmallSet<const CXXRecordDecl*, 32> mark;
LayoutVirtualBases(RD, RD, PrimaryBase.getBase(),
0, mark, IndirectPrimaryBases);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
FinishLayout();
}
// FIXME. Impl is no longer needed.
void ASTRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) {
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
const ASTRecordLayout &SL = Ctx.getASTObjCInterfaceLayout(SD);
UpdateAlignment(SL.getAlignment());
// We start laying out ivars not at the end of the superclass
// structure, but at the next byte following the last field.
Size = llvm::RoundUpToAlignment(SL.getDataSize(), 8);
DataSize = Size;
}
Packed = D->hasAttr<PackedAttr>();
// The #pragma pack attribute specifies the maximum field alignment.
if (const PragmaPackAttr *PPA = D->getAttr<PragmaPackAttr>())
MaxFieldAlignment = PPA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
UpdateAlignment(AA->getMaxAlignment());
// Layout each ivar sequentially.
llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
Ctx.ShallowCollectObjCIvars(D, Ivars);
for (unsigned i = 0, e = Ivars.size(); i != e; ++i)
LayoutField(Ivars[i]);
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
FinishLayout();
}
void ASTRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (RecordDecl::field_iterator Field = D->field_begin(),
FieldEnd = D->field_end(); Field != FieldEnd; ++Field)
LayoutField(*Field);
}
void ASTRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
uint64_t FieldOffset = IsUnion ? 0 : (DataSize - UnfilledBitsInLastByte);
uint64_t FieldSize = D->getBitWidth()->EvaluateAsInt(Ctx).getZExtValue();
std::pair<uint64_t, unsigned> FieldInfo = Ctx.getTypeInfo(D->getType());
uint64_t TypeSize = FieldInfo.first;
unsigned FieldAlign = FieldInfo.second;
if (FieldPacked)
FieldAlign = 1;
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getMaxAlignment());
// The maximum field alignment overrides the aligned attribute.
if (MaxFieldAlignment)
FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
// Check if we need to add padding to give the field the correct
// alignment.
if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
// Padding members don't affect overall alignment
if (!D->getIdentifier())
FieldAlign = 1;
// Place this field at the current location.
FieldOffsets.push_back(FieldOffset);
// Update DataSize to include the last byte containing (part of) the bitfield.
if (IsUnion) {
// FIXME: I think FieldSize should be TypeSize here.
DataSize = std::max(DataSize, FieldSize);
} else {
uint64_t NewSizeInBits = FieldOffset + FieldSize;
DataSize = llvm::RoundUpToAlignment(NewSizeInBits, 8);
UnfilledBitsInLastByte = DataSize - NewSizeInBits;
}
// Update the size.
Size = std::max(Size, DataSize);
// Remember max struct/class alignment.
UpdateAlignment(FieldAlign);
}
void ASTRecordLayoutBuilder::LayoutField(const FieldDecl *D) {
if (D->isBitField()) {
LayoutBitField(D);
return;
}
// Reset the unfilled bits.
UnfilledBitsInLastByte = 0;
bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
uint64_t FieldOffset = IsUnion ? 0 : DataSize;
uint64_t FieldSize;
unsigned FieldAlign;
if (D->getType()->isIncompleteArrayType()) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
FieldSize = 0;
const ArrayType* ATy = Ctx.getAsArrayType(D->getType());
FieldAlign = Ctx.getTypeAlign(ATy->getElementType());
} else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
unsigned AS = RT->getPointeeType().getAddressSpace();
FieldSize = Ctx.Target.getPointerWidth(AS);
FieldAlign = Ctx.Target.getPointerAlign(AS);
} else {
std::pair<uint64_t, unsigned> FieldInfo = Ctx.getTypeInfo(D->getType());
FieldSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
}
if (FieldPacked)
FieldAlign = 8;
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getMaxAlignment());
// The maximum field alignment overrides the aligned attribute.
if (MaxFieldAlignment)
FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
// Round up the current record size to the field's alignment boundary.
FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
if (!IsUnion) {
while (true) {
// Check if we can place the field at this offset.
if (canPlaceFieldAtOffset(D, FieldOffset))
break;
// We couldn't place the field at the offset. Try again at a new offset.
FieldOffset += FieldAlign;
}
UpdateEmptyClassOffsets(D, FieldOffset);
}
// Place this field at the current location.
FieldOffsets.push_back(FieldOffset);
// Reserve space for this field.
if (IsUnion)
Size = std::max(Size, FieldSize);
else
Size = FieldOffset + FieldSize;
// Update the data size.
DataSize = Size;
// Remember max struct/class alignment.
UpdateAlignment(FieldAlign);
}
void ASTRecordLayoutBuilder::FinishLayout() {
// In C++, records cannot be of size 0.
if (Ctx.getLangOptions().CPlusPlus && Size == 0)
Size = 8;
// Finally, round the size of the record up to the alignment of the
// record itself.
Size = llvm::RoundUpToAlignment(Size, Alignment);
}
void ASTRecordLayoutBuilder::UpdateAlignment(unsigned NewAlignment) {
if (NewAlignment <= Alignment)
return;
assert(llvm::isPowerOf2_32(NewAlignment && "Alignment not a power of 2"));
Alignment = NewAlignment;
}
const ASTRecordLayout *
ASTRecordLayoutBuilder::ComputeLayout(ASTContext &Ctx,
const RecordDecl *D) {
ASTRecordLayoutBuilder Builder(Ctx);
Builder.Layout(D);
if (!isa<CXXRecordDecl>(D))
return new ASTRecordLayout(Builder.Size, Builder.Alignment, Builder.Size,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size());
// FIXME: This is not always correct. See the part about bitfields at
// http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
// FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
bool IsPODForThePurposeOfLayout = cast<CXXRecordDecl>(D)->isPOD();
// FIXME: This should be done in FinalizeLayout.
uint64_t DataSize =
IsPODForThePurposeOfLayout ? Builder.Size : Builder.DataSize;
uint64_t NonVirtualSize =
IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize;
return new ASTRecordLayout(Builder.Size, Builder.Alignment, DataSize,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size(),
NonVirtualSize,
Builder.NonVirtualAlignment,
Builder.PrimaryBase,
Builder.Bases.data(),
Builder.Bases.size(),
Builder.VBases.data(),
Builder.VBases.size());
}
const ASTRecordLayout *
ASTRecordLayoutBuilder::ComputeLayout(ASTContext &Ctx,
const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) {
ASTRecordLayoutBuilder Builder(Ctx);
Builder.Layout(D, Impl);
return new ASTRecordLayout(Builder.Size, Builder.Alignment,
Builder.DataSize,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size());
}
const CXXMethodDecl *
ASTRecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) {
assert(RD->isDynamicClass() && "Class does not have any virtual methods!");
// If a class isnt' polymorphic it doesn't have a key function.
if (!RD->isPolymorphic())
return 0;
// A class inside an anonymous namespace doesn't have a key function. (Or
// at least, there's no point to assigning a key function to such a class;
// this doesn't affect the ABI.)
if (RD->isInAnonymousNamespace())
return 0;
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
E = RD->method_end(); I != E; ++I) {
const CXXMethodDecl *MD = *I;
if (!MD->isVirtual())
continue;
if (MD->isPure())
continue;
// Ignore implicit member functions, they are always marked as inline, but
// they don't have a body until they're defined.
if (MD->isImplicit())
continue;
if (MD->isInlineSpecified())
continue;
if (MD->hasInlineBody())
continue;
// We found it.
return MD;
}
return 0;
}